The fork() system call causes the creation of a new process. The new process
(the child process) is an exact copy of the calling process (the parent process).

SYNOPSIS
#include <unistd.h>
pid_t fork(void);

DESCRIPTION
The child process inherits the following attributes from the
parent process ... (man)

The child process differs from the parent process in the
following ways:
= The child process has a unique process ID.
= The child process ID does not match any active process group ID.
» The child process has a different parent process ID (which is the
process ID of the parent process).
= The set of signals pending for the child process is initialized
= to the empty set.



pid_t is the generic process type. Under Unix, this is a short.
fork() can only return three things:

@ for a child process
-1 no child was created
else PID of your child is returned to the parent

Child Parent

exit() wait() it waits for whichever one
When the child calls happens to exit first

exit(), the return value waitpid() specify exactly
passed will arrive at the which child to wait

parent when it wait()s



#tinclude <stdio.h>

##tinclude <stdlib.h>

##tinclude <errno.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.

int main(void)
{

pid t pid;

int rv;

h>

switch(pid = fork()) {

case -1:
perror("fork");

/* something went wrong */

exit(1); /* parent exits */

case 0:
printf(" CHILD:
printf(" CHILD:
printf(" CHILD:
printf(" CHILD:

This is the child process!\n");

My PID is %d\n", getpid());

My parent's PID is %d\n", getppid());
Enter my exit status (make it small): ");

scanf(" %d", &rv);

printf(" CHILD:
exit(rv);

I'm outta here!\n");



default:
printf("PARENT:
printf("PARENT:
printf ("PARENT:
printf("PARENT:

}

wait(&rv);

printf("PARENT:
printf("PARENT:

return 0;

}

This is the parent process!\n");

My PID is %d\n", getpid());

My child's PID is %d\n", pid);

I'm now waiting for my child to exit()...\n");

My child's exit status is: %d\n", WEXITSTATUS(rv));
I'm outta here!\n");



if (!fork()) {
printf("I'm the child!\n");
exit(9);

} else {
printf("I'm the parent!\n");
wait (NULL);

signal (SIGCHLD, SIG _IGN); /* now I don't have to wait()! */

fork();fork();fork(); /* Rabbits, rabbits, rabbits! */
}



	fork()
	fork()
	fork()
	fork()
	fork()

