Multiple orthogonal polynomials for special function weights

Walter Van Assche ${ }^{1}$
$1_{\text {KU Leuven, Department of Mathematics, walter.vanassche@kuleuven.be }}$

Multiple orthogonal polynomials are polynomials in one variable that satisfy orthogonality conditions with respect to r measures. They appear naturally in HermitePadé approximation to r functions. The case $r=1$ corresponds to the usual orthogonal polynomials. Several systems of multiple orthogonal polynomials have been constructed using classical weight functions (multiple Hermite, multiple Laguerre, multiple Jacobi polynomials). In this talk I will use weight functions given by special functions satisfying a differential equation. The r weights then appear by writing the differential equation as a system of first order equations, which then generalizes the Pearson equation for classical orthogonal polynomials. The weights are in terms of modified Bessel functions $K_{\nu}(2 \sqrt{x})$ [3], modified Bessel functions $I_{\nu}(2 \sqrt{x})$ [4], hypergeometric functions [1] and confluent hypergeometric functions [2], and the exponential integral [5]. We give some applications where these multiple orthogonal polynomials appear, such as the eigenvalues of products of random matrices, nonintersecting Brownian motions, and rational approximations to real numbers.

References

[1] H. Lima, A. Loureiro, Multiple orthogonal polynomials with respect to Gauss' hypergeometric function, Stud. Appl. Math. 148 (2022), no. 1, 154-185.
[2] H. Lima, A. Loureiro, Multiple orthogonal polynomials associated with confluent hypergeometric functions, J. Approx. Theory 260 (2020), 105484, 36 pp.
[3] W. Van Assche, S.B. Yakubovich, Multiple orthogonal polynomials associated with Macdonald functions, Integral Transform. Spec. Funct. 9 (2000), no. 3, 229244.
[4] E. Coussement, W. Van Assche, Multiple orthogonal polynomials associated with the modified Bessel functions of the first kind, Constr. Approx. 19 (2003), no. 2, 237-263.
[5] W. Van Assche, T. Wolfs, Multiple orthogonal polynomials associated with the exponential integral, arXiv:2211.04858 [math.CA]

