Dynamical sampling for shift-preserving operators acting on finitely generated shift-invariant subspaces of Sobolev spaces

Suzana Aleksić¹, Stevan Pilipović², and Aleksandar Aksentijević³

¹University of Kragujevac, Faculty of Science, Department of Mathematics and Informatics, suzana.aleksic@pmf.kg.ac.rs

²University of Novi Sad, Faculty of Sciences, Department of Mathematics and Informatics, stevan.pilipovic@dmi.uns.ac.rs

³University of Kragujevac, Faculty of Technical Sciences, aksentijevic@kg.ac.rs

We analyze shift-invariant spaces V_s , subspaces of Sobolev spaces $H^s(\mathbb{R}^n)$, $s \in \mathbb{R}$, generated by the set of generators φ_i , $i \in I$, I is countable at most, by the use of range functions and characterize Bessel sequences, frames and Riesz basis of such spaces. We show that an $f \in \mathcal{D}'_{L^2}(\mathbb{R}^n)$ belongs to V_s if and only if its Fourier transform has the form $\widehat{f} = \sum_{i \in I} f_i g_i$, $f_i = \widehat{\varphi}_i \in L^2_s(\mathbb{R}^n)$, $\{\varphi_i(\cdot + k) : k \in \mathbb{Z}^n, i \in I\}$ is a frame and $g_i = \sum_{k \in \mathbb{Z}^n} a_k^i e^{-2\pi\sqrt{-1}\langle \cdot, k \rangle}$, with $(a_k^i)_{k \in \mathbb{Z}^n} \in \ell^2$. Moreover, connecting two different approaches to shift-invariant spaces V_s and \mathcal{V}^2_s , s > 0, under the assumption that the finite number of generators belongs to $H^s \cap L^2_s$, we give the characterization of elements in V_s through the expansions with coefficients in ℓ^2_s . We also give the representation for shift-preserving operators $L: V_s \to V_s$ in terms of range operators. Using a range operator approach, we derive a result about dual frames and solve the dynamical sampling problem for a class of shift-preserving operators acting on a finitely generated shift-invariant space V_s .

References

- A. Aguilera, C. Cabrelli, D. Carbajal and V. Paternostro, Diagonalization of shiftpreserving operators, Advan. in Math. 389(3) (2021) No. 107892, 32 pp.
- [2] A. Aguilera, C. Cabrelli, D. Carbajal and V. Paternostro, Dynamical sampling for shift-preserving operators, Appl. Comput. Harmon. Anal, 51 (2021), 258–274.

[3] M. Bownik, The structure of shift-invariant subspaces of $L^2(\mathbb{R}^n)$, J. Funct. Anal. 177 (2000), 282–309.