Some modifications of the Chebyshev measure and the corresponding orthogonal polynomials

Gradimir V. Milovanović ${ }^{1}$ and Nevena M. Vasović ${ }^{2}$
${ }^{1}$ Serbian Academy of Sciences and Arts, Belgrade, Serbia, gvm@mi.sanu.ac.rs
${ }^{2}$ University of Kragujevac, Faculty of Hotel Management and Tourism, Vrnjačka Banja, Serbia, nevena.vasovic@kg.ac.rs

Repeated modifications for distinct and the same linear divisors have been studied by Gautschi in [1] and applied to generate special Gaussian rules for dealing with nearby poles. Among interesting examples, he considered the Szegö-Bernstein measure

$$
\mathrm{d} \mu_{m}(t)=\frac{1}{\left(c_{1}^{2}-t^{2}\right)\left(c_{2}^{2}-t^{2}\right) \cdots\left(c_{m}^{2}-t^{2}\right)} \frac{\mathrm{d} t}{\sqrt{1-t^{2}}}, \quad-1<t<1
$$

with $c_{k}=1+1 / k>1$ for each $k=1, \ldots, m$, and $m \leq 24$ (working in 52-digit arithmetic). This lecture is devoted to these problems by symbolic computation. In the case of identical quadratic divisors, $c^{2}+t^{2}(c>0)$, i.e., $\mathrm{d} \mu_{m}(t)=\frac{1}{\left(c^{2}+t^{2}\right)^{m}} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}}$ $(-1<t<1)$, the moments $\mu_{k}^{(m)}=\int_{-1}^{1} t^{k} \mathrm{~d} \mu_{m}(t)(k \geq 0)$ are $\mu_{k}^{(m)}=0$ for odd k, and for even k they can be expressed in terms of the hypergeometric function

$$
\mu_{k}^{(m)}=\pi\binom{k}{k / 2} 2^{2 m-k+1} \frac{X^{m}}{(1+X)^{2 m}}{ }_{2} F_{1}\left(\frac{1}{2}, m ; \frac{k}{2}+1 ; \frac{4 X}{(1+X)^{2}}\right),
$$

where $c=\sinh \varphi$ and $a=2 c^{2}+1=\cosh 2 \varphi=\frac{1}{2}\left(\mathrm{e}^{2 \varphi}+\mathrm{e}^{-2 \varphi}\right)=\frac{1}{2}\left(X+X^{-1}\right)>1$, $X=\mathrm{e}^{-2 \varphi}$. Here, evidently $0<X<1$.

For the coefficients $\beta_{\nu}^{(m)}$ in the recurrence relation for the corresponding orthogonal polynomials, we can obtain

$$
\beta_{\nu}^{(m)}=\frac{1}{4}, \quad \nu \geq m+2, \quad \beta_{m+1}^{(m)}=\frac{1}{4}\left(1+X^{m}\right), \quad \beta_{m}^{(m)}=\frac{1-X^{2 m}+m X^{m-1}\left(1-X^{2}\right)}{4\left(1+X^{m}\right)}
$$

etc. For distinct quadratic divisors, $c_{\nu}^{2}+t^{2}\left(c_{\nu}>0\right), \nu=1, \ldots, m$, the corresponding recurrence coefficients can be expressed in terms of symmetric functions of $X_{\nu}=$ $\mathrm{e}^{-2 \varphi_{\nu}}, \nu=1, \ldots, m$.

References

[1] W. Gautschi, Repeated modifications of orthogonal polynomials by linear divisors, Numer. Algorithms 63 (2013), 369-383.

