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LORENTZIAN PARA-SASAKIAN MANIFOLDS AND ∗-RICCI
SOLITONS

ABDUL HASEEB1 AND SUDHAKAR K. CHAUBEY2

Abstract. We study the properties of Lorentzian para-Sasakian manifolds en-
dowed with ∗-Ricci solitons and gradient ∗-Ricci solitons. Finally, the existence of
∗-Ricci soliton on a 4-dimensional Lorentzian para-Sasakian manifold is proved by
constructing a non-trivial example.

1. Introduction

A Ricci soliton (g, F, λ) [12] on a semi-Riemannian manifold (M, g) is a generaliza-
tion of Einstein metric such that

1
2£F g + S + λg = 0,

where S is the Ricci tensor, £F is the Lie derivative operator along the vector field F
on M , g represents the semi-Riemannian metric of M and λ is a real number. The
Ricci soliton is said to be shrinking, steady and expanding according to λ being less
than 0, 0 and greater than 0, respectively.

In 1959, the notion of ∗-Ricci tensor on almost Hermitian manifolds was introduced
by Tachibana [23] and further studied by Hamada [11] on real hypersurfaces of non-flat
complex space forms. A semi-Riemannian metric g on a smooth manifold M is called
a ∗-Ricci soliton [16] if there exists a smooth vector field F (called soliton vector field)
and a real number λ, such that
(1.1) £F g + 2S∗ = −2λg,
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where
S∗(U, V ) = g(Q∗U, V ) = Trace {ϕ ◦ R(U, ϕV )} ,

for all vector fields U, V on M [6]. Here, ϕ is the (1, 1) tensor field and Q∗ is the
(1, 1) ∗-Ricci operator. If we choose λ as a smooth function in (1.1), then the soliton
(g, F, λ) satisfying equation (1.1) is known as an almost ∗-Ricci soliton on M . In this
connection, we recommend the papers [4, 10, 13, 15,17,21, 22,24,25] for more details
about the study of Ricci solitons, η-Ricci solitons and ∗-Ricci solitons in the context
of contact Riemannian geometry. As far as our knowledge goes, the study of ∗-Ricci
solitons in the context of Lorentzian para-Sasakian manifolds is left. The main motive
of this article is to fill this gap.

In 1989, K. Matsumoto [18] introduced the notion of LP−Sasakian manifolds, while
in 1992, the same notion was independently studied by I. Mihai and R. Rosca [19]
and they obtained several results on this manifold. The Lorentzian para-Sasakian
manifolds have also been studied by various authors such as [1,2,7–9,14,26] and many
others.

We present our work as follows. In Section 2, we collect the basic results and
some basic definitions of Lorentzian para-Sasakian manifolds. The ∗-Ricci solitons
and gradient ∗-Ricci solitons on Lorentzian para-Sasakian manifolds are discussed in
Section 3 and Section 4, respectively. We present a 4-dimensional non-trivial example
of Lorentzian para-Sasakian manifold admitting a ∗-Ricci soliton in Section 5.

2. Preliminaries

Let M be an n-dimensional smooth manifold equipped with a quartet (ϕ, ξ, η, g),
where ϕ is a tensor field of type (1, 1), ξ is the unit timelike vector field, η is a 1-form
and a Lorentzian metric g on M such that [5, 20]

(2.1) ϕ2 = I + η ⊗ ξ, η(ξ) = −1,

which implies

(2.2) ϕξ = 0, η(ϕU) = 0, rank(ϕ) = n − 1,

for all U ∈ X(M), where X(M) denotes the collection of all smooth vector fields of M .
The manifold M is said to have an almost para-contact metric structure (ϕ, ξ, η, g)
when it admits a Lorentzian metric g, such that

(2.3) g(ϕU, ϕV ) = g(U, V ) + η(U)η(V ), g(U, ξ) = η(U),

for all U, V ∈ X(M).
If moreover,

(∇Uϕ)V =η(V )ϕ2U + g(ϕU, ϕV )ξ,(2.4)
∇Uξ =ϕX ⇔ (∇Uη)V = g(ϕU, V ) = g(U, ϕV ),(2.5)

where ∇ denotes the Levi-Civita connection of the manifold.
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An n-dimensional Lorentzian para-Sasakian manifold satisfies the following relations
(see [9]):

g(R(U, V )W, ξ) =g(V, W )η(U) − g(U, W )η(V ),(2.6)
R(U, V )ξ =η(V )U − η(U)V,(2.7)

S(U, ξ) =(n − 1)η(U) ⇔ Qξ = (n − 1)ξ,(2.8)

for all U, V, W ∈ X(M), where R denotes the curvature tensor and S denotes the Ricci
tensor of M such that S(U, V ) = g(QU, V ) for all U, V ∈ X(M).

A Lorentzian para-Sasakian manifold M is said to be a generalized η-Einstein [3] if
its non-vanishing Ricci tensor S is of the form

(2.9) S(U, V ) = ρ1g(U, V ) + ρ2η(U)η(V ) + ρ3g(ϕU, V ),

where ρ1, ρ2 and ρ3 are smooth functions on M . If ρ3 = 0 (resp. ρ2 = ρ3 = 0), then
M is called an η-Einstein (resp. Einstein) manifold.

Lemma 2.1. An n-dimensional Lorentzian para-Sasakian manifold satisfies the fol-
lowing relations

(∇UQ)ξ =(n − 1)ϕU − QϕU,(2.10)
(∇ξQ)U = − 2QϕU + 2aU + 2aη(U)ξ,(2.11)

where Q is the Ricci operator.

Proof. Differentiating Qξ = (n − 1)ξ along U and using (2.5), we get (2.10). Next
differentiating (2.7) then using (2.5), we find

(2.12) (∇ER)(V, W )ξ = −R(V, W )ϕE + g(ϕE, W )V − g(ϕE, V )W.

Let {ei}n
i=1 be a local orthonormal basis on M . Putting V = E = ei in (2.12) and

summing over i leads to
n∑

i=1
ϵig((∇ei

R)(ei, W )ξ, U) =S(W, ϕU) + (n − 1)g(ϕW, U)(2.13)

− 2ag(W, U) − 2aη(V )η(W ),

where ϵi = g(ei, ei) and a = tr ϕ. Here tr stands for trace. From Bianchi’s second
identity, we can easily obtain that

(2.14)
n∑

i=1
ϵig((∇ei

R)(U, ξ)W ), ei) = (∇US)(ξ, W ) − (∇ξS)(U, W ).

By considering (2.13) in (2.14), equation (2.11) follows. □

On a Lorentzian para-Sasakian manifold (M, ϕ, ξ, η, g), we have the following lem-
mas.
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Lemma 2.2. On a Lorentzian para-Sasakian manifold (M, ϕ, ξ, η, g), we have

R̄(U, V, ϕW, ϕE) =R̄(U, V, W, E) − g(U, W )g(V, E) + g(V, W )g(U, E)(2.15)
+ 2[g(V, W )η(U)η(E) − g(U, W )η(V )η(E)
+ g(U, E)η(V )η(W ) − g(V, E)η(U)η(W )]
+ g(U, ϕW )g(V, ϕE) − g(V, ϕW )g(U, ϕE),

for any U, V, W, E on M, where R̄(U, V, W, E) = g(R(U, V )W, E).

Proof. By virtue of the well-known definition of curvature tensor, we can write

R̄(U, V, ϕW, ϕE) =g(∇U∇V ϕW, ϕE) − g(∇V ∇UϕW, ϕE) − g(∇[U,V ]ϕW, ϕE).(2.16)

By making use of (2.2), (2.4) and (2.5), (2.16) takes the form

R̄(U, V, ϕW, ϕW ) =g(R(U, V )W, E) + η(R(U, V )W )η(E)
+ g(V, W )g(ϕU, ϕE) − g(U, W )g(ϕV, ϕE)
+ 2g(U, E)η(V )η(W ) − 2g(V, E)η(U)η(W )
+ g(U, ϕW )g(V, ϕE) − g(V, ϕW )g(U, ϕE),

which in view of (2.3) and (2.6) leads to (2.15). This completes the proof. □

Lemma 2.3. The ∗-Ricci tensor of an n-dimensional Lorentzian para-Sasakian man-
ifold (M, ϕ, ξ, η, g) is given by

(2.17) S∗(V, W ) = S(V, W ) + (n − 2)g(V, W ) − g(V, ϕW )a + (2n − 3)η(V )η(W ),

for any V, W ∈ X(M).

Proof. Let {ei}n
i=1 be an orthonormal basis of the tangent space at each point of the

manifold. By the definition of ∗-Ricci tensor, from (2.15), we have

S∗(V, W ) =
n∑

i=1
ϵiR̄(ei, V, ϕW, ϕei)

=
n∑

i=1
ϵiR̄(ei, V, W, ei) +

n∑
i=1

ϵi[g(V, W )g(ei, ei) − g(ei, W )g(V, ei)]

+ 2
n∑

i=1
ϵi[g(V, W )η(ei)η(ei) − g(ei, W )η(V )η(ei)

+ g(ei, ei)η(V )η(W ) − g(V, ei)η(ei)η(W )]

+
n∑

i=1
ϵi[g(ei, ϕW )g(V, ϕei) − g(V, ϕW )g(ei, ϕei)],

which leads to (2.17), where ϵi = g(ei, ei), i.e., ϵ1 = ϵ2 = · · · = ϵn−1 = 1, ϵn = −1. □
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3. Lorentzian Para-Sasakian Manifolds Admitting ∗-Ricci Solitons

In this section, we characterize the properties of Lorentzian para-Sasakian manifold
endowed with ∗-Ricci solitons. Now, we prove the following.

Theorem 3.1. If an n-dimensional Lorentzian para-Sasakian manifold admits a ∗-
Ricci soliton (g, F, λ), then the ∗-Ricci soliton is steady.

Proof. By using (2.17) in (1.1), we have
(£F g)(U, V ) = − 2S(U, V ) − 2[λ + (n − 2)]g(U, V ) − 2(2n − 3)η(U)η(V )(3.1)

+ 2g(U, ϕV )a.

Taking covariant differentiation of (3.1) with respect to W , we get
(∇W £F g)(U, V ) = − 2(∇W S)(U, V ) − 2(2n − 3)[g(ϕW, U)η(V )(3.2)

+ g(ϕW, V )η(U)] + 2[g(V, W )η(U)
+ g(U, W )η(V ) + 2η(U)η(V )η(W )]a.

Following Yano [27], the following formula
(£F ∇Ug − ∇U£F g − ∇[F,U ]g)(V, W ) = −g((£F ∇)(U, V ), W ) − g((£F ∇)(U, W ), V )
is well-known for any U, V, W on M . As g is parallel with respect to ∇, the above
relation becomes
(3.3) (∇U£F g)(V, W ) − g((£F ∇)(U, V ), W ) − g((£F ∇)(U, W ), V ) = 0,

for any U, V, W . Since £F ∇ is a symmetric tensor of type (1, 2), then from (3.3) it
follows that

g((£F ∇)(U, V ), W ) = 1
2(∇V £F g)(U, W ) + 1

2(∇U£F g)(V, W ) − 1
2(∇W £F g)(U, V ).

(3.4)

Using (3.2) in (3.4), we have
g((£F ∇)(U, V ), W ) =(∇W S)(U, V ) − (∇V S)(W, U) − (∇US)(V, W )

− 2(2n − 3)g(ϕU, V )η(W ) + 2g(ϕU, ϕV )η(W )a,

which by putting V = ξ reduces to
(3.5) g((£F ∇)(U, ξ), W ) = (∇W S)(U, ξ) − (∇US)(ξ, W ) − (∇ξS)(W, U).
By considering (2.10) and (2.11) in (3.5), we obtain
(3.6) (£F ∇)(U, ξ) = 2QϕU − 2aU − 2aη(U)ξ.

Taking the covariant derivative of (3.6) with respect to V , we have
(∇V £F ∇)(U, ξ) =2(∇V Q)ϕU − (£F ∇)(U, ϕV ) + 2Q(∇V ϕ)U

− 2ag(U, ϕV )ξ − 2aη(U)ϕV.
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Again from [27], we have
(£F R)(U, V )W + (∇V £F ∇)(U, W ) − (∇U£F ∇)(V, W ) = 0.

Thus the last two equations give
(£F R)(U, V )ξ =2(∇UQ)ϕV − 2(∇V Q)ϕU(3.7)

+ 2Q(η(V )U − η(U)V ) + 2a(η(U)ϕV − η(V )ϕU)
+ (£F ∇)(U, ϕV ) − (£F ∇)(V, ϕU).

Setting V = ξ in (3.7) and making use of (2.11), it follows that
(3.8) (£F R)(U, ξ)ξ = 2QU + 2Qη(U)ξ − 2aϕU − (£F ∇)(ξ, ϕU).
Taking the Lie derivative of R(U, ξ)ξ = −U − η(U)ξ along F , we have
(3.9) (£F R)(U, ξ)ξ − g(U, £F ξ)ξ + 2η(£F ξ)U = −(£F η)(U)ξ.

By using (3.9), (3.8) takes the form
(£F η)(U)ξ = − 2QU − 2Qη(U)ξ + 2aϕU + (£F ∇)(ξ, ϕU) + g(U, £F ξ)ξ(3.10)

− 2η(£F ξ)U.

Now taking the Lie derivative of g(U, ξ) = η(U), we find
(3.11) (£F η)U = g(U, £F ξ) + (£F g)(U, ξ).
By putting V = ξ in (3.1) and using (2.1)–(2.3), we find
(3.12) (£F g)(U, ξ) = −2λη(U).
Again putting U = ξ in (3.12), we arrive
(3.13) η(£F ξ) = −λ.

By making use of (3.11)-(3.13), we get from (3.10) that

(λI − Q)ϕ2U = −aϕU − 1
2(£F ∇)(ξ, ϕU),

which by virtue of (3.6) leads to λ = 0, where ϕ2U ≠ 0. This shows that ∗-Ricci
soliton on M is steady. This completes the proof. □

Theorem 3.2. An n-dimensional Lorentzian para-Sasakian manifold endowed with
an almost ∗-Ricci soliton (g, ξ, λ) is a generalized η-Einstein. Also, the soliton is
steady.

Proof. Let the Lorentzian metric of an n-dimensional Lorentzian para-Sasakian mani-
fold be an almost ∗-Ricci soliton (g, ξ, λ), then (1.1)) turns into
(3.14) g(∇Uξ, V ) + g(U, ∇V ξ) + 2S∗(U, V ) + 2λg(U, V ) = 0,

for all vector fields U and V on M . By making use of equations (2.5) and (2.17),
equation (3.14) transforms to

S = ρ1g + ρ2η ⊗ η + ρ3g(·, ϕ ·),
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where ρ1 = −(λ + n − 2), ρ2 = −(2n − 3) and ρ3 = a − 1. Also, in view of (2.1)–(2.3),
(2.8) and the above equation, we can easily find that λ = 0. This gives the statement
of Theorem 3.2. □

Particularly, if we suppose that a = tr ϕ = 1, then from Theorem 3.2, we infer that
(3.15) S = ρ1g + ρ2η ⊗ η.

Let us consider an orthonormal frame field on a Lorentzian para-Sasakian manifold
and contracting (3.15), we lead

r = nρ1 − ρ2 = −n2 + 4n − 3.

Now, we state the following.

Corollary 3.1. If an n-dimensional Lorentzian para-Sasakian manifold admits an
almost ∗-Ricci soliton (g, ξ, λ), with tr ϕ = 1, then it has constant scalar curvature.

A non-flat semi-Riemannian manifold is called pseudo Ricci symmetric and denoted
by (PRS)n if the non-zero Ricci tensor S of type (0, 2) of the manifold satisfies the
condition [28]
(3.16) (∇US)(V, W ) = 2A(U)S(V, W ) + A(V )S(U, W ) + A(W )S(U, V ),
where A is a non-zero 1-form such that g(U, σ) = A(U), for all vector fields U ; σ being
the vector field corresponding to the associated 1-form A. In partcular, if A = 0, then
the manifold is called Ricci symmetric.

Taking the covariant derivative of (3.15) leads to
(3.17) (∇US)(V, W ) = ρ2[g(ϕU, V )η(W ) + g(ϕU, W )η(V )].
Now using (3.15) and (3.17), (3.16) becomes

ρ2[g(ϕU, V )η(W ) + g(ϕU, W )η(V )] =2A(U)[ρ1g(V, W ) + ρ2η(V )η(W )](3.18)
+ A(V )[ρ1g(U, W ) + ρ2η(U)η(W )]
+ A(W )[ρ1g(U, V ) + ρ2η(U)η(V )].

Taking U = W = ξ in (3.18), we get A(V ) = 3A(ξ)η(V ), which by putting V = ξ
gives A(ξ) = 0. This implies that A(V ) = 0. Thus we have the following.

Theorem 3.3. A pseudo Ricci symmetric Lorentzian para-Sasakian manifold admit-
ting an almost ∗-Ricci soliton (g, ξ, λ), with tr ϕ = 1 is Ricci symmetric.

4. Gradient ∗-Ricci Solitons on η-Einstein Lorentzian Para-Sasakian
Manifolds

This section is concerned with the study of gradient ∗-Ricci solitons within the
context of η-Einstein Lorentzian para-Sasakian manifolds.

Let an n-dimensional Lorentzian para-Sasakian manifold be η-Einstein, then it is
noticed that the equation (2.9) takes the form
(4.1) S = ρ1g(U, V ) + ρ2η(U) ⊗ η(V ).
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Setting V = U = ei in (4.1), where {ei}n
i=1 represents a set of orthonormal frame field

of M , and taking the summation over i, 1 ≤ i ≤ n, we have

(4.2) r = ρ1n − ρ2.

On the other hand, putting U = V = ξ in (4.1) and making use of (2.1) and (2.3),
we also have

(4.3) − (n − 1) = −ρ1 + ρ2.

Hence, it follows from (4.2) and (4.3) that

ρ1 = r

n − 1 − 1, ρ2 = r

n − 1 − n.

Thus, the Ricci tensor S of an η-Einstein Lorentzian para-Sasakian manifold is given
by

(4.4) S(U, V ) =
(

r

n − 1 − 1
)

g(U, V ) +
(

r

n − 1 − n
)

η(U)η(V ).

Definition 4.1. A semi-Riemannian metric g of a semi-Riemannian manifold M is
called a gradient ∗-Ricci soliton if it satisfies

(4.5) Hessf + S∗ + λg = 0,

for some smooth function f , where Hess f (Hessian f) is defined by Hess f = ∇∇f . It
is noticed that if we choose F = Df in equation (1.1), where D denotes the gradient
operator of g, then we get (4.5).

Let the η-Einstein Lorentzian para-Sasakian manifold M admit a gradient ∗-Ricci
soliton. Then from (4.5) it follows that

(4.6) ∇UDf + Q∗U + λU = 0,

for all U on M . First we prove the following lemmas for later use.

Lemma 4.1. An n-dimensional η-Einstein Lorentzian para-Sasakian manifold satis-
fies

(4.7) (∇UQ∗)ξ − (∇ξQ
∗)U = −

(
r

n − 1 + n − 3
)

ϕU +
(

a − ξ(r)
n − 1

)
(U + η(U)ξ),

for all X on M .

Proof. By using (4.4) in (2.17), we find

S∗(V, W ) =
(

r

n − 1 + n − 3
)

(g(V, W ) + η(V )η(W )) − g(V, ϕW )a.

It yields

(4.8) Q∗V =
(

r

n − 1 + n − 3
)

(V + η(V )ξ) − ϕV a.
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Differentiating (4.8) along U , we get

(∇UQ∗)V =
(

r

n − 1 + n − 3
)

[(∇Uη)(V )ξ + η(V )∇Uξ](4.9)

− (g(U, V )ξ + η(V )U + 2η(U)η(V )ξ)a + U(r)
n − 1(V + η(V )ξ),

which by replacing V by ξ and using (2.1), (2.3) and (2.5) reduces to

(4.10) (∇UQ∗)ξ = −
(

r

n − 1 + n − 3
)

ϕU + (U + η(U)ξ)a.

Again replacing U by ξ in (4.9) and using same equations, we find

(4.11) (∇ξQ
∗)U = ξr

n − 1(U − η(U)ξ).

By subtracting (4.11) from (4.10), (4.7) follows. □

Lemma 4.2. If an η-Einstein Lorentzian para-Sasakian manifold admits a gradient
∗-Ricci soliton, then we have
(4.12) R(U, V )Df = (∇V Q∗)U − (∇UQ∗)V.

Proof. Differentiating (4.6) covariantly along Y , we have
(4.13) ∇V ∇UDf + ∇V Q∗U + λ∇V U = 0,

which by interchanging U and V becomes
(4.14) ∇U∇V Df + ∇UQ∗V + λ∇UV = 0.

Also from (4.6), we find
(4.15) ∇[U,V ]Df = −Q∗[U, V ] − λ[U, V ].
By making use of (4.13)–(4.15), Lemma 4.2 follows. □

Theorem 4.1. Let the metric of an η-Einstein Lorentzian para-Sasakian manifold
M admit a gradient ∗-Ricci soliton. Then the gradient of the potential function is
pointwise collinear with the potential vector field of M .

Proof. Putting U = ξ in (4.12), we have
R(ξ, V )Df = (∇V Q∗)ξ − (∇ξQ

∗)V,

which by virtue of the Lemma 4.1 leads to
(4.16) g(R(ξ, V )Df, ξ) = 0.

By using (2.8), we have
(4.17) g(R(ξ, V )Df, ξ) = −(V f) − η(V )(ξf).
From (4.16) and (4.17), we find (V f) = −η(V )(ξf). This implies that

Df = −(ξf)ξ.

This completes the proof. □
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Taking the covariant derivative of Df = −(ξf)ξ along U , we have

(4.18) ∇UDf = −(U(ξf))ξ − (ξf)ϕU,

which gives
g(∇UDf, ξ) = U(ξf),

where (2.1) and (2.2) are used. Using the last equation in (4.18), we obtain

(4.19) ∇UDf = −g(∇UDf, ξ)ξ − (ξf)ϕU.

From equations (2.17) and (4.6), we conclude that

(4.20) ∇UDf = −QU − (λ + n − 2)U − (2n − 3)η(U)ξ + ϕUa,

which implies that

(4.21) g(∇UDf, ξ) = −λη(U).

Thus from the equations (2.1), (2.2), (2.8), and (4.19)–(4.21), we obtain

QU = −(λ + n − 2)U − (λ + 2n − 3)η(U)ξ + (a + (ξf))ϕU,

which informs that the manifold M under the consideration is generalized η-Einstein.
Hence, we can state the following.

Corollary 4.1. Every η-Einstein Lorentzian para-Sasakian manifold of dimension n
endowed with a gradient ∗-Ricci metric is generalized η-Einstein.

5. Example

In this section, we construct a non-trivial example of a Lorentzian para-Sasakian
manifold.

We consider the 4-dimensional manifold M = {(u, v, w, t) ∈ R4}, where (u, v, w, t)
are the standard coordinates in R4. Let ζ1, ζ2, ζ3 and ζ4 be the vector fields on M
given by

ζ1 = et ∂

∂u
, ζ2 = et ∂

∂v
, ζ3 = et

(
∂

∂v
+ ∂

∂w

)
, ζ4 = − ∂

∂t
.

Let g be the semi-Riemannian metric defined by

g(ei, ej) =


1, 1 ≤ i = j ≤ 3,

−1, i = j = 4,

0, 1 ≤ i ̸= j ≤ 4.

Let η be the 1-form on M defined by η(U) = g(U, ζ4) = g(U, ξ) for all U ∈ X(M). Let
ϕ be the (1, 1) tensor field on M defined by

ϕζ1 = ζ1, ϕζ2 = ζ2, ϕζ3 = ζ3, ϕζ4 = 0.
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By applying the linearity of ϕ and g, we have

η(ξ) = − 1, ϕ2U = U + η(U)ξ, η(ϕU) = 0,

g(U, ξ) =η(U), g(ϕU, ϕV ) = g(U, V ) + η(U)η(V ),

for all U, V ∈ X(M). Then we have

[ζ1, ζ2] =[ζ1, ζ3] = [ζ2, ζ3] = 0,

[ζ1, ζ4] =ζ1, [ζ2, ζ4] = ζ2, [ζ3, ζ4] = ζ3.

Using Koszul’s formula, we can easily calculate

∇ζ1ζ1 =ζ4, ∇ζ1ζ2 = 0, ∇ζ1ζ3 = 0, ∇ζ1ζ4 = ζ1,

∇ζ2ζ1 =0, ∇ζ2ζ2 = ζ4, ∇ζ2ζ3 = 0, ∇ζ2ζ4 = ζ2,

∇ζ3ζ1 =0, ∇ζ3ζ2 = 0, ∇ζ3ζ3 = ζ4, ∇ζ3ζ4 = ζ3,

∇ζ4ζ1 =0, ∇ζ4ζ2 = 0, ∇ζ4ζ3 = 0, ∇ζ4ζ4 = 0.

From the above values it can be easily verified that for ζ4 = ξ, M is a Lorentzian
para-Sasakian manifold. We found that the non-vanishing components of curvature
tensor are given by

R(ζ1, ζ2)ζ1 = − ζ2, R(ζ1, ζ3)ζ1 = −ζ3, R(ζ1, ζ4)ζ1 = −ζ4,

R(ζ1, ζ2)ζ2 =ζ1, R(ζ2, ζ3)ζ2 = −ζ3, R(ζ2, ζ4)ζ2 = −ζ4,

R(ζ1, ζ3)ζ1 =ζ1, R(ζ2, ζ3)ζ3 = ζ2, R(ζ3, ζ4)ζ3 = −ζ4,

R(ζ1, ζ4)ζ4 = − ζ1, R(ζ2, ζ4)ζ4 = −ζ2, R(ζ3, ζ4)ζ3 = −ζ3.

From the above expressions of curvature tensors, we obtain

S(ζ1,ζ1) = S(ζ2, ζ2) = S(ζ3, ζ3) = 3, S(ζ4, ζ4) = −3.

In view of 2.17, L.H.S. of (1.1) can be expressed as

(£F g)(V, W ) + 2S∗(V, W ) + 2λg(V, W ) =g(∇V F, W ) + g(V, ∇W F )
+ 2S(V, W ) + 4g(V, W )
− 6g(V, ϕW )a + 10η(V )η(W ).

Let V = ∑4
i=1 V iei, W = ∑4

i=1 W iei and F = ∑4
i=1 F iei, where V i, W i and F i are

scalars for i = 1, 2, 3, 4 such that

F 4 = F 1(V 1W 4 + W 1V 4) + F 2(V 2W 4 + W 2V 4) + F 3(V 3W 4 + W 3V 4)
2(V 1W 1 + V 2W 2 + V 3W 3) − 2,

provided V 1W 1 + V 2W 2 + V 3W 3 ̸= 0. Then by the straight forward calculations, we
can notice that

2(V 1W 1F 4 + V 2W 2F 4 + V 3W 3F 4) − (V 1F 1W 4 + V 2F 2W 4 + V 3F 3W 4

+ W 1F 1V 4 + W 2F 2V 4 + W 3F 3V 4) + 4(V 1W 1 + V 2W 2 + V 3W 3) = 0,
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for a = 3 and hence we have £F g + 2S∗ + 2λg = 0, provided λ = 0. Thus, we can
say that the Lorentzian para-Sasakian manifold of dimension 4 admits a steady type
∗-Ricci soliton, which proves Theorem 3.1.
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