Error estimates for Gaussian quadrature formulae Davorka Jandrlić¹, Aleksandar Pejčev¹, and Miodrag Spalević¹

¹University of Belgrade, Faculty of mechanical engineering, Department of mathematics, djandrlic@mas.bg.ac.rs, apejcev@mas.bg.ac.rs, mspalevic@mas.bg.ac.rs

We studied the error bound of Gaussian quadrature for analytic functions. The basic idea is to express the remainder of Gaussian quadrature as a contour integral, then the error bound is reduced to find the maximum of the kernel function:

(1)
$$K_n(z;\omega) = \frac{\varrho_n(z;\omega)}{\pi_n(z)}, \quad \varrho_n(z;\omega) = \int_{-1}^1 \frac{\pi_n(t)}{z-t} dt, \quad z \in \mathbb{C} \setminus [-1,1]$$

The integral representation of the error term leads directly to the error bound

(2)
$$|R_n(f)| \le \frac{l(\Gamma)}{2\pi} \left(\max_{z \in \Gamma} |K_n(z)| \right) \left(\max_{z \in \Gamma} |f(z)| \right),$$

where $l(\Gamma)$ is the length of the choosen contour Γ .

A common choice for the contour Γ is one of the confocal ellipses with foci at the points ∓ 1 , also known as the Bernstein ellipses, and the sum of semi-axes $\rho > 1$,

(3)
$$\mathcal{E}_{\rho} = \left\{ z \in \mathbb{C} : z = \frac{1}{2} \left(u + u^{-1} \right), u = \rho e^{i\theta}, 0 \le \theta < 2\pi \right\}.$$

For such Γ we studied the estimates (2) when w is one of the four generalized Chebyshev weight functions.