Error estimates for Gaussian quadrature formulae

Davorka Jandrlić ${ }^{1}$, Aleksandar Pejčev ${ }^{1}$, and Miodrag Spalević ${ }^{1}$
${ }^{1}$ University of Belgrade, Faculty of mechanical engineering, Department of mathematics, djandrlic@mas.bg.ac.rs, apejcev@mas.bg.ac.rs, mspalevic@mas.bg.ac.rs

We studied the error bound of Gaussian quadrature for analytic functions. The basic idea is to express the remainder of Gaussian quadrature as a contour integral, then the error bound is reduced to find the maximum of the kernel function:

$$
\begin{equation*}
K_{n}(z ; \omega)=\frac{\varrho_{n}(z ; \omega)}{\pi_{n}(z)}, \quad \varrho_{n}(z ; \omega)=\int_{-1}^{1} \frac{\pi_{n}(t)}{z-t} d t, \quad z \in \mathbb{C} \backslash[-1,1] . \tag{1}
\end{equation*}
$$

The integral representation of the error term leads directly to the error bound

$$
\begin{equation*}
\left|R_{n}(f)\right| \leq \frac{l(\Gamma)}{2 \pi}\left(\max _{z \in \Gamma}\left|K_{n}(z)\right|\right)\left(\max _{z \in \Gamma}|f(z)|\right) \tag{2}
\end{equation*}
$$

where $l(\Gamma)$ is the length of the choosen contour Γ.
A common choice for the contour Γ is one of the confocal ellipses with foci at the points ∓ 1, also known as the Bernstein ellipses, and the sum of semi-axes $\rho>1$,

$$
\begin{equation*}
\mathcal{E}_{\rho}=\left\{z \in \mathbb{C}: z=\frac{1}{2}\left(u+u^{-1}\right), u=\rho e^{i \theta}, 0 \leq \theta<2 \pi\right\} \tag{3}
\end{equation*}
$$

For such Γ we studied the estimates (2) when w is one of the four generalized Chebyshev weight functions.

