On the Christoffel-Darboux formula for multilevel interpolations

Vladimir Lysov ${ }^{1}$
${ }^{1}$ Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, vlysov@mail.ru

Let $\vec{\mu}=\left(\mu_{1}, \ldots, \mu_{d}\right)$ be a vector of positive Borel measures on \mathbb{R}. We denote by $\widehat{\mu}_{j}(z):=\int(z-x)^{-1} d \mu_{j}(x)$ their Cauchy transforms. We start from the type I and type II Hermite-Padé interpolation problems. For an arbitrary multi-index $\vec{n} \in \mathbb{N}^{d}$ the problem is to find polynomials $q_{\vec{n}, 0}, q_{\vec{n}, 1}, \ldots, q_{\vec{n}, d}$ and $p_{\vec{n}}, p_{\vec{n}, 1}, \ldots, p_{\vec{n}, d}$ with $\operatorname{deg} p_{\vec{n}}=$ $|\vec{n}|:=n_{1}+\cdots+n_{d}$, such that the following interpolation conditions are satisfied for $j=1, \ldots, d$ and $z \rightarrow \infty$:

$$
\begin{array}{rlr}
q_{\vec{n}}:=q_{\vec{n}, 0}+\sum_{k=1}^{d} q_{\vec{n}, k} \widehat{\mu}_{k}=z^{-|\vec{n}|}(1+o(1)), & \operatorname{deg} q_{\vec{n}, j}<n_{j}, \tag{1}\\
p_{\vec{n}} & =z^{|\vec{n}|}(1+o(1)), & r_{\vec{n}, j}:=p_{\vec{n}} \widehat{\mu}_{j}+p_{\vec{n}, j}=O\left(z^{-n_{j}-1}\right) .
\end{array}
$$

If for each $\vec{n} \in \mathbb{N}^{d}$ the solution of this problem exists and is unique, then the system of measures $\vec{\mu}$ is called perfect. We have $\alpha_{\vec{n}, j}:=\lim _{z \rightarrow \infty} z^{n_{j}+1} r_{\vec{n}, j}(z) \neq 0$ for perfect systems. In this case let us define the following function:

$$
\begin{equation*}
F_{\vec{n}}(x, y):=p_{\vec{n}}(x) q_{\vec{n}}(y)-\sum_{j=1}^{d} a_{\vec{n}, j} p_{\vec{n}-\vec{e}_{j}}(x) q_{\vec{n}+\vec{e}_{j}}(y) \tag{3}
\end{equation*}
$$

where $a_{\vec{n}, j}:=\alpha_{\vec{n}, j} / \alpha_{\vec{n}-\vec{e}_{j}, j}$ and $E:=\left\{\vec{e}_{1}, \ldots, \vec{e}_{d}\right\}$ is the standard basis in \mathbb{R}^{d}.
The Christoffel-Darboux formula for Hermite-Padé interpolations was obtained in [1]. Here we reformulate it in the following way. For two multi-indices $\vec{n}_{0}, \vec{n} \in \mathbb{N}^{d}$ we consider a path $\left\{\vec{n}_{m}\right\}_{m=0}^{M} \subset \mathbb{N}^{d}$ connecting \vec{n}_{0} to \vec{n}, that is

$$
\vec{n}_{M}=\vec{n}, \quad \vec{n}_{m+1}-\vec{n}_{m} \in \pm E, \quad m=0, \ldots, M-1
$$

Let

$$
p_{m}:=\left\{\begin{array}{rl}
p_{\vec{n}_{m}}, & \text { if } \vec{n}_{m+1}-\vec{n}_{m} \in E, \\
-p_{\vec{n}_{m+1}}, & \text { if } \vec{n}_{m+1}-\vec{n}_{m} \in-E,
\end{array} \quad q_{m}:=\left\{\begin{aligned}
q_{\vec{n}_{m+1}}, & \text { if } \vec{n}_{m+1}-\vec{n}_{m} \in E, \\
q_{\vec{n}_{m}}, & \text { if } \vec{n}_{m+1}-\vec{n}_{m} \in-E .
\end{aligned}\right.\right.
$$

Then we have the identity:

$$
\begin{equation*}
(x-y) \sum_{m=0}^{M-1} p_{m}(x) q_{m}(y)=F_{\vec{n}}(x, y)-F_{\vec{n}_{0}}(x, y) \tag{4}
\end{equation*}
$$

The right-hand side does not depend on the path but only on its ends. In particular, it is equal to zero for a closed path, then $\vec{n}_{0}=\vec{n}$.

Let us consider one important class of perfect systems, namely the Nikishin systems. The Nikishin system [2] is based on a set of generating measures $\left(\sigma_{1}, \ldots, \sigma_{d}\right)$ supported on segments $\operatorname{supp} \sigma_{j} \subset \Delta_{j}, \Delta_{j} \cap \Delta_{j+1}=\emptyset$. More specifically, we put $s_{j, j}:=\sigma_{j}$, and then by induction on $|k-j|$ we define $d s_{j, k}:=\widehat{s}_{j+1, k} d \sigma_{j}$ for $k>j$ and $d s_{j, k}:=\widehat{s}_{j-1, k} d \sigma_{j}$ for $k<j$. The vector of measures $\left(s_{1,1}, \ldots, s_{1, d}\right)$ is perfect, see [3].

Now we move to the multilevel interpolation problem for the Nikishin system [4]: given $\vec{n} \in \mathbb{N}^{d}$ find polynomials $q_{\vec{n}, 0}, q_{\vec{n}, 1}, \ldots, q_{\vec{n}, d}$ and $p_{\vec{n}, 0}, p_{\vec{n}, 1}, \ldots, p_{\vec{n}, d}$ such that for $j=1, \ldots, d$ and $z \rightarrow \infty$ the following interpolation conditions hold

$$
\begin{align*}
q_{\vec{n}}:=q_{\vec{n}, 0}+\sum_{k=1}^{d} \widehat{s}_{1, k} q_{\vec{n}, k}=z^{-|\vec{n}|}(1+o(1)), & q_{\vec{n}, j}+\sum_{k=j+1}^{d} \widehat{s}_{j+1, k} q_{\vec{n}, k}=O\left(z^{n_{j}-1}\right), \tag{5}\\
p_{\vec{n}}:=p_{\vec{n}, 0}=z^{|\vec{n}|}(1+o(1)), & \sum_{k=1}^{j} p_{\vec{n}, k-1} \widehat{s}_{j, k}+p_{\vec{n}, j}=O\left(z^{-n_{j}-1}\right) .
\end{align*}
$$

For each $\vec{n} \in \mathbb{N}^{d}$ the solution of this problem exists and is unique [5]. The solution also satisfies [6] the Christoffel-Darboux formula (4). The proof based on recurrent relations is similar to [7]. We will discuss some applications of this result during the talk. The particular case $\vec{n}=n \vec{e}_{d}$ with $d=2$ corresponds to the biorthogonal Cauchy polynomials, see $[8,9]$.

References

[1] E. Daems, A. Kuijlaars, A Christoffel-Darboux formula for multiple orthogonal polynomials, J. Approx. Theory 130 (2004), 190-202.
[2] E. M. Nikishin, On simultaneous Padé approximants, Math. USSR-Sb., 41 (1982), 409-425.
[3] U. Fidalgo, G. López Lagomasino, Nikishin systems are perfect, Constr. Approx. 34 (2011), 297-356.
[4] A. I. Aptekarev, V. G. Lysov, Multilevel interpolation for Nikishin systems and boundedness of Jacobi matrices on binary trees, Russian Math. Surveys, 76 (2021), 726-728.
[5] V. G. Lysov, Mixed type HermitePadé approximants for a Nikishin system, Proc. Steklov Inst. Math. 311 (2020), 199-213.
[6] V. G. Lysov, Recurrent relations for multilevel interpolations of the Nikishin system, Sb. Math. (submitted).
[7] W. Van Assche, Nearest neighbor recurrence relations for multiple orthogonal polynomials, J. Approx. Theory, 163 (2011), 1427-1448.
[8] M. Bertola, M. Gekhtman, J. Szmigielski, Cauchy biorthogonal polynomials. J. Approx. Theory 162 (2010), 832-867.
[9] L. G. González Ricardo, G. López Lagomasino, Strong asymptotic of Cauchy biorthogonal polynomials and orthogonal polynomials with varying measure, Constr. Approx., 56 (2022).

