Gauss-type quadrature rules for variable-sign weight functions

Jelena Tomanović ${ }^{1}$
${ }^{1}$ University of Belgrade, Faculty of Mechanical Engineering, Department of Mathematics, jtomanovic@mas.bg.ac.rs

When the Gauss quadrature formula G_{n} is applied, it is often assumed that the weight function (or the measure) is non-negative on the integration interval $[a, b]$. In the present paper, we introduce a Gauss-type quadrature formula Q_{n} for weight functions that change the sign in the interior of $[a, b]$. Construction of Q_{n} is based on the idea to transform the given integral into a sum of one integral which doesn't cause a quadrature error and the other integral with a property that the points from the interior of $[a, b]$ at which the weight function changes sign are the zeros of its integrand. It proves that all nodes of Q_{n} are pairwise distinct and contained in the interior of $[a, b]$. Moreover, G_{n} (with a non-negative weight function) turns out to be a special case of Q_{n}. Obtained results on the remainder term of Q_{n} suggest that the application of Q_{n} makes sense both when the points from the interior of $[a, b]$ at which the weight function changes sign are known exactly, as well as when those points are known approximately. The accuracy of Q_{n} is confirmed by numerical examples.

References

[1] W. Gautschi, A Survey of Gauss-Christoffel Quadrature Formulae, in: P. L. Butzer, F. Fehér (Eds.), E. B. Christoffel, Birkhäuser, Basel, (1981), 72-147.
[2] G. H. Golub, J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969), 221-230.
[3] G. Monegato, On polynomials orthogonal with respect to particular variablesigned weight functions, Journal of Applied Mathematics and Physics (ZAMP) 5 (1980), 549-555.
[4] G. W. Struble, Orthogonal polynomials: Variable-signed weight functions, Numer. Math. 5 (1963), 88-94.

