L^p bounds for orthogonal polynomials and applications

Aleksandar Aptekarev¹

 $^{1} \mbox{Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow,} \\ \mbox{aptekaa@gmail.com}$

The classical Steklov problem deals with bounds of the Tchebyshëv norm $||p_n||^{\infty}$ for the polynomials $p_n(x)$, orthonormal on the interval Δ with respect to the strictly positive wieght function: $w \in L^1(\Delta) \cap S_{\delta}$, $S_{\delta} := \{w : w(x) \geq \delta > 0, x \in \Delta\}$. Modern applications (in particular, to the information entropy of quantum systems) motivate us to consider also the estimates of L^p norms: $||p_n||_w^p(\Delta)$ for the Steklov weight functions $w \in X(\Delta) \cap S_{\delta}$ from the various classes $X := L^{\infty}$, S— (the Szego class), BMO, A_p — (the Muckenhoupt class).

Our talk is based on the joint papaer with Sergey Denisov and Michel Alexis [1]. Thus, we focus on $||p_n||_w^p$, p > 2, for $w \in A_2 \cap S_\delta$.

References

[1] M. Alexis, A. Aptekarev and S. Denisov, Continuity of Weighted Operators, Muckenhoupt Ap Weights, and Steklov Problem for Orthogonal Polynomials, Int. Math. Res. Not. **2022** (8), 5935–5972.