Anti-Gaussian quadrature rules related to orthogonality on the semicircle

Aleksandra Milosavljević ${ }^{1}$, Marija P. Stanić ${ }^{1}$, and Tatjana V. Tomović Mladenović ${ }^{1}$
${ }^{1}$ University of Kragujevac, Faculty of Science, Department of Mathematics and Informatics, aleksandra.milosavljevic@pmf.kg.ac.rs, marija.stanic@pmf.kg.ac.rs, tatjana.tomovic@pmf.kg.ac.rs

Let Γ be a unit semicircle $\Gamma=\left\{z=\mathrm{e}^{\mathrm{i} \theta}: 0 \leq \theta \leq \pi\right\}$. Orthogonal polynomials on the semicircle with respect to the complex-valued inner product

$$
\langle f, g\rangle=\int_{\Gamma} f(z) g(z)(\mathrm{i} z)^{-1} \mathrm{~d} z=\int_{0}^{\pi} f\left(\mathrm{e}^{\mathrm{i} \theta}\right) g\left(\mathrm{e}^{\mathrm{i} \theta}\right) \mathrm{d} \theta
$$

was introduced by Gautschi and Milovanović in [1], were the certain basic properties were proved. Such orthogonality as well as the applications involving Gauss-Christoffel quadrature rules were further studied in [2] and [4]. In this article we introduce anti-Gaussian quadrature rules related to the orthogonality on the semicircle (see [3]) and present stable numerical method for their construction. Also, some numerical examples are included.

References

[1] W. Gautschi, G. V. Milovanović, Polynomials orthogonal on the semicircle, J. Approx. Theory 46 (1986), 230-250.
[2] W. Gautschi, H. J. Landau, G. V. Milovanović, Polynomials orthogonal on the semicircle, II, Contr. Approx. 3 (1987), 389-404.
[3] D. P. Laurie, Anti-Gaussian quadrature formulas, Math. Comp. 65(214) (1996), 739-747.
[4] G. V. Milovanović, Special cases of orthogonal polynomials on the semicircle and applications in numerical analysis, Bull. Cl. Sci. Math. Nat. Sci. Math. 44 (2019), 1-28.

