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Repeated modifications for distinct and the same linear divisors have been stud-
ied by Gautschi in [1] and applied to generate special Gaussian rules for dealing
with nearby poles. Among interesting examples, he considered the Szegdé-Bernstein
measure
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with ¢, = 1+ 1/k > 1 for each k = 1,...,m, and m < 24 (working in 52-digit
arithmetic). This lecture is devoted to these problems by symbolic computation. In
the case of identical quadratic divisors, ¢® + t* (¢ > 0), i.e., du,(t) = di

—1<t<l,
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(=1 <t < 1), the moments p\™ = Ih % A (t) (k> 0) are ™ = 0 for odd k, and
for even k they can be expressed in terms of the hypergeometric function
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where ¢ = sinhp and @ = 2¢ + 1 = cosh2p = $(e* +e72°) = L (X + X71) > 1,
X = e 2. Here, evidently 0 < X < 1.

For the coefficients 55’”) in the recurrence relation for the corresponding orthogonal
polynomials, we can obtain
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etc. For distinct quadratic divisors, ¢ +t2 (¢, > 0), v = 1,...,m, the corresponding

recurrence coefficients can be expressed in terms of symmetric functions of X, =
e 2 y=1,...,m.
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