= One semid data structure for each set of semaphores in the system.

linux/sem.h

struct
struct
time_t
time_t
struct
struct
struct
struct
ushort

}s

semid ds {

ipc_perm sem_perm;/* permissions .. see ipc.h */
sem_otime; /* last semop time */

sem_ctime; /* last change time */

sem *sem_base; /* ptr to first semaphore in array */

wait queue *eventn;
wait queue *eventz;
sem_undo *undo; /*
sem_nsems; /*

undo requests on this array */
no. of semaphores in array */

Kernel shm _ds structure

= |n the semid_ds structure, there exists a pointer to the base of the
semaphore array itself. Each array member is of the sem structure type.
It is also defined in 1inux/sem.h:

/* One semaphore structure for each semaphore in the system. */

struct sem {
short sempid;
ushort semval;
ushort semncnt;
ushort semzcnt;

}s

/*pid of last operation*/

/*current value*/

/*num procs awaiting increase in semval*/
/* num procs awaiting semval = @ */

SYSTEM CALL: semget();

SYSTEM CALL: semget ()

PROTOTYPE: int semget (key t key, int nsems, int semflg);
RETURNS: semaphore set IPC identifier on success

-1 on error: errno = EACCESS (permission denied)
EEXIST (set exists, cannot create (IPC_EXCL))
EIDRM (set is marked for deletion)

ENOENT (set does not exist, no IPC_CREAT was used)
ENOMEM (Not enough memory to create new set)
ENOSPC (Maximum set limit exceeded)

Primer:

{

int open_semaphore_set(key t keyval, int numsems)
int sid;
if (!numsems) return(-1);
if((sid = semget(mykey, numsems, IPC_CREAT | 0660)) == -1)

{ return(-1); }
return(sid);

SYSTEM CALL: semop()

PROTOTYPE:

int semop (int semid, struct sembuf *sops, unsigned nsops);
RETURNS: © on success (all operations performed)
-1 on error: errno

The sops argument points to an array of type sembuf. This structure is
declared in 1inux/sem.h as follows:
struct sembuf {

ushort sem_num; /* semaphore index in array */
short sem_op; /* semaphore operation */
short sem _flg; /* operation flags */
¥

Primer:

struct sembuf sem lock = { @, -1, IPC NOWAIT };

if((semop(sid, &sem lock, 1) == -1) perror("semop");

= deliver a message to a queue

SYSTEM CALL: semctl();

PROTOTYPE:

int semctl (int semid, int semnum, int cmd, union semun arg);

RETURNS: positive integer on success

-1 on error: errno = EACCESS (permission denied)
EFAULT (invalid address pointed to by arg argument)
EIDRM (semaphore set was removed)
EINVAL (set doesn't exist, or semid is invalid)
EPERM (EUID has no privileges for cmd in arg)
ERANGE (semaphore value out of range)

NOTES: Performs control operations on a semaphore set

SYSTEM CALL: semctl()

= Valid command values are:

IPC_STAT

Retrieves the semid_ds structure for a set, and stores it in the address of the buf
argument in the semun union.
IPC_SET

Sets the value of the ipc_perm member of the semid_ds structure for a set. Takes
the values from the buf argument of the semun union.
IPC_RMID

Removes the set from the kernel.
GETALL

Used to obtain the values of all semaphores in a set. The integer values are
stored in an array of unsigned short integers pointed to by the array member of the
union.
GETNCNT

Returns the number of processes currently waiting for resources.
GETPID

Returns the PID of the process which performed the last semop call.

= Valid command values are:

GETVAL

Returns the value of a single semaphore within the set.
GETZCNT

Returns the number of processes currently waiting for 100% resource utilization.
SETALL

Sets all semaphore values with a set to the matching values contained in the

array member of the union.
SETVAL

Sets the value of an individual semaphore within the set to the val member of the
union.

SYSTEM CALL: semctl()

» The arg argument represents an instance of type semun. This particular
union is declared in 1inux/sem.h as follows:

/* arg for semctl system calls. */
union semun {

int val; /* value for SETVAL */
struct semid _ds *buf; /* buffer for IPC STAT & IPC SET */
ushort *array; /* array for GETALL & SETALL */

struct seminfo *_ buf; /* buffer for IPC _INFO */
void * pad;
¥
val
Used when the SETVAL command is performed. Specifies the value to set the
semaphore to.
buf
Used in the IPC_STAT/IPC_SET commands. Represents a copy of the internal
semaphore data structure used in the kernel.
array
A pointer used in the GETALL/SETALL commands. Should point to an array of
integer values to be used in setting or retrieving all semaphore values in a set.

SYSTEM CALL: semctl()

= PRIMER
int get _sem val(int sid, int semnum)
{ return(semctl(sid, semnum, GETVAL, ©)); }

#define MAX_PRINTERS 5
printer _usage()
{ int x;
for(x=0; X<MAX_PRINTERS; X++)
printf("Printer %d: %d\n\r", x, get sem val(sid, x));
}

= PRIMER
void init semaphore(int sid, int semnum, int initval)
{

union semun semopts;

semopts.val = initval;

semctl(sid, semnum, SETVAL, semopts);

	semid_is
	Kernel shm_ds structure
	SYSTEM CALL: semget()
	SYSTEM CALL: semop()
	SYSTEM CALL: semctl()
	SYSTEM CALL: semctl()
	SYSTEM CALL: semctl()
	SYSTEM CALL: semctl()
	SYSTEM CALL: semctl()

