Shared Memory

= mapping of an area (segment) of memory that will be mapped
and shared by more than one process.

= This is by far the fastest form of IPC, because there is no
Intermediation. Instead, information is mapped directly from a
memory segment, and into the addressing space of the calling
process.

= A segment can be created by one process, and subsequently
written to and read from by any number of processes.

» the kernel maintains a special internal data structure for each
shared memory segment which exists within its addressing space

Kernel shm _ds structure

(1inux/shm.h)
struct shmid ds {

struct ipc_perm shm_perm; /* operation perms */

int shm_segsz; /* size of segment (bytes)
time_t shm_atime; /* last attach time */
time_t shm_dtime; /* last detach time */
time_t shm_ctime; /* last change time */
unsigned short shm _cpid; /* pid of creator */
unsigned short shm_lpid; /* pid of last operator */
short shm_nattch; /* no. of current attaches
unsigned short shm_npages; /* size of segment (pages)

s

unsigned long *shm_pages;
/* array of ptrs to frames -> SHMMAX */
struct vm_area_struct *attaches; /* descriptors for attaches

SYSTEM CALL: shmget ()

SYSTEM CALL: shmget();
PROTOTYPE: int shmget (key_t key, int size, int shmflg);
RETURNS: shared memory segment identifier on success
-1 on error:
errno = EINVAL (Invalid segment size specified)
EEXIST (Segment exists, cannot create)
EIDRM (Segment is marked for deletion, or was removed)
ENOENT (Segment does not exist)
EACCES (Permission denied)
ENOMEM (Not enough memory to create segment)
= Primer:
int open_segment(key t keyval, int segsize)
{
int shmid;
if((shmid=shmget(keyval,segsize,IPC_CREAT|0660)) == -1)
{ return(-1); }
return(shmid);

= deliver a message to a queue
PROTOTYPE: int shmctl (int shmgid, int cmd, struct shmid ds *buf);
RETURNS: @ on success
-1 on error: errno = EACCES (No read permission and cmd is IPC_STAT)
EFAULT (Address pointed to by buf is invalid with IPC_SET and
IPC_STAT commands)
EIDRM (Segment was removed during retrieval)
EINVAL (shmgid invalid)
EPERM (IPC_SET or IPC_RMID command was issued, but calling
process does not have write (alter) access to the segment)
» Valid command values are:
IPC_STAT
Retrieves the shmid ds structure for a segment, and stores it in the address of the
buf argument
IPC_SET
Sets the value of the ipc_perm member of the shmid_ds structure for a segment,
Takes the values from the buf argument.
IPC_RMID
Marks a segment for removal. The actual removal itself occurs when the last
process currently attached to the segment has properly detached it. If no
processes are currently attached to the segment, the removal seems immediate.

= |f the addr argument is zero (0), the kernel tries to find an unmapped
region. This is the recommended method. An address can be specified,
but is typically only used to facilitate proprietary hardware or to resolve
conflicts with other apps.

PROTOTYPE: int shmat (int shmid, char *shmaddr, int shmflg);
RETURNS: address at which segment was attached to the process, or
-1 on error:
errno = EINVAL (Invalid IPC ID value or attach address passed)
ENOMEM (Not enough memory to attach segment)
EACCES (Permission denied)

* Primer
char *attach_segment(int shmid)
{ return(shmat(shmid, @, 90));

}

SYSTEM CALL: shmdt ()

= After a shared memory segment is no longer needed by a process, it
should be detached by calling this system call. As mentioned eatrlier, this is
not the same as removing the segment from the kernel! After a detach is
successful, the shm_nattch member of the associates shmid _ds structure
Is decremented by one. When this value reaches zero (0), the kernel will
physically remove the segment.

PROTOTYPE: int shmdt (char *shmaddr);
RETURNS: -1 on error:

errno = EINVAL (Invalid attach address passed)

	Shared Memory
	Kernel shm_ds structure
	SYSTEM CALL: shmget()
	SYSTEM CALL: shmctl()
	SYSTEM CALL: shmat()
	SYSTEM CALL: shmdt()

