JSC-25012

Volume 11
Advanced Programming Guide

CLIPSVersion 6.0

June 2nd 1993

Software Technology Branch

Lyndon B. Johnson Space Center

JSC-25012

CLIPS Advanced Programming Guide
Version 6.0 June 2nd 1993

CONTENTS

Preface ..o IX
ACKNOWI A G EM NS .t Xiii
SECHION 1 - INTrOdUCTION . e e eas 1
1.1 Warning About Interfacing With CLIPS...........ooo e 1
1.2 Compatibility With CLIPS VErsion 5.1.........coouiieei et 1
1.3 USING ANSI PrOtOTYPES.couiieieietie ettt ettt sttt ettt snn e 2
Section 2 - Installing and Tailoring CLIPS.........ooiiiiiiii e 3
2.2 INSEAIING CLIPS.......eeee et b e 3

y A - 1 (0T o T I TSRS 8
Section 3 - Integrating CLIPS with External Functionsoc..... 17
3.1 Declaring User-Defined External FUNCLONS.............ccoociiiiiiiiee e 17
3.2 Passing Arguments from CLIPS to External FUNCLIONS............ccoccvveiiiiiiiieeennen, 21
3.2.1 Determining the Number of Passed Arguments.............cccccvveeeeieeeeeeeeeeeeienns 21

3.2.2 Passing Symbols, Strings, Instance Names, Floats, and Integers............. 22

3.2.3 Passing UNKNOWN Data TYPES........ceeeiiuiieeiiiiieeiiiieeeesitee e e ssireeaessnneeeessnseee e 23

3.2.4 Passing MURIfield ValUES...........c.oooiiiiie e 26

3.3 Returning Values To CLIPS From External Functions.............cccccevevveeeeeieeiccnnnee, 29
3.3.1 Returning Symbols, Strings, and Instance Names...........ccccccceeeeeneeeeeenennnnns 29

3.3.2 Returning Boolean ValUEs.............ccoocviieiiiiee et 31

3.3.3 Returning External Addresses and Instance Addresses...........cccevvvvvvvennnnns 33

3.3.4 Returning UNKNOWN Data TYPES......ccvvieeiiiiieeeiiieeeeeitee e e eireeeessiree e e e enee e e e 33

3.3.5 Returning MUultifield ValUES...........ccooo i 36

3.4 User-Defined FUNCLION EXAMPIE.........ovieiiiiiee et 39
Section 4 - Embedding CLIPS. .. 43
4.1 ENVIFONMENT FUNCHONS.eiiiieiiiiesiie ettt sttt siee s e snte e snae e seeenree s 43
4.1.1 AdACIEAIFUNCHION.......cciii e e e rne e e sne e nnneeenneeeens 43

4.1.2 ADAPEriOQICFUNCHION.iiiiieitii et nnee s 44

4.1.3 AAARESEIFUNCHION.eieiiiieiiie e st e s e e nneeeenneeeens 44

T =] [0 T= o PSR 45

.15 BSAVE......ceeiieeeiiiie et e e e e e a e e e e e ne e e e e e e nne e e e e e anreeeas 45

L O L= SRR 46

4.1.7 CLIPSFUNCHONCALL........eeeeiieeeie e 46

4.1.8 GetAUtOFIOatDIVIAENT........cceiiiieiie et 46

4.1.9 GetDynamicConstraintChecking...........oooiiiiiiiii e a7

CLIPS Advanced Programming Guide i

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.1.10 GetSequenceOperatorReCOGNItION.ccoueivvieieeee i e e a7
4.1.11 GetStaticConstraintCheCKiNg..........c.coiiieiiiiiiie e a7
4.1.22 INIGIANZECLIPS......ocie et sttt e sbe et 48
2 1 G 1 - T OSSR 48
4.1.14 RemOVECIEAIFUNCHON........ccveiiiieiieeiie ettt sae e sae e e 48
4.1.15 RemoVvePeriodiCFUNCLION.c.coiiiee e 49
4.1.16 RemMOVERESEIFUNCHION.oiiiiiiii et 49
107 RESEL.....eeeeeeeeeee et a e b e e e e e nn e e e e e anreeas 49
A 118 SAVE..... et n e R an e e e nr e e e nr e e e nreeeannee e 50
4.1.19 SetAUtOFIOatDIVIAENA..........oeiieiee e 50
4.1.20 SetDynamicConstraintChecking...........ccccoviciieie e 50
4.1.21 SetSequenceOperator RECOGNITION..........cciiiiiiieiiiiiie e 51
4.1.22 SetStaticConstraintChecKing............coociiie e 51
4.2 DebUQJQING FUNCHONS.oitiiiiieiie ettt neas 52
T R o] o] [N ox 11V TSP 52
v 0] 0] [T TSRS 52
4.2.3 DIIBDIEON......ei e et 52
4.2.4 GEIWALCHITEIM. ... s ree e snee e nnee e 52
A.2.5 UNWALCN. ...ttt ettt sttt nns 53
I - (o o USSR 53
4.3 Deftemplate FUNCHONS.........cciiiieiiec ettt e e e e s 54
4.3.1 DeftemplateMOdUIE............oouiieiiee e 54
4.3.2 FINADEMEMPIALE.ee ettt e et e et e e saneesnneeens 54
4.3.3 GetDefteMPIALELIST........ccei et 54
4.3.4 GetDeftemplateNamME.........ccveiiiiiec e 55
4.3.5 GetDeftemplatePPFOIM.ooiiiii it 55
4.3.6 GetDeftemplateWatCh.............c.oooiiiiiiiee e 55
4.3.7 GetNextDeftemplate. ... s 56
4.3.8 IsDeftemplateDeletable................c..ooomieiiiii e 56
4.3.9 LiStDeftemMPIALES..........ooeieieeeeee s 56
4.3.10 SetDeftemplateWatCh..............coooiiiiiie e 57
4.3.11 UNAEMEMPIALE.ooeeeiieiee et 57
N Tox U Vo 0] TSR 57
R NS 1 PSP PTPRPP PP 57
A.4.2 ASSEITSIIINGeeitieeieieeciee et e et et et e e s e et e e st e e e be e e ssseeateeesseeeanseeeaseeeanneeaneeans 58
4.4.3 ASSIGNFACESIOtDETAUILS. ..o 59
444 CrEAEFACL......... ettt e e r e e nnne e 59
4.4.5 DeCrementFACICOUNL............eiiiiiiee ettt ettt e e e e snae e e 62
o =T 1] [PR STSS 62
QA7 FACES. ...ttt e e e e e e e ae e e e e R ne e e e e n e e e e e e nre e e e anneeas 62
4.4.8 GetFaCtDUPICALION........cccvii e e e e eennee e 63
4.4.9 GetFactLIStChaNGEd........ccuiiiiiiiiei e 63
4.4.10 GetFaCtPPRFOIMM.......eiiiiie e 64

Table of Contents

JSC-25012

g R =Y 1 = T 1] [PO 64
Ot I €T 1 NS o= (o 65
o B [(o =T g g [T 1 = (o1 (O] U | PPN 65
e 1 o Y= 1o | = T R 66
N R R 11| 7= T 1 (o | P 66
g ST (=1 1 =X P 67
O S Y= A= o= Tod £ TSP PSPPI 67
4.4.18 SetFaCtDUPICALION.ooiiiiiiieie ettt 68
4.4.19 SetFacCtLIStChanged...........coouie it 68
S B LY i = Tod kU [0 110 F 68
F Y R B = 1 7= (o £ [Yo [] =S 68
S 10 | I< j 7= Tt Y 69
TG R =Y i B LY i =11) I S 69
Y €T 1 B LY i = Tox £ NV = 69
RS C 1= 1 B LY i =101 1] d = 0] 1 o 70
4.5.6 GEINEXIDETACES.ttt e e e e e e e e e e e e e e e e e s aaraaees 70
4.5.7 |SDEffactSDEIELADIE.cceeie i 70
S S IS 1 D 1Y = Td £ 71
FRE IR U g 0 (=1 7= ox £ 71
4.6 DETUIE FUNCHONS..... .ottt e e e e et e e e e e e e e e e bbb r e e e e e e e eeeaaaaeeeeeeeeeaans 71
4.6.1 DefruleHasBreakpoint.............ccuieiiieee e eeeee et e e e snne e enee e 71
4.6.2 DEFTUIEIMOUTUIE........evieieieeeeeeeeeeee s e sssasraaees 72
4.6.3 FINADEITUIE........evveeeeeeeeeeee et e e e e e e e e e e enbaaeeeeas 72
Y €T 1 B LY (] L= N1 S 72
4.6.5 GEtDEITUIEBNAIME.vvviiie et e e e e e e e e e e e e sbaaeeeaeeas 73
4.6.6 GEIDEITUIEP PO ...ttt 73
4.6.7 GetDefruleWatChACHVALIONS...........cooi i 73
4.6.8 GetDefruleWatChFINNGS.coiieiei et 74
4.6.9 GetINCreMENTAIRESEL.covi i e e e e earaee e 74
4.6.10 GEtNEXIDEITUIE.ueeeiieeeeeeeeeeeeeeee et 74
4.6.11 ISDefruleDeletable.............oooo i 75
T A 1S3 1 B < 1 (V1 (=R 75
T G RV F= L (o = 75
T 3 L= (=1 T 76
4.6.15 REMOVEBIEAK........vviiiiiicieiiee ettt et e et e e e e e e e e e e eabraeeeeas 76
4.6.16 SEIBIEAK......cceiiiiee e e e e e e e e e e e e e e e aaa——— 76
4.6.17 SetDefruleWatChACHVALIONS.ceeiiiieeeeeee e 76
4.6.18 SetDefruleWatChFINNGS.c.vviiiiieii ettt 77
4.6.19 SetiNCremMENTAIRESEL.......ccoiiiiii e e e e e e e 77
4.6.20 SNOWBIEAKS.ceeeiiiiiiieeeeeee ettt e e e e e e e e e e e e e e e e e eeeesessssssssssssassanes 77
T R U g To [U [T 78
4.7 AQENAA FUNCHIONS.eiiiiiiiiiiie ettt b e nnne s 78
4. 7.1 ADARUNFUNCHON.cciiiiiiiiiiiee ettt e e e e e e e e e e e e s enaraeeeeeeeas 78

CLIPS Advanced Programming Guide i

CLIPS Reference Manual (Beta Version—Not For Distribution)

o e = T - TS ORRSR 79
A.7.3 ClEAIrFOCUSSLACK.cciiveieiiiie ettt s e e e e e e e e enneeeenes 79
A.7.4 DEIEtEACHVALION.ciiiiiiiee ittt sttt st b e sre e e sbeennee s 80
A.7.5 FOCUS......eeeeeeete ettt e ettt e e e e bt e e e e e s e e e e e anee e e e ennen e e e e nee e e e enrneeeenneeas 80
4.7.6 GEtACHVALIONNEIMIE......cuiiiiieiie ittt e e b e naeesneas 80
A.7.7 GEtACHVAIONPPRFOIMM.....oiiiie e snae e e nneeeens 81
4.7.8 GetACHVAIONSANIENCE.c.eei ittt ree e 81
4.7.9 GetAgendaChanged...........cooui it 81
4.7.010 GEUFOCUS.......eeeeieee ettt ettt s e e s e e e s nn e e s anneeesneeeans 82
A.7.11 GELFOCUSSIACK. ceiieeetieeiie et et sie e e s et e et eesaee e sneeesseeesnseesseeenseeenneeens 82
4.7.12 GEtNEXIACHVALION.oiiiiiieeitie ettt st n e seeesaeas 82
4.7.13 GetSalienCeEValUALION..........ccooiiiiie e 83
N N T <) 1Y = 1 (=] | SRR 83
A.7.15 LIStFOCUSSTACK.eieiiiieiiie ettt e s e e sneeesneeeens 83
N K I =0 o] o Lo U SRR 83
4.7.17 RefreSNAGENGAL ... oo e 84
4.7.18 ReMOVERUNFUNCHION.uoiiiiiiiiesiie ettt eeee s 84
4.7.19 REOIEIAGENUAL.ccutieieeieiie ettt naee s 84
O L | PSR RR 85
4.7.21 SEtACHVALIONSAIIENCE.eiie e e enees 85
4.7.22 SetAgendaChanged............cceeeiuiiiiiiie e 86
4.7.23 SetSalieNnCeEVAlUALION............oviiiiiie e 86
ST) L= L]0 | PP EPPRTPPR 86
4.8 Defglobal FUNCHONS........oouiiii e 87
4.8.1 DefglobalMOdUIE..........c.ooe e 87
4.8.2 FINADEIGIODAL........coiieiieee e e 87
R W =11 =] {0 (o] o= | £ SR 87
4.8.4 GetDefglobalNAIME...........ooie e s 88
4.8.5 GetDefglobalPPFOIM........ccuie ettt 88
4.8.6 GetDefglobalValUE...........oooiiiiiee e 88
4.8.7 GetDefglobalValueFOrm...........ccooiiii e 89
4.8.8 GetDefglobalWALCh..........cooiiiee e 89
4.8.9 GetGIlobalsSChanged............oooiii et 90
4.8.10 GetNextDEefgIODaL.........c.c.oiiiiieee e 90
4.8.11 GetRESELGIODAIS.ccceiiiiiii e s 90
4.8.12 IsDefglobalDeletable.............cooiiiiiiiie e 91
4.8.13 LIStDEfGIODAIS.........oeeiieee e 91
4.8.14 SetDefglobalValUe..........cooeiiiiii e 91
4.8.15 SetDefglobalWatCh...........c.cviiiie e 92
4.8.16 SetGlobalsSChanged...........ccoiiiiiiiiiiiie e 92
4.8.17 SEtRESEtGIODAIS.......cceiiiieie e 92
4.8.18 ShOWDETGIODAIS.......c..eiiiieiiieiei e 93
4.8.19 UNEfQIODAL..........oooiieeee e 93

Table of Contents

JSC-25012

4.9 DeffUNCLION FUNCLIONS.ovviiiii ettt e et e e e e s e bb e e e e e e e s earaaeeeaeeas 93
4.9.1 DeffunCtioNMOUUIE...........oooiiieieeeeeeeeeeeeeeee s 93
Fe T w10 To | D= {1 [T (o] o P 94
4.9.3 GetDEffUNCLIONLISE........ccoeiieieeeeeeeeee e 94
4.9.4 GetDeffUNCHONNAME.uviiiiii e e e e e e aarre e e e e e 94
4.9.5 GetDeffunNClONPPIFOIMM.........ooo oo 95
4.9.6 GetDeffUNCHONWALCK...........vveiiieic e 95
4.9.7 GEtNeXIDEfUNCHON.cooe e aaaaanes 95
4.9.8 ISDeffunCliONDEIEIADIE.coeeeeeeeeeeeeeeeee e 96
4.9.9 LIStDEfUNCHONS.cooiiiiitttee ettt et e e e r e e e e e e e e e e eeeeeeeseeesssanssnnes 96
4.9.10 SetDeffUNCHONWALCK..........c..uviiiiiieee e 96
2 I 1 o [{0 o 1o] TR 97

4.10 DefgeneriC FUNCHONS.........cciiuiieiiie ettt e e e e enae e e enne e e nnnee s 97
4.10.1 DefgeneriCMOTUIE............oouiiee e 97
4.10.2 FINADEIGENENIC.eeeiteeeeeieeeetee ettt et e e s e e e e e e s e e anse e e enneeeenneeeenns 97
4.10.3 GEtDEFGENEIICLISL.......coiuieiiieitieiie ettt 98
4.10.4 GetDefgeneriCNAMI.........ccuie e e e 98
4.10.5 GetDefgeneriCPPFOMM.coiiiiii ittt nnee 98
4.10.6 GetDefgeneriCWaLCH...........cc.ooiiiee e 99
4.10.7 GEtNEXIDEIGENENIC.c..eeeteeeiee ettt 99
4.10.8 IsDefgenericDeletable................c.oooiiie i 99
4.10.9 LISIDEIGENENICS.ccuveeieeeieieeiie sttt r e 100
4.10.10 SetDefgeneriCWAALCN..........cc.eeieiiie e enee e 100
4.10.11 UNAEIGENEIIC. ...ttt ettt ettt nan e 100

4.11 DefMethod FUNCHONS.uveiiiii it e e e e e eaaa e e e e e 100
4.11.1 GetDefmethOdDESCIIPLION.cciiteieiiee ettt 101
o A €12 B L=y 0 1= 1 o o |1 SO 101
4.11.3 GetDefmethodPPFOMM........cooooeiiieee 102
4.11.4 GetDefMethOAWALCN............uveiiiiieceee et e 102
4.11.5 GetMethOURESIICHONS.uuviieiiii eeaeeeeens 102
4.11.6 GetNexXtDEfMENOU...........cccieiiiee e e 103
4.11.7 IsDefmethodDeletable............ueeeeeeeeeeeeeeeeeeee e 103
4.11.8 LIStDEIMELNOUS.eeeieee e e a e 104
4.11.9 SetDefMethOdWALCH. ..o e e e e eeees 104
g I R O U 0o [T 1 =Y 1 o o PO 104

L A B < (o1 F= LY SR U 1110 105
4.12.1 BrOWSECIASSES.......coi ittt e ettt e e e e e s e e raar e e e e e e e e sasaaeeeaaeeas 105
O A O F= TSYSY AN o 1) 1 = 1 1 105
O I B O F= 1Y =T (6 1Y/ S 106
A O F= 1Yo 1S (o] £ 106
4.12.5 ClasSSSUDCIASSES.........coccteiiiieee ettt e e e e e e e s e e e e e e eeaaa 106
4.12.6 ClaSSSUPEICIASSES.......ciiiteiiiieeiie ettt 107
O I A B < {0 = 11 1Y [To [1 = 107

CLIPS Advanced Programming Guide \Y

CLIPS Reference Manual (Beta Version—Not For Distribution)

vi

4.12.8 DESCHDECIASS. ..ottt e e e e e e e e e s e e arraraaaeas 107
e I T (0 | D] (3= 1T 108
4.12.10 GetDECIASSLISE.......c.evviiiee et e e e e a e 108
4.12.11 GetDEfCIASSNAME..... ... reeeereeeesessssessseseeessseesesssseeseeseeeees 109
4.12.12 GetDEfClaSSPPRFOIM........cc e e e 109
4.12.13 GetDefclassSWatChINSIANCES.ceiiiiiiieeeeeeeeeee e 109
4.12.14 GetDefClasSWaALCNSIOLS.uvviiiiiiiiiieeeeeee e 109
4.12.15 GEtNEXIDEICIASS.coooeeeeieieeeeeeeeeeeeet ettt 110
4.12.16 ISDefClassSDElEtabIE.ceiiiiiiiiiccieeieeeee e 110
O A A 1) (D= (1= TT YT T 110
4.12.18 SetDefclassWatChINStANCES............oooviiiiiiii s 111
4.12.19 SetDefclasSWatChSIOLS.cevveeeieeeee e 111
4.12.20 SIOtAIIOWEAVAIUES.......eeeeeeeeiiiieeeeeeeeeee et e e e e e e e e e sanaes 111
4.12.21 SIOtCANINANTY.......ceeeeiiieiiie et 112
4.12.22 SIOIDITECIACCESSP.....cciii ettt e e e e e e e e e e e e e e e e e eaaaas 112
O G S (0] 1 () | RS 112
O N A 0] = T = 113
4.12.25 SIOtINILADIEP ... 113
O I S S [0 £ d U o] o] RO 113
4.12.27 SIOTRANGE.eoiiiiiieeee ettt sr e 114
4.12.28 SIOLSOUICES........cooeettteiiieee et e e e e e e e e e e e e e e s e s b e e e e e e e e e s sssabbrseeeeeaeeeas 114
4.12.29 SIOUTYPES. ...ttt ettt ettt b ettt b ettt b et e e ne e ne e b e ennis 114
O G (O IS [0 AT 1 7= o] L= = OO 115
g 3 RS U o T = 1Y) T 115
4.12.32 SUPEICIASSPottt ettt ete e e e e snreeenee e 115
g G T U L o 1] (03 = 1T 116
4.13 INSEANCE FUNCLIONS.utiiieiiiiiiiiee ettt eee e e e e e e e e e e e s e e s e e s earbeeeeeeesasbreeaeeas 116
4.13.1 BIiNaryLOAAINSIANCES.........eeiitieiiieaitee ittt 116
4.13.2 BINArySaVEINSLANCES........c..eeeiiiiieeiiie et e ettt e e see e see e e e sae e e sraeesnnneeeanneeeas 116
4.13.3 CreateRAWINSIANCE.ueeeee et e e e 117
4.13.4 DecrementiNStaNCECOUNT........cceeviiiee et rrerb e e e eeaaaaas 117
O R N B 121 (2 (=] 1) = g (o T 118
R RN SR B[(=Tox (1<) 1] 0] R 118
O T B 1 (=0 £ | [PR 118
4.13.8 FINAINSIANCE.........ovvieieei ettt e e e e e e e e e s s eba b e e e e e e e abbaeeeeas 119
4.13.9 GetINSIANCECIASS. babessaeessassssssssssseessssssseseeseeenes 119
4.13.10 GetINSIANCENGAITIE.ceviiiiiie e e e e e e e e eraraes 119
4.13.11 GetlNStaNCEPPIOIM.......ccoiiieeeeeeeeee e e 120
4.13.12 GetInstancesSChanged...........coocuuieeiiiee e saaee e 120
4.13.13 GEINEXIUNSIANCE.ueeeee et e e e e e e e e e s e e e 121
4.13.14 GetNeXtINStanNCEINCIASS.uvuviiiiiiiieeeeeeee e 121
4.13.15 INCrementiNStANCECOUNT.ueieiieeeieee et e e e e e e e e e e e e e e eeraaaas 121
41316 INSTANCES......coeeeeeeeieeeieeeeeeeeeee e e e e e e e e e e e e e e e e aaaaaaaasseeeeeees 123

Table of Contents

JSC-25012

4.13.17 LOAAINSIANCES........coi ittt et e e e e e e e e e e e e e e e s e sabbaeeeeeaeeaas 123
4.13.18 MAKEINSIANCE........co ittt e e e e e e e e e e e e e e e e e s ssasaees 124
4.13.19 RESIOIEINSIANCES.cceeeeeeeittcie e e e e e e e e e e s e e e e 124
4.13.20 SAVEINSIANCES. .. .uuiiiiieeiiieeeeeteeee e et s e e e e s s e e e e bbb s e s e e e s s e e e rebbaaaas 124
g G T NS 1= T 125
4.13.22 SetinStanceSCRANGEM.oioiiieiiiieiee et 126
4.13.23 UNMAKEINSLANCE.....cciiiiiiiiieiitiee ettt e et e e e e e e e e reeeeeeeeaaas 126
4.13.24 ValidINStANCEAUAIESS........ccoiiiieeeeeeeeeee et e e e e e 126
4.14 Defmessage-handler FUNCLONS...........cooiiiieiiiie e 126
4.14.1 FindDefmessageHaNdIEc.ooiiiiiiieee e 127
4.14.2 GetDefmessageHandIerList..............cocveeeiiiiiie e 127
4.14.3 GetDefmessageHandlerName...........ccooiiiiiiiiiiie e 128
4.14.4 GetDefmessageHandlerPPFOrM...........coociei e 128
4.14.5 GetDefmessageHaNdIErTYPE.ccooiii i 128
4.14.6 GetDefmessageHandlerWatCh...............cccueeeiiiii e 129
4.14.7 GetNextDefmessageHandIer ... 129
4.14.8 IsDefmessageHandlerDeletable................ccoeveeeiiiiiiie e 129
4.14.9 ListDefmessageHaNdIers............ooouiiiiiiiiiieiee e 130
g O O o (oA V{11 VA Y=Y o Lo 130
4.14.11 SetDefmessageHandlerWatCh.............cooeiiiiiiiiiei e 130
4.14.12 UndefmessageHandIer............ccueveiiiiee i 131
4.15 DefiINStanCeS FUNCLIONS........uiieeeee ettt ettt ae e aaeaaaraaanes 131
4.15.1 DefiNStanNCESMOUUIE.........cccoi ittt e e e e e e e eaaes 131
4.15.2 FINODEIINSIANCES......uuvvriiiiiiiieiieeeee et et e et e e e e e e e e e e e e et e e e e e e e e e e e e e s e e s s s s aaasasesaaee 132
4.15.3 GetDEfINSIANCESLIS.......eeiiiiii it e e e e e e e e e e e aaa 132
4.15.4 GetDefiNStaNCESNAIME.......ccoooeiie e e e e e e e e e 132
4.15.5 GetDefiINStanCeSPPFOIM........ccceeeee e 133
4.15.6 GEtNeXtDEfINSIANCES.........cooeiieeeeeeeeeeeeeeeeeeeeeeeeeeee ettt e e eees 133
4.15.7 1SDefiINStanCesSDElEtabIE..........uueeviiiiieeeeeeie e 133
O R R I 1S (=] {1 1) = (oY 134
4.15.9 UNAEfINSIANCES........oceteeieee ettt e e e e e e e e eabaareeaeeeas 134
4.16 DefModule FUNCHIONS..........oooiiieeeeeee et 134
4.16.1 FINADEIMOUUIE........co ittt e e e e e e e e e e eaa 134
4.16.2 GetCUITENIMOUUIE........eeeeeeeeeeeeeeeeeeeeeee e 135
4.16.3 GetDEfMOAUIBLIST.........ccueeeeeee et e e e e 135
4.16.4 GetDefmoduleNamME...........cooo o 135
4.16.5 GetDefMOAUIEPPIOIM.........coi it 136
4.16.6 GEtNexXtDEfMOAUIE..........uuueiieeiiieeeeeeeeee e 136
4.16.7 LIStDEIMOUUIES.........c.eevveeiee et e e ee e e e 136
4.16.8 SEtCUIMENTIMOUUIE.........eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeeseeeseseesseeeeseneees 136
4.17 Embedded Application EXamPIES.........ccocuuiiieiiiiiiee e a e 137
4.17.1 User-DefiIned FUNCLIONS...........oooiiiieeeeeeeeee et e e 137
4.17.2 Manipulating Objects and Calling CLIPS Functions.............ccccccccceeeeennn. 139

CLIPS Advanced Programming Guide vii

CLIPS Reference Manual (Beta Version—Not For Distribution)

Section 5 - Creating a CLIPS Run-time Programc.cccoviiiiiiiinnnn.n. 143
5.1 Compiling the CONSIIUCES.........cueiiiiiiiieiee e 143
15.2 Porting Compiled CONSIIUCES..........ceiiiiiee e 147

Section 6 - Combining CLIPS with Languages Other Than C............... 149
(G300 R 110 T [Tox 1[0 o FOS SO PRSSRPRPRPRI 149
6.2 Ada and FORTRAN Interface Package Function LiSt............cccceviiiiieiinineeeinnnne. 150
6.3 Embedded CLIPS - Using an External Main Program..............ccccccvvvivieieeeeeeeenn. 150
6.4 Asserting Facts iNTO CLIPS........c..oo e e 151
6.5 Calling a Subroutine from CLIPS.........coooiir e 152
6.6 Passing Arguments from CLIPS to an External Function.............cccccccvvenneeennnn. 153
6.7 SHNG CONVEISION......cciitiieiiieeeieeeeie e ettt e eteeeee e e st eeesareeesseeeaaeeassseesaseeesseeeasreeannneesns 156
6.8 Compiling @nd LINKING.......cooueiiieiiii e 156

6.8.1 VIMS A VEISION.....c.ueiiiieiiieiiee sttt sttt sttt sttt be e 156
6.8.2 VMS FORTRAN VEISION.....cciiiiiiiiieiiieesiie e stee st e see st e teeesneeeeaeeesnneesnee e e 157
6.8.3 CLIPS LiBary......ccoiiiiiiiiieee et s 158
6.9 Building an Interface Package............oouioiiiiiii i 158

Section 7 - 1/O ROULEr SYSTEIM ..ot 161
74 R 110 To [Tox 1o) o 1 PSR PSSPSO 161
7.2 LOQICAI NAIMES......c.eei ittt ettt e e e s e e st e e s e e snseesnteesreeanreean 161
T. 3 ROULEIS......ceeeee ettt ettt et e e ettt e e ab e e e bt e e eabe e e amb e e e eabeesaeeeenbeeeenneeenes 163
7.4 ROULET PIIOITHES. ... veeteetiesieesiee sttt sttt ettt et sbe e sbeesneesseesneesnsesnneennens 164
7.5 INternal I/O FUNCHONS..........uiiiiie et et snee e st e e s e e nneeenneeens 165
7.6 Router Handling FUNCLIONS...........ccuiiiiie e 167

Section 8 - Memory Management.....couuie it 171
8.1 HOW CLIPS USES MEMOIY.......uiiiiiiiiiieee et e eeeeee ettt e s e s a e s anee e e 171
8.2 Standard MemOory FUNCHONS..........coiiiir e ciieeesiee e e see s ee e e e s nee e sneeee s 172

Appendix A - Language Integration LiStingsccoovviiiiiiiiiiiiiieeen 177
A.1 Ada Interface Package for CLIPS............oo e 177
A.2 FORTRAN Interface Package for VAX VMS.........cocoiiiiiie et 182
A.3 Function to Convert C Strings for VMS Ada or FORTRAN.........ccoiiiiiiiiiieeeeeee 185

Appendix B - I/O Router Examples.. ..o 187
= R] 0]][R V] U= o USROS 187
B.2 Better Dribble SYSIEM........cc.ooiiiie e 189
B.3 BAICN SYSIEIM.....ceiiiicce ettt aeenneeens 190
B.4 SIMPle WINAOW SYSTEIM.......coiiiiiiiiiiiie ettt nne e aee e 192

Appendix C - Differences Between Versions 5.1 and 6.0...................... 197

0 1= 203

viii Table of Contents

JSC-25012

Preface

The History of CLIPS

The origins of the C Language Integrated Production System (CLIPS) date back to
1984 at NASA’s Johnson Space Center. At this time, the Atrtificial Intelligence Section
(now the Software Technology Branch) had developed over a dozen prototype expert
systems applications using state-of-the-art hardware and software. However, despite
extensive demonstrations of the potential of expert systems, few of these applications
were put into regular use. This failure to provide expert systems technology within
NASA'’s operational computing constraints could largely be traced to the use of LISP
as the base language for nearly all expert system software tools at that time. In
particular, three problems hindered the use of LISP based expert system tools within
NASA: the low availability of LISP on a wide variety of conventional computers, the
high cost of state-of-the-art LISP tools and hardware, and the poor integration of LISP
with other languages (making embedded applications difficult).

The Artificial Intelligence Section felt that the use of a conventional language, such as
C, would eliminate most of these problems, and initially looked to the expert system
tool vendors to provide an expert system tool written using a conventional language.
Although a number of tool vendors started converting their tools to run in C, the cost of
each tool was still very high, most were restricted to a small variety of computers, and
the projected availability times were discouraging. To meet all of its needs in a timely
and cost effective manner, it became evident that the Atrtificial Intelligence Section
would have to develop its own C based expert system tool.

The prototype version of CLIPS was developed in the spring of 1985 in a little over two
months. Particular attention was given to making the tool compatible with expert
systems under development at that time by the Artificial Intelligence Section. Thus, the
syntax of CLIPS was made to very closely resemble the syntax of a subset of the ART
expert system tool developed by Inference Corporation. Although originally modelled
from ART, CLIPS was developed entirely without assistance from Inference or access
to the ART source code.

The original intent of the prototype was to gain useful insight and knowledge about the
construction of expert system tools and to lay the groundwork for the construction of a
fully usable tool. The CLIPS prototype had numerous shortcomings, however, it
demonstrated the feasibility of the project concept. After additional development, it
became apparent that sufficient enhancements to the prototype would produce a low
cost expert system tool that would be ideal for the purposes of training. Another year of
development and internal use went into CLIPS improving its portability, performance,
and functionality. A reference manual and user’'s guide were written during this time.

CLIPS Advanced Programming Guide iX

CLIPS Reference Manual (Beta Version—Not For Distribution)

The first release of CLIPS to groups outside of NASA, version 3.0, occurred in the
summer of 1986.

Further enhancements transformed CLIPS from a training tool into a tool useful for the
development and delivery of expert systems as well. Versions 4.0 and 4.1 of CLIPS,
released respectively in the summer and fall of 1987, featured greatly improved
performance, external language integration, and delivery capabilities. Version 4.2 of
CLIPS, released in the summer of 1988, was a complete rewrite of CLIPS for code
modularity. Also included with this release were an architecture manual providing a
detailed description of the CLIPS software architecture and a utility program for aiding
in the verification and validation of rule-based programs. Version 4.3 of CLIPS,
released in the summer of 1989, added still more functionality.

Originally, the primary representation methodology in CLIPS was a forward chaining
rule language based on the Rete algorithm (hence the Production System part of the
CLIPS acronym). Version 5.0 of CLIPS, released in the spring of 1991, introduced two
new programming paradigms: procedural programming (as found in languages such
as C and Ada) and object-oriented programming (as found in languages such as the
Common Lisp Object System and Smalltalk). The object-oriented programming
language provided within CLIPS is called the CLIPS Object-Oriented Language
(COOL). Version 5.1 of CLIPS, released in the fall of 1991, was primarily a software
maintenance upgrade required to support the newly developed and/or enhanced X
Window, MS-DOS, and Macintosh interfaces.

Because of its portability, extensibility, capabilities, and low-cost, CLIPS has received
widespread acceptance throughout the government, industry, and academia. The
development of CLIPS has helped to improve the ability to deliver expert system
technology throughout the public and private sectors for a wide range of applications
and diverse computing environments. CLIPS is being used by over 4,000 users
throughout the public and private community including: all NASA sites and branches
of the military, numerous federal bureaus, government contractors, universities, and
many private companies. CLIPS is available at a nominal cost through COSMIC, the
NASA software distribution center (for more on COSMIC, see appendix E of the Basic
Programming Guide).

CLIPS Version 6.0

Version 6.0 of CLIPS contains five major enhancements. First, instances of
user-defined classes in COOL can be pattern-matched on the left-hand side of rules.
Second, CLIPS now contains considerable support for knowledge based systems
software engineering. Support is now provided for building modular systems and
many of the features previously available in CRSV are now directly supported in
CLIPS (such as constraint consistency among uses of the same variable). Third,

X Preface

JSC-25012

deftemplates can now have more than one multifield slot. Fourth, it is now possible to
nest other conditional elements within a not conditional element and two new
conditional elements, exists and forall , are supported. Fifth, a Windows 3.1 CLIPS
interface is now available for PC compatible computers. In addition, MS-DOS 286 and
386 versions of CLIPS are available which can use extended memory. For a detailed
listing of differences between versions 5.1 and 6.0 of CLIPS, refer to appendix D of the
Basic Programming Guide.

CLIPS Advanced Programming Guide Xi

CLIPS Reference Manual (Beta Version—Not For Distribution)

CLIPS Documentation

Three documents are provided with CLIPS.

Xii

The CLIPS Reference Manual which is split into the following parts:

* Volume | - The Basic Programming Guide, which provides the definitive
description of CLIPS syntax and examples of usage.

* Volume Il - The Advanced Programming Guide, which provides detailed
discussions of the more sophisticated features in CLIPS and is intended for
people with extensive programming experience who are using CLIPS for
advanced applications.

e Volume Ill - The Interfaces Guide, which provides information on
machine-specific interfaces.

The CLIPS User’s Guide which provides an introduction to CLIPS and is intended
for people with little or no expert system experience.

* Volume | - Rules, which provides an introduction to rule-based programming
using CLIPS.

 Volume Il - Objects, which provides an introduction to object-oriented
programming using COOL.

The CLIPS Architecture Manual which provides a detailed description of the
CLIPS software architecture. This manual describes each module of CLIPS in
terms of functionality and purpose. It is intended for people with extensive
programming experience who are interested in modifying CLIPS or who want to
gain a deeper understanding of how CLIPS works.

Preface

JSC-25012

Acknowledgements

As with any large project, CLIPS is the result of the efforts of numerous people. The
primary contributors have been: Robert Savely, previous branch chief of the STB and
now chief scientist of advanced software technology at JSC, who conceived the
project and provided overall direction and support; Chris Culbert, current branch chief
of the STB, who managed the project, wrote the original CLIPS Reference Manual,
and designed the original version of CRSV; Gary Riley, who designed and developed
the rule-based portion of CLIPS, co-authored the CLIPS Reference Manual and
CLIPS Architecture Manual, and developed the Macintosh interface for CLIPS; Brian
Donnell, who designed and developed the CLIPS Object Oriented Language (COOL),
co-authored the CLIPS Reference Manual and CLIPS Architecture Manual, and
developed the previous MS-DOS interfaces for CLIPS; Bebe Ly, who was responsible
for maintenance and enhancements to CRSV and is now responsible for developing
the X Window interface for CLIPS; Chris Ortiz, who developed the Windows 3.1
interface for CLIPS; Dr. Joseph Giarratano of the University of Houston-Clear Lake,
who wrote the CLIPS User’s Guide; and Frank Lopez, who wrote the original prototype
version of CLIPS.

Many other individuals contributed to the design, development, review, and general
support of CLIPS, including: Jack Aldridge, Carla Armstrong, Paul Baffes, Ann Baker,
Stephen Baudendistel, Les Berke, Tom Blinn, Marlon Boarnet, Dan Bochsler, Bob
Brown, Barry Cameron, Tim Cleghorn, Major Paul Condit, Major Steve Cross, Andy
Cunningham, Dan Danley, Mark Engelberg, Kirt Fields, Ken Freeman, Kevin Greiner,
Ervin Grice, Sharon Hecht, Patti Herrick, Mark Hoffman, Grace Hua, Gordon Johnson,
Phillip Johnston, Sam Juliano, Ed Lineberry, Bowen Loftin, Linda Martin, Daniel
McCoy, Terry McGregor, Becky McGuire, Scott Meadows, C. J. Melebeck, Paul
Mitchell, Steve Mueller, Cynthia Rathjen, Eric Raymond, Reza Razavipour, Marsha
Renals, Monica Rua, Tim Saito, Gregg Swietek, Eric Taylor, James Villarreal, Lui
Wang, Bob Way, Jim Wescott, Charlie Wheeler, and Wes White.

CLIPS Advanced Programming Guide xiii

JSC-25012

Section 1 - Introduction

This manual is the Advanced Programming Guide for CLIPS. It is intended for users
interested in the more sophisticated features of CLIPS. It is written with the assumption
that the user has a complete understanding of the basic features of CLIPS and a back-
ground in programming. Many sections will not be understandable without a working
knowledge of C. Knowledge of other languages also may be helpful. The information
presented here will require some experience to understand, but every effort has been
made to implement capabilities in a simple manner consistent with the portability and
efficiency goals of CLIPS.

Section 2 describes how to install and tailor CLIPS to meet specific needs. Section 3
of this document describes how to add user-defined functions to a CLIPS expert
system. Section 4 describes how to embed a CLIPS application in a C program.
Section 5 describes how to create run-time CLIPS programs. Section 6 discusses
integrating CLIPS with languages other than C. Section 7 details the input/ output (I/O)
router system used by CLIPS and how the user can define his own I/O routers. Section
8 discusses CLIPS memory management.

Not all of the features documented here will be of use to all users. Users should pick
those areas which are of specific use to them. It is advised that users complete the
Basic Programming Guide before reading this manual.

1.1 WARNING ABOUT INTERFACING WITH CLIPS

CLIPS provides numerous methods for integrating with user-defined code. As with any
powerful capability, some care must be taken when using these features. By providing
users with the ability to access internal information, we have also opened the door to
the possibility of users corrupting or destroying data that CLIPS needs to work prop-
erly. Users are advised to be careful when dealing with data structures or strings which
are returned from calls to CLIPS functions. Generally, these data structures represent
useful information to CLIPS and should not be modified or changed in any way except
as described in this manual. A good rule of thumb is to duplicate in user-defined stor-
age space every piece of information taken out of or passed into CLIPS.

1.2 COMPATIBILITY WITH CLIPS VERSION 5.1

There are significant differences in external integration between CLIPS 5.1 and CLIPS
6.0. It is recommended that you completely scan the Advanced Programming Guide
and carefully read Section 3 before converting user code from previous versions of
CLIPS. Numerous changes have been made to standardize the naming conventions
of access functions, simplify certain operations, and provide additional functionality.

CLIPS Advanced Programming Guide 1

CLIPS Reference Manual (Beta Version—Not For Distribution)

Because many of the changes involved changing function names for consistency, the
header file cmptblty.h has been provided (which should be included after the
clips.h header file). This file provides macro definitions which map old functions and
macros into CLIPS 6.0 functions and macros. Note that the cmptblty.h header file is
provided only as a convenient mechanism for quickly upgrading old user code to run
with CLIPS 6.0. It is recommended that old code be eventually converted to take
advantage of the new access functions and macros.

1.3 USING ANSI PROTOTYPES

CLIPS 6.0 supports ANSI function prototypes. When including CLIPS header files, you
can indicate whether prototypes should be used by defining the ANSI_COMPILER
flag to be 1 within the setup.h header file. The setup.h header file is automatically
included when the clips.h header file is used.

2 Section 1 - Introduction

JSC-25012

Section 2 - Installing and Tailoring CLIPS

This section describes how to install and tailor CLIPS to meet specific needs.

2.1 INSTALLING CLIPS

A typical CLIPS package includes both documentation and a number of floppy disks in
either the MS-DOS 2.1 format or the Macintosh format. The floppy disks contain a
CLIPS executable, examples of CLIPS programs, and the CLIPS source code. Users
should make copies of the distribution disks. If CLIPS is to be used on a Macintosh, the
executable may be copied to a hard disk or to another floppy disk. If CLIPS is to be
used on a MS-DOS machine, the executable may be copied using the installation
program provided on the disk (see the readme.txt file on the disk for more details). No
other installation is required to run the standard version of CLIPS. To tailor CLIPS or to
install it on another machine, the user must port the source code and create a new
executable version.

Internal testing of CLIPS covers many different hardware/software environments,
including

DEC VAX running VMS

Sun Sparcstation running UNIX

IBM PC 386 running DOS 5.0 with Zortech C++ v3.1 and Microsoft Windows
3.1 with Borland C++ v3.1

Apple Macintosh llfx running System 7.0 using Think C 5.0.4 and MPW 3.2 C

CLIPS was designed specifically for portability and has been installed on numerous
other computers without making modifications to the source code. It should run on any
system which supports a full Kernighan and Ritchie (K&R) C compiler, and it will run
with any C compiler that is compatible with the ANSI C standard. CLIPS cannot be
compiled using strict C++ compilers. C++ is not a proper superset of ANSI C, and
therefore some ANSI compliant code cannot be compiled by strict C++ compilers.
Specifically, old style K&R function declarations either do not compile or have different
meanings in C++ than in ANSI C. CLIPS uses K&R style function definitions so that it
will compile on both K&R and ANSI C compilers. Also, some compilers have extended
syntax to support a particular platform which will add additional reserved words to the
C language. In the event that this extended syntax conflicts with the CLIPS source, the
user will have to edit the code. This usually only involves a global search-and-replace
of the particular reserved word. The following steps describe how to create a new
executable version of CLIPS:

CLIPS Advanced Programming Guide 3

CLIPS Reference Manual (Beta Version—Not For Distribution)

1) Load the source code onto the user's system
The following C source files are necessary to set up the basic CLIPS system:

agenda.h analysis.h argacces.h bload.h
bmathfun.h bsave.h classcom.h classexm.h
classfun.h classinf.h classini.h classpsr.h
clips.h clipsmem.h clsltpsr.h cmptblty.h
commline.h conscomp.h constant.h constrct.h
constrnt.h crstrtgy.h cstrchin.h cstrccmp.h
cstrccom.h cstrcpsr.h cstrnbin.h cstrnchk.h
cstrncmp.h cstrnops.h cstrnpsr.h cstrnutl.h
default.h defins.h developr.h dffctbin.h
dffctbsc.h dffctcmp.h dffctdef.h dffctpsr.h
dffnxbin.h dffnxcmp.h dffnxexe.h dffnxfun.h
dffnxpsr.h dfinsbin.h dfinscmp.h drive.h
ed.h engine.h evaluatn.h expressn.h
exprnbin.h exprnops.h exprnpsr.h extnfunc.h
extobj.h factbin.h factbld.h factcmp.h
factcom.h factgen.h facthsh.h factlhs.h
factmch.h factmngr.h factprt.h factrete.h
factrhs.h filecom.h filertr.h generate.h
genrchbin.h genrccmp.h genrccom.h genrcexe.h
genrcfun.h genrcpsr.h globlbin.h globlbsc.h
globlcmp.h globlcom.h globldef.h globlpsr.h
immthpsr.h incrrset.h inherpsr.h inscom.h
insfile.h insfun.h insmngr.h insmoddp.h
insmult.h inspsr.h insquery.h insgypsr.h
lgcldpnd.h match.h miscfun.h modulbin.h
modulbsc.h modulcmp.h moduldef.h modulpsr.h
modulutl.h msgcom.h msgfun.h msgpass.h
msgpsr.h multifld.h multifun.h network.h
objbin.h objcmp.h object.h objrtbin.h
objrtbld.h objrtcmp.h objrtfnx.h objrtgen.h
objrtmch.h pattern.h pprint.h prccode.h
prcdrfun.h prcdrpsr.h prntutil.h reorder.h
reteutil.h retract.h router.h rulebin.h
rulebld.h rulebsc.h rulecmp.h rulecom.h
rulecstr.h ruledef.h ruledlt.h rulelhs.h
rulepsr.h scanner.h setup.h shrtinkn.h
strngfun.h strngrtr.h symblbin.h symblcmp.h
symbol.h sysdep.h tmpltbin.h tmpltbsc.h
tmpltcmp.h tmpltcom.h tmpltdef.h tmpltfun.h
tmpltlhs.h tmpltpsr.h tmpltrhs.h utility.h

Section 2 - Installing and Tailoring CLIPS

watch.h

agenda.c
bmathfun.c
classfun.c
clsltpsr.c
constrnt.c
cstrcpsr.c
cstrnops.c
defins.c
dffctcmp.c
dffnxcmp.c
dfinsbin.c
edmain.c
emathfun.c
exprnbin.c
factbin.c
factgen.c
factmngr.c
filecom.c
genrccmp.c
genrcpsr.c
globlcom.c
incrrset.c
insfun.c
inspsr.c
lgcldpnd.c
modulbin.c
modulpsr.c
msgpass.c
objbin.c
objrtcmp.c
pattern.c
prcdrpsr.c
reteutil.c
rulebld.c
rulecstr.c
rulepsr.c
symblbin.c
textpro.c
tmpltcom.c
tmpltpsr.c

analysis.c
bsave.c
classinf.c
commline.c
crstrtgy.c
cstrnbin.c
cstrnpsr.c
developr.c
dffctdef.c
dffnxexe.c
dfinscmp.c
edmisc.c
engine.c
exprnops.c
factbld.c
facthsh.c
factprt.c
filertr.c
genrccom.c
globlbin.c
globldef.c
inherpsr.c
insmngr.c
insquery.c
main.c
modulbsc.c
modulutl.c
msgpsr.c
objcmp.c
objrtfnx.c
pprint.c
prdctfun.c
retract.c
rulebsc.c
ruledef.c
scanner.c
symblcmp.c
tmpltbin.c
tmpltdef.c
tmpltrhs.c

CLIPS Advanced Programming Guide

argacces.c
classcom.c
classini.c
conscomp.c
cstrcbin.c
cstrnchk.c
cstrnutl.c
dffctbin.c
dffctpsr.c
dffnxfun.c
drive.c
edstruct.c
evaluatn.c
exprnpsr.c
factcmp.c
factlhs.c
factrete.c
generate.c
genrcexe.c
globlbsc.c
globlpsr.c
inscom.c
insmoddp.c
insqypsr.c
memory.c
modulcmp.c
msgcom.c
multifld.c
objrtbin.c
objrtgen.c
prccode.c
prntutil.c
router.c
rulecmp.c
ruledlt.c
strngfun.c
symbol.c
tmpltbsc.c
tmpltfun.c
utility.c

bload.c
classexm.c
classpsr.c
constrct.c
cstrccom.c
cstrncmp.c
default.c
dffctbsc.c
dffnxbin.c
dffnxpsr.c
edbasic.c
edterm.c
expressn.c
extnfunc.c
factcom.c
factmch.c
factrhs.c
genrchin.c
genrcfun.c
globlcmp.c
immthpsr.c
insfile.c
insmult.c
iofun.c
miscfun.c
moduldef.c
msgfun.c
multifun.c
objrtbld.c
objrtmch.c
prcdrfun.c
reorder.c
rulebin.c
rulecom.c
rulelhs.c
strngrtr.c
sysdep.c
tmpltcmp.c
tmpltlhs.c
watch.c

JSC-25012

CLIPS Reference Manual (Beta Version—Not For Distribution)

2)

3)

4)

5)

Additional files must also be included if one of the machine specific user interfaces
is to be set up. See the Utilities and Interfaces Guide for details on compiling the
machine specific interfaces.

Modify all include statements (if necessary)

All of the “.c” files and most of the “.h” files have #include statements. These
#include statements may have to be changed to either match the way the compiler
searches for include files or to include a different ".h" file for a non-ANSI C
compiler. Note: If an ANSI C compiler is being used and the compiler is set up
properly, this step should be unnecessary.

Tailor CLIPS environment and/or features

Edit the setup.h file and set any special options. CLIPS uses compiler directives
to allow machine-dependent features. The first flag in the setup.h file tells CLIPS
on what kind of machine the code is being compiled. The default setting for this
flag is GENERIC, which will create a version of CLIPS that will run on any
computer. The user may set this flag for the user's type of system. If the system
type is unknown, the first flag should be set to GENERIC. If you change the system
type to anything other than GENERIC, make sure that the version number of your
compiler is greater than or equal to the version number listed in the setup.h file (as
earlier versions of a compiler may not support some system dependent features).
Other flags in the setup.h file also allow a user to tailor the features in CLIPS to
specific needs. For more information on using the flags, see section 2.2

Compile all of the ".c" files to object code

Use the standard compiler syntax for the user's machine. The ".h" files are include
files used by the other files and do not need to be compiled. Some options may
have to be set, depending on the compiler. Many microcomputer compilers
support either large or small memory compilation. CLIPS should always use the
large memory option. Other compilers default to 8-character variable names but
allow more with an option. CLIPS uses variables that require more than 8
characters to be distinctly identified; if necessary, this option should be set.

If user-defined functions are needed, compile the source code for those functions
as well and modify the UserFunctions definition in main.c to reflect the user's
functions (see section 3 for more on user-defined functions).

Create the interactive CLIPS executable element

To create the interactive CLIPS executable, link together all of the object files. This
executable will provide the interactive interface defined in section 2.1 of the Basic
Programming Guide. On some machines, the default stack size is too small to run
CLIPS properly. Usually, the default stack size can be changed during the link
process. At least 4000 bytes of stack size are needed to run CLIPS reasonably.

Section 2 - Installing and Tailoring CLIPS

JSC-25012

Additional Considerations

Although compiling CLIPS should not be difficult even for inexperienced C program-
mers, some non-obvious problems can occur. One type of problem is linking with
inappropriate system libraries. Normally, default libraries are specified through the
environment; i.e., not specified as a part of the compile/link process. On occasion, the
default system libraries are inappropriate for use with CLIPS. For example, when
using a compiler which supports different memory models, be sure to link with the
system libraries that match the memory model under which the CLIPS code was
compiled. The same can be said for floating-point models. Some computers provide
multiple ways of storing floating-point numbers (typically differing in accuracy or speed
of processing). Be sure to link with system libraries that use the same storage formats
with which the CLIPS code was compiled. Some additional considerations for
compiling CLIPS with specific compilers and/or operating systems are described
following.

UNIX

If the EX_MATH compiler directive is enabled, then the -Im option must be used
when compiling CLIPS with the cc command. Similary, if the CLP_EDIT compiler
directive is enabled, the -ltermcap option must be used when compiling CLIPS. If all
of the CLIPS source code is contained in the same directory and the compiler
directives are set to their default values in the setup.h file, then the following
command line will compile CLIPS

cc -oclips *.c -Im-Ilterntap

Macintosh (Think C V5.04)

Enable the Separate @ STRS option using the Set Project Type... menu item.
Under this same menu item, set the Partition (K) size to at least 1000 and enable the
32-Bit Compatible flag in the SIZE Flags pop-up menu. If the Macintosh interface
is being compiled, enable the MultiFinder Aware, Background NULL Events,
and Suspend & Resume Events flags in the SIZE flag pop-up menu.

Macintosh (MPW C V3.2)
When compiling the CLIPS source files, use the -b 3 option. When linking, use the -srt
option.

IBM PC (Microsoft C V6.0A with MS-DOS)

When compiling the CLIPS source files, use the /AL option. When linking, use the
ISEGMENTS:256 and /STACK:8000 options (the stack option provides a
reasonable amout of space, however, this may need to be adjusted up or down
depending upon the type of applications being run—applications using deffunctions,
generic functions, and message-handlers will generally require more stack space).

CLIPS Advanced Programming Guide 7

CLIPS Reference Manual (Beta Version—Not For Distribution)

With the DOS 640K memory limit, it is not possible to create an executable containing
all of the CLIPS features. Some features must be disabled (see section 2.2).

IBM PC (Borland C++ V3.1 with MS-DOS)

When compiling and linking the CLIPS source files, use the -m| and -d options. With
the DOS 640K memory limit, it is not possible to create an executable containing all of
the CLIPS features. Some features must be disabled (see section 2.2).

IBM PC (Zortech C++ V3.1 with MS-DOS)

There is a compiler bug which manifests itself when dead code optimizations are
performed. When compiling the CLIPS source files, specify the -o-dc option to remove
dead code optimizations. In addition, do not use the -s option (stack overflow checking
doesn’t work properly for functions called from an interrupt handler). Use the -mx
option when compiling and the =16000 option when linking.

IBM PC (Borland C++ V3.1 with MS-WINDOWS)

When compiling the CLIPS source files, set the following options. For Code
Generation: Large Memory Model, Never Assume SS Equals DS, Treat enums as
ints, Duplicate strings merged, and Pre-Compiled headers. For Entry and EXxit
Code Generation, set Windows explicit functions exported. For Advanced Code
Generation: Automatic Far Data (Checked) and Far Data Threshold set to 10 Bytes.
Use the default Optimization Options. For linking, select the Output Windows
EXE linker option.

2.2 TAILORING CLIPS

CLIPS makes use of compiler directives to allow easier porting and recompiling of
CLIPS. Compiler directives allow the incorporation of system-dependent features into
CLIPS and also make it easier to tailor CLIPS to specific applications. All available
compiler options are controlled by a set of flags defined in the setup.h file.

The first flag in setup.h indicates on what type of compiler/machine CLIPS is to run.
The source code is sent out with the flag for GENERIC CLIPS turned on. When com-
piled in this mode, all system-dependent features of CLIPS are excluded and the
program should run on any system. A number of other flags are available in this file,
indicating the types of compilers/machines on which CLIPS has been compiled previ-
ously. If the user's implementation matches one of the available flags, set that flag to 1
and turn the GENERIC flag off (set it to 0). The code for most of the features controlled
by the compiler/machine-type flag is in the sysdep.c file.

Many other flags are provided in setup.h. Each flag is described below.

8 Section 2 - Installing and Tailoring CLIPS

JSC-25012

ANSI_COMPILER This flag indicates whether the compiler being used follows
the draft proposed ANSI C standards (including the ANSI C
libraries). If this flag is on, the compiler is assumed to be a
fully ANSI standard compiler, otherwise it is assumed to be a
K & R standard compiler. This is on in the standard CLIPS
executable.

RUN_TIME This flag will create a run-time version of CLIPS for use with
compiled constructs. It should be turned on only after the
constructs-to-c function has been used to generate the C
code representation of the constructs, but before compiling
the constructs C code. When used, about 90K of memory
can be saved from the basic CLIPS executable. See section
5 for a description of how to use this. This is off in the
standard CLIPS executable.

DEFRULE_CONSTRUCT
This flag controls the use of the defrule construct. If it is off,
the defrule construct is not recognized by CLIPS. This is on
in the standard CLIPS executable.

CONFLICT_RESOLUTION_STRATEGIES

This flag controls the availability of conflict resolution
strategies (see sections 5.2 and 5.3 of the Basic
Programming Guide) for use with the defrule construct. If it is
off, then the depth conflict resolution strategy is the only
strategy used and the functions set-strategy and get-strategy
are not available. This is on in the standard CLIPS
executable.

DYNAMIC_SALIENCE
This flag controls the availability of dynamic salience (see
sections 5.2 and 5.4.9 of the Basic Programming Guide) for
use with the defrule construct. If it is off, then dynamic
salience can not be used and the functions refresh-agenda,
get-salience-evaluation, and get-salience-evaluation are not
available. This is on in the standard CLIPS executable.

INCREMENTAL_RESET
This flag controls the availability of incremental reset (see
sections 5.1 and 12.1.7 of the Basic Programming Guide) for
use with the defrule construct. If it is off, then newly defined
rules are not aware of facts or instances that were created

CLIPS Advanced Programming Guide 9

CLIPS Reference Manual (Beta Version—Not For Distribution)

before the rule was defined. In addition, the functions set-
incremental-reset and get-incremental-reset are not
available if this flag is off. This is on in the standard CLIPS
executable.

LOGICAL_DEPENDENCIES
This flag controls the availability of logical dependencies
(see section 5.4.8 of the Basic Programming Guide) for use
with the defrule construct. If it is off, then the logical CE
cannot be used on the LHS of a rule and the functions
dependencies and dependents are not available. This is on
in the standard CLIPS executable.

DEFFACTS_CONSTRUCT
This flag controls the use of deffacts. If it is off, deffacts are
not allowed which can save some memory and performance
during resets. This is on in the standard CLIPS executable. If
this flag is off, the (initial-fact) fact is still created during a
reset if the DEFTEMPLATE_CONSTRUCT flag is on.

DEFTEMPLATE_CONSTRUCT
This flag controls the use of deftemplate. If it is off,
deftemplate is not allowed which can save some memory.
This is on in the standard CLIPS executable.

DEFGLOBAL_CONSTRUCT
This flag controls the use of defglobal. If it is off, defglobal is
not allowed which can save some memory. This is on in the
standard CLIPS executable.

DEFFUNCTION_CONSTRUCT
This flag controls the use of deffunction. If it is off, deffunction
is not allowed which can save some memory. This is on in
the standard CLIPS executable.

DEFGENERIC_CONSTRUCT
This flag controls the use of defgeneric and defmethod. If it is
off, defgeneric and defmethod are not allowed which can
save some memory. This is on in the standard CLIPS
executable.

IMPERATIVE_METHODS

10 Section 2 - Installing and Tailoring CLIPS

JSC-25012

This flag determines if the following functions are available
for use in generic function methods: next-methodp,
call-next-method, override-next-method and
call-specific-method. These functions allow imperative
control over the generic dispatch by calling shadowed
methods (see section 8.5.3 of the Basic Programming
Guide). This flag is on in the standard CLIPS executable.
Turning this flag off can save some memory and marginally
increase the speed of the generic dispatch.

OBJECT_SYSTEM
This flag controls the use of defclass, definstances, and
defmessage-handler. If it is off, these constructs are not
allowed which can save some memory. If this flag is on, the
MULTIFIELD_FUNCTIONS flag should also be on if you
want to be able to manipulate multifield slots. This is on in
the standard CLIPS executable.

DEFINSTANCES_CONSTRUCT

This flag controls the use of definstances (see section 9.6.1.1
of the Basic Programming Guide). If it is off, definstances are
not allowed which can save some memory and performance
during resets. This is on in the standard CLIPS executable. If
this flag is off, the [initial-object] instance is still created
during a reset if the INSTANCE_PATTERN_MATCHING flag
is on.

IMPERATIVE_MESSAGE_HANDLERS

This flag determines if around message-handlers and the
following functions are available for use in object message
dispatch: next-handlerp, call-next-handler and
override-next-handler. These functions allow imperative
control over the message dispatch by calling shadowed
message-handlers (see section 9.5.3 of the Basic
Programming Guide). This flag is on in the standard CLIPS
executable. Turning this flag off can save some memory and
marginally increase the speed of the message dispatch.

AUXILIARY_MESSAGE_HANDLERS
This flag determines if before and after message-handlers
are available for use in object message dispatch. These
handler types enhance declarative control over the message
dispatch (see section 9.4.3 of the Basic Programming

CLIPS Advanced Programming Guide 11

CLIPS Reference Manual (Beta Version—Not For Distribution)

Guide). This flag is on in the standard CLIPS executable.
Turning this flag off can save some memory and marginally
increase the speed of the message dispatch.

INSTANCE_SET_QUERIES

This flag determines if the instance-set query functions are

available: any-instancep, find-instance,
find-all-instances, do-for-instance,
do-for-all-instances and

delayed-do-for-all-instances. This is on in the standard
CLIPS executable. Turning this flag off can save some
memory.

INSTANCE_PATTERN_MATCHING

BLOAD_INSTANCES

BSAVE_INSTANCES

This flag controls the ability to include object patterns on the
LHS of rules (see section 5.4.1.8 of the Basic Programming
Guide). This is on in the standard CLIPS executable. Turning
this flag off can save some memory.

This flag controls the ability to load instances in binary format
from a file via the bload-instances command (see section
13.11.4.7 of the Basic Programming Guide). This is on in the
standard CLIPS executable. Turning this flag off can save
some memory.

This flag controls the ability to save instances in binary
format to a file via the bsave-instances command (see
section 13.11.4.4 of the Basic Programming Guide). This is
on in the standard CLIPS executable. Turning this flag off
can save some memory.

DEFMODULE_CONSTRUCT

EX_MATH

12

This flag controls the use of the defmodule construct. If it is
off, then new defmodules cannot be defined (however the
MAIN module will exist). This is on in the standard CLIPS
executable.

This flag indicates whether the extended math package

should be included in the compilation. If this flag is turned off
(setto 0), the final executable will be about 25-30K smaller,

Section 2 - Installing and Tailoring CLIPS

JSC-25012

a consideration for machines with limited memory. This is on
in the standard CLIPS executable.

CLP_TEXTPRO This flag controls the CLIPS text-processing functions. It
must be turned on to use the fetch, toss, and print-region
functions in a user-defined help system. It also must be
turned on to use the on-line help system. This is on in the
standard CLIPS executable.

CLP_HELP If this flag is on, the on-line help system will be available
from the CLIPS top-level interface. When this is turned on,
the HELP_FILE flag should be set to point to the full path
name for the CLIPS help file. This is on in the standard
CLIPS executable.

CLP_EDIT This flag controls the integrated MicroEMACS editor. If it is
turned on, the editor will be available. If it is turned off, the
editor will not be available but about 40K of memory will be
saved. NOTE: The editor is machine dependent and will not
run on all machines. See the setup.h file for a description of
which machines can support the editor. This is on in the
standard CLIPS executable.

CONSTRUCT_COMPILER
This flag controls the construct compiler functions. If it is
turned on, constructs may be compiled to C code for use in a
run-time module (see section 5). This is off in the standard
CLIPS executable.

BLOAD_ONLY This flag controls access to the binary and ASCII load
commands (bload and load). This would be used to save
some memory in systems which require binary load
capability only. This flag is off in the standard CLIPS
executable.

BLOAD This flag controls access to the binary load command
(bload). This would be used to save some memory in
systems which require binary load but not save capability.
This is off in the standard CLIPS executable.

BLOAD_AND_BSAVE
This flag controls access to the binary load and save
commands. This would be used to save some memory in

CLIPS Advanced Programming Guide 13

CLIPS Reference Manual (Beta Version—Not For Distribution)

BASIC_IO

EXT_IO

systems which require neither binary load nor binary save
capability. This is on in the standard CLIPS executable.

This flag controls access to the basic I/O functions in CLIPS.
These functions are printout, read, open, and close. If this
flag is off, these functions are not available. This would be
used to save some memory in systems which used custom
I/O routines. This is on in the standard CLIPS executable.

This flag controls access to the extended I/O functions in
CLIPS. These functions are format and readline. If this flag is
off, these functions are not available. This would be used to
save some memory in systems which used custom 1/O rou-
tines or only the basic I/0O routines. This is on in the standard
CLIPS executable.

MULTIFIELD_FUNCTIONS

This flag controls access to the multifield manipulation func-
tions in CLIPS. These functions are subseq$, delete$,
insert$, replace$, explode$, implode$, nth$, member$, first$,
rest$, progn$, and subsetp. The function create$ is always
available regardless of the setting of this flag. This would be
used to save some memory in systems which performed
limited or no operations with multifield values. This flag is on
in the standard CLIPS executable.

STRING_FUNCTIONS

This flag controls access to the string manipulation functions
in CLIPS. These functions are str-cat, sym-cat, str-length,
str-compare, upcase, lowcase, sub-string, str-index, eval,
and build. This would be used to save some memory in
systems which perform limited or no operations with strings.
This flag is on in the standard CLIPS executable.

DEBUGGING_FUNCTIONS

BLOCK_MEMORY

14

This flag controls access to commands such as agenda,
facts, ppdefrule, ppdeffacts, etc. This would be used to save
some memory in BLOAD_ONLY or RUN_TIME systems. This
flag is on in the standard CLIPS executable.

This option controls memory allocation. If the flag is on,
memory is allocated from the operating system in large
blocks. This can improve performance if the system memory

Section 2 - Installing and Tailoring CLIPS

JSC-25012

allocation routines are extremely inefficient or place arbitrary
restrictions on the number of memory allocations that can be
made. This flag is off in the standard CLIPS executable.

WINDOW_INTERFACE
This flag indicates that a windowed interface is being used.
Currently, the help system uses this flag to determine
whether it should handle more processing by itself or allow
the interface to take care of more processing. This is off in
the standard CLIPS executable.

SHORT_LINK_NAMES

ANSI C compilers must be able to distinguish between
identifiers which use at least 31 significant characters. Some
linkers, however, use considerably fewer characters when
determining name conflicts (potentially as few as 6
characters). If this flag is on, then identifiers which cannot be
uniquely distinguished within 6 characters are replaced with
alternate names that are distinguishable with 6 characters.
This is off in the standard CLIPS executable.

CLIPS Advanced Programming Guide 15

JSC-25012

Section 3 - Integrating CLIPS with External Functions

One of the most important features of CLIPS is an ability to integrate CLIPS with
external functions or applications. This section discusses how to add external
functions to CLIPS and how to pass arguments to them and return values from them. A
user can define external functions for use by CLIPS at any place a function can
normally be called. In fact, the vast majority of system defined functions and
commands provided by CLIPS are integrated with CLIPS in the exact same manner
described in this section. The examples shown in this section are in C, but section 6
discusses how other languages can be combined with CLIPS. Prototypes for the
functions listed in this section can be included by using the clips.h header file.

3.1 DECLARING USER-DEFINED EXTERNAL FUNCTIONS

All external functions must be described to CLIPS so they can be properly accessed
by CLIPS programs. User-defined functions are described to CLIPS by modifying the
function UserFunctions. This function is initially in the CLIPS main.c file and may
be modified there or moved to a user's file. Within UserFunctions, a call should be
made to the DefineFunction routine for every function which is to be integrated with
CLIPS. The user's source code then can be compiled and linked with CLIPS.

i nt Def i neFuncti on(functi onNane, f uncti onType,

functi onPoi nt er, act ual Funct i onNane) ;
char *functionName, functionType, *actual Functi onNarmeg;
i nt (*functionPointer)();

An example UserFunctions declaration follows:

User Functi ons()

/ * ::*/
/| * Declare your C functions if necessary. */
/ * ::*/

extern double rta();
extern VA D *dumy();

/ * :::*/
/* Call DefineFunction to register user-defined functions. */
/ * :::*/

Defi neFunction("rta","d ,PTIF rta,"rta");
Def i neFunction("mul"," ", PTIF mul,"mul")

CLIPS Advanced Programming Guide 17

CLIPS Reference Manual (Beta Version—Not For Distribution)

The first argument to DefineFunction is the CLIPS function name, a string
representation of the name that will be used when calling the function from within
CLIPS.

The second argument is the type of the value which will be returned to CLIPS. Note
that this is not necessarily the same as the function type. Allowable return types are
shown as follows:

Return Code Return Type Expected

External Address

Boolean

Character

Double Precision Float

Single Precision Float

Integer

Unknown Data Type (Symbol, String, or Instance Name Expected)
Unknown Data Type (Symbol or String Expected)
Long Integer

Multifield

Unknown Data Type (Integer or Float Expected)
Instance Name

String

Unknown Data Type (Any Type Expected)
Void—No Return Value

Symbol

Instance Address

X S <CwWOS>S 3 —x—— =00 T®

Boolean functions should return a value of type int (O for the symbol FALSE and any
other value for the symbol TRUE). String, symbol, instance name, external address,
and instance address functions should return a pointer of type VOID *. Character
return values are converted by CLIPS to a symbol of length one. Integer return values
are converted by CLIPS to long integers for internal storage. Single precision float
values are converted by CLIPS to double precision float values for internal storage. If a
user function is not going to return a value to CLIPS, the function should be defined as
type VOID and this argument should be v for void. Return types o and x are only
available if the object system has been enabled (see section 2.2).

Function types j, k, m, n, and u are all passed a data object as an argument in which
the return value of function is stored. This allows a user defined function to return one
of several possible return types. Function type u is the most general and can return
any data type. By convention, function types j, k, m, and n return specific data types.
CLIPS will signal an error if one of these functions return a disallowed type. See
section 3.3.4 for more details on returning unknown data types.

18 Section 3 - Integrating CLIPS with External Functions

JSC-25012

The third argument is a pointer to the actual function, the compiled function name (an
extern declaration of the function may be appropriate). The CLIPS name (first argu-
ment) need not be the same as the actual function name (third argument). The macro
identifier PTIF can be placed in front of a function name to cast it as a pointer to a
function returning an integer (primarily to prevent warnings from compilers which allow
function prototypes).

The fourth argument is a string representation of the third argument (the pointer to the
actual C function). This name should be identical to the third argument, but enclosed
in quotation marks.

DefineFunction returns zero if the function was unsuccessfully called (e.g. bad function
type parameter), otherwise a non-zero value is returned.

User-defined functions are searched before system functions. If the user defines a
function which is the same as one of the defined functions already provided, the user
function will be executed in its place. Appendix A of the Basic Programming Guide
contains a list of function names used by CLIPS.

In place of DefineFunction, the DefineFunction2 function can be used to provide
additional information to CLIPS about the number and types of arguments expected by
a CLIPS function or command.

i nt Def i neFuncti on2(functi onNane, f uncti onType,
functi onPoi nt er, act ual Funct i onNane,
functionRestrictions);

char *functionNane, functionType, *actual Functi onNane;
i nt (*functionPointer)();
char *functionRestrictions

The first four arguments to DefineFunction2 are identical to the four arguments for
DefineFunction. The fifth argument is a restriction string which indicates the number
and types of arguments that the CLIPS function expects. The syntax format for the
restriction string is

<m n-args> <max-args> [<defaul t-type> <types>*]

The values <min-args> and <max-args> must be specified in the string. Both values
must either be a character digit (0-9) or the character *. A digit specified for <min-args>
indicates that the function must have at least <min-args> arguments when called. The
character * for this value indicates that the function does not require a minimum
number of arguments. A digit specified for <max-args> indicates that the function must
have no more than <max-args> arguments when called. The character * for this value

CLIPS Advanced Programming Guide 19

CLIPS Reference Manual (Beta Version—Not For Distribution)

indicates that the function does not prohibit a maximum number of arguments. The
optional <default-type> is the assumed type for each argument for a function call.
Following the <default-type>, additional type values may be supplied to indicate
specific type values for each argument. The type codes for the arguments are as
follows:

Type Code Allowed Types

External Address

Float

Instance Address, Instance Name, or Symbol
Float

Integer, Float, or Symbol

Instance Address, Instance Name, Fact Address, Integer, or Symbol
Integer

Symbol, String, or Instance Name
Symbol or String

Integer

Multifield

Integer or Float

Instance Name

Instance Name or Symbol
Symbol, String, or Multifield
String

Any Data Type

Symbol

Instance Address

Fact Address

Fact address, Integer, or Symbol

N X S CwooTO0O>S3 —x——3JQ -0 Q®

Examples
The restriction string for a function requiring a minimum of three arguments is:

n 3* n
The restriction string for a function requiring no more than five arguments is:
L1 5"

The restriction string for a function requiring at least three and no more than five
arguments (each of which must be an integer or float) is:

" 35n"

20 Section 3 - Integrating CLIPS with External Functions

JSC-25012

The restriction string for a function requiring exactly six arguments (of which the first
must be a string, the third an integer, and the remaining arguments floats) is:

" 66f sui "

3.2 PASSING ARGUMENTS FROM CLIPS TO EXTERNAL FUNCTIONS

Although arguments are listed directly following a function name within a function call,
CLIPS actually calls the function without any arguments. The arguments are stored
internally by CLIPS and can be accessed by calling the argument access functions.
Access functions are provided to determine both the number and types of arguments.

3.2.1 Determining the Number of Passed Arguments

User-defined functions should first determine that they have been passed the correct
number of arguments. Several functions are provided for this purpose.

i nt Rt nAr gCount () ;

i nt Ar gCount Check(functi onName, restriction, count);
i nt Ar gRangeCheck(f unct i onName, m n, nmax) ;

i nt restriction, count, mn, nax;

char *functi onNane;

A call to RtnArgCount will return an integer telling how many arguments with which
the function was called. The function ArgCountCheck can be used for error checking
if a function expects a minimum, maximum, or exact number of arguments (but not a
combination of these restrictions). It returns an integer telling how many arguments
with which the function was called (or -1 if the argument restriction for the function was
unsatisfied). The first argument is the name of the function to be printed within the error
message if the restriction is unsatisfied. The restriction argument should be one of the
values NO_MORE_THAN, AT_LEAST, or EXACTLY. The count argument should
contain a value for the number of arguments to be used in the restriction test. The
function ArgRangeCheck can be used for error checking if a function expects a
range of arguments. It returns an integer telling how many arguments with which the
function was called (or -1 if the argument restriction for the function was unsatisfied).
The first argument is the name of the function to be printed within the error message if
the restriction is unsatisfied. The second argument is the minimum number of
arguments and the third argument is the maximum number of arguments.

CLIPS Advanced Programming Guide 21

CLIPS Reference Manual (Beta Version—Not For Distribution)

3.2.2 Passing Symbols, Strings, Instance Names, Floats, and Integers

Several access functions are provided to retrieve arguments that are symbols, strings,
instance names, floats, and integers.

char *Rt nLexene(ar gunent Posi ti on);
doubl e Rt nDoubl e(ar gunent Posi ti on);
| ong Rt nLong(ar gunment Posi ti on) ;

i nt ar gunent Posi ti on;

A call to RtnLexeme returns a character pointer from either a symbol, string, or
instance name data type (NULL is returned if the type is not SYMBOL, STRING, or
INSTANCE_NAME), RtnDouble returns a floating-point number from either an
INTEGER or FLOAT data type, and RtnLong returns a long integer from either an
INTEGER or FLOAT data type. The arguments have to be requested one at a time by
specifying each argument’s position number as the argumentPosition to RtnLexeme,
RtnDouble, or RtnLong. If the type of argument is unknown, another function can be
called to determine the type. See section 3.2.3 for a further discussion of unknown
argument types. Do not store the pointer returned by RtnLexeme as part of a
permanent data structure. When CLIPS performs garbage collection on symbols and
strings, the pointer reference to the string may be rendered invalid. To store a
permanent reference to a string, allocate storage for a copy of the string and then copy
the string returned by RtnLexeme to the copy’s storage area.

Example
The following code is for a function to be called from CLIPS called rta which will return

the area of a right triangle.

[* This include definition */
#i nclude "clips.h" [* should start each file which */
/* has CLIPS functions in it */

/~k

Use DefineFunction2("rta",'d ,PTIF rta,"rta","22n");
*/

doubl e rta()

doubl e base, height;

/ * ::::::::::::::::::::::::::::::::::*/

[* Check for exactly two argunents. */

/ * ::::::::::::::::::::::::::::::::::*/

I f (ArgCount Check("rta", EXACTLY, 2) == -1) return(-1.0);
/ * :::*/

[* Get the values for the 1st and 2nd argunents. */

22 Section 3 - Integrating CLIPS with External Functions

JSC-25012

/ * :::*/
base = Rt nDoubl e(1);

hei ght = Rt nDoubl e(2);

/ * ::::::::::::::::::::::::::::::::::*/

/* Return the area of the triangle. */

/ * ::::::::::::::::::::::::::::::::::*/

return(0.5 * base * height);
}

As previously shown, rta also should be defined in UserFunctions. If the value
passed from CLIPS is not the data type expected, an error occurs. Section 3.2.3
describes a method for testing the data type of the passed arguments which would
allow user-defined functions to do their own error handling. Once compiled and linked
with CLIPS, the function rta could be called as shown following.

CLIPS> (rta 5.0 10.0)

25.0

CLIPS> (assert (right-triangle-area (rta 20.0 10.0)))
CLI PS> (facts)

f-0 (right-triangl e-area 100. 0)
For a total of 1 fact.
CLI PS>

3.2.3 Passing Unknown Data Types

Section 3.2.2 described how to pass data to and from CLIPS when the type of data is
explicitly known. It also is possible to pass parameters of an unknown data type to and
from external functions. To pass an unknown parameter to an external function, use
the RtnUnknown function.

#i ncl ude "clips. h" /* or "evaluatn.h" */
DATA OBJECT *Rt nUnknown(ar gunent Posi tion, &argunent);
i nt CGet Type(argunent) ;

i nt CGet pType(&ar gunent) ;
i nt Ar gTypeCheck(char *, argunent Posi ti on,

CLIPS Advanced Programming Guide 23

CLIPS Reference Manual (Beta Version—Not For Distribution)

expect edType, &ar gunent) ;

char *DOToStri ng(argument);
char *DOPToStri ng(&ar gunent) ;
doubl e DOToDoubl e(ar gunent) ;
doubl e DOPToDoubl e(&r gunent) ;
fl oat DOToFl oat (argunent) ;

fl oat DOPToFI oat (&ar gunent) ;

| ong DOToLong(ar gurrent) ;

| ong DOPToLong(&ar gumrent) ;

i nt DOTol nt eger (ar gunent) ;

i nt DOPTol nt eger (&ar gurrent) ;
VO D *DOToPoi nt er (argunent) ;
VO D *DOPToPoi nt er (&r gunent) ;

i nt argunent Posi tion, expectedType;
DATA OBJECT ar gunent;

Function RtnUnknown should be called first. It copies the elements of the internal
CLIPS structure that represent the unknown-type argument into the DATA OBJECT
structure pointed to by the second argument. It also returns a pointer to that same
structure, passed as the second argument. After obtaining a pointer to the
DATA_OBJECT structure, a number of macros can be used to extract type information
and the arguments value.

Macros GetType or GetpType can be used to determine the type of argument and
will return an integer (STRING, SYMBOL, FLOAT, INTEGER, MULTIFIELD,
INSTANCE, INSTANCE_NAME, or EXTERNAL_ADDRESS) defined in the clips.h
file. Once the data type is known, the functions DOToDouble, DOPToDouble,
DOToFloat, or DOPToFloat (for FLOAT), DOToString, or DOPToString (for
STRING, SYMBOL, or INSTANCE_NAME), DOToLong, DOPToLong,
DOTolnteger, or DOPTolnteger (for INTEGER), and DOToPointer and
DOPToPointer (for INSTANCE and EXTERNAL_ADDRESS) can be used to extract
the actual value of the variable from the DATA_OBJECT structure. Accessing multifield
values is discussed in section 3.2.4. Do not store the pointer returned by DOToString
or DOPToString as part of a permanent data structure. When CLIPS performs
garbage collection on symbols and strings, the pointer reference to the string may be
rendered invalid. To store a permanent reference to a string, allocate storage for a
copy of the string and then copy the string returned by DOToString or
DOPToString to the copy’s storage area.

The function ArgTypeCheck can be used for error checking if a function expects a
specific type of argument for a particular parameter. It returns a non-zero integer value
if the parameter was of the specified type, otherwise it returns zero. The first argument
is the name of the function to be printed within the error message if the type restriction
is unsatisfied. The second argument is the index of the parameter to be tested. The

24 Section 3 - Integrating CLIPS with External Functions

JSC-25012

third argument is the type restriction and must be one of the following CLIPS defined
constants: STRING, SYMBOL, SYMBOL _OR_STRING, FLOAT, INTEGER,
INTEGER_OR_FLOAT, MULTIFIELD, EXTERNAL_ADDRESS, INSTANCE (for
instance address), INSTANCE_NAME, or INSTANCE_OR_INSTANCE_NAME. If the
FLOAT type restriction is used, then integer values will be converted to floating-point
numbers. If the INTEGER type restriction is used, then floating-point values will be
converted to integers. The fourth argument is a pointer to a DATA_OBJECT structure in
which the unknown parameter will be stored.

Example
The following function mul takes two arguments from CLIPS. Each argument should

be either an integer or a float. Float arguments are rounded and converted to the
nearest integer. Once converted, the two arguments are multiplied together and this
value is returned. If an error occurs (wrong type or number of arguments), then the
value 1 is returned.

#i ncl ude <mat h. h> [* ANSI C library header file */
#i nclude "clips.h"

/~k

Use DefineFunction2("mul"™,"l",PTIF mul,"nmul","22n");
*/

l ong nul ()

DATA OBJECT tenp;
| ong firstNunber, secondNunber;

/ * ::::::::::::::::::::::::::::::::::*/

[* Check for exactly two argunents. */

/ * ::::::::::::::::::::::::::::::::::*/

I f (ArgCount Check("mul ", EXACTLY, 2) == -1)

{ return(1L); }

/ * :::*/
[* Get the first argunment using the ArgTypeCheck function. */
/* Return if the correct type has not been passed. */

/ * :::*/

i f (ArgTypeCheck("nul", 1, | NTEGER OR FLOAT, & enp) == 0)
{ return(1L); }

/ * ::I*/
[* Convert the first argunent to a long integer. If it's not */
/* an integer, then it nust be a float (so round it to the */

/* nearest integer using the Clibrary ceil function. */
/ * ::I*/
I f (CGet Type(tenp) == | NTEGER

CLIPS Advanced Programming Guide 25

CLIPS Reference Manual (Beta Version—Not For Distribution)

{ firstNunber = DOToLong(tenp); }
else /* the type nmust be FLOAT */
{ firstNunber = (long) ceil (DOToDoubl e(tenp) - 0.5); }

/ * ::*/
/* Get the second argunent using the R nUnknown function. */
/* Note that no type error checking is perforned. */
/ * ::*/

/ * :::*/
/* Convert the second argunent to a long integer. If it's */
/* not an integer or a float, then it's the wong type. */
/ * :::*/
if (CetType(tenp) == | NTEGER)

{ secondNunber = DOToLong(tenp); }
else if (CGetType(tenp) == FLQAT)

{ secondNunber = (long) ceil (DOToDoubl e(tenp) - 0.5); }
el se

{ return(1L); }

/ * :::*/
/* Miultiply the two val ues together and return the result. */
/ * :::*/

return (firstNunber * secondNunber);
}

Once compiled and linked with CLIPS, the function mul could be called as shown
following.

CLI PS> (mul 3 3)

9

CLIPS> (mul 3.1 3.1)
9

CLIPS> (mul 3.8 3.1)

CLIPS> (mul 3.8 4.2)

3.2.4 Passing Multifield Values

Data passed from CLIPS to an external function may be stored in multifield values. To
access a multifield value, the user first must call RtnUnknown or ArgTypeCheck to
get the pointer. If the argument is of type MULTIFIELD, several macros can be used to
access the values of the multifield value.

26 Section 3 - Integrating CLIPS with External Functions

JSC-25012

#i ncl ude "clips. h" /* or "evaluatn.h" */

i nt CGet DOLengt h(ar gunent) ;

i nt Cet pDQOLengt h(&r gunent) ;

i nt CGet DOBegi n(ar gunent) ;

i nt CGet pDOBegi n(&ar gurrent) ;

i nt CGet DCENd(ar gunent) ;

i nt CGet pDCENd(&ar gunent) ;

i nt Get M-Type(nul tifieldPtr, fiel dPosition);
VOD *GetM-Value(multifieldPtr,fieldPosition);

DATA OBJECT ar gunent;
VOD *nmultifieldPtr;
int fieldPosition;

Macros GetDOLength and GetpDOLength can be used to determine the length of
a DATA_OBJECT or DATA _OBJECT_PTR respectively. The macros GetDOBegin,
GetpDOBegin, GetDOENd, GetpDOENd can be used to determine the beginning
and ending indices of a DATA OBJECT or DATA OBJECT_PTR containing a
multifield value. Since multifield values are often extracted from arrays of other data
structures (such as facts), these indices are used to indicate the beginning and ending
positions within the array. Thus it is very important when traversing a multifield value to
use indices that run from the begin index to the end index and not from one to the
length of the multifield value. The begin index points to the first element in the
multifield value and the end index points to the last element in the multifield value. A
multifield value of length one will have the same values for the begin and end indices.
A multifield value of length zero will have an end index that is one less than the begin
index.

The macros GetMFType and GetMFValue can be used to examine the types and
values of fields within a multifield value. The first argument to these macros should be
the value retrieved from a DATA _OBJECT or DATA_OBJECT_PTR using the
GetValue and GetpValue macros. The second argument is the index of the field
within the multifield value. Once again, this argument should fall in the range between
the begin index and the end index for the DATA_OBJECT from which the multifield
value is stored. Macros ValueToString, ValueToDouble, ValueToLong, and
ValueTolnteger can be used to convert the retrieved value from GetMFValue to a
C object of type char *, double, and long respectively.

The multifield macros should only be used on DATA_OBJECTs that have type
MULTIFIELD (e.g. the macro GetDOLength returns erroneous values if the type is not
MULTIFIELD).

Examples

The following function returns the length of a multifield value. It returns -1 if an error
occurs.

CLIPS Advanced Programming Guide 27

CLIPS Reference Manual (Beta Version—Not For Distribution)

#i ncl ude "clips. h"
/*
Use DefineFunction2("nfl","1"', PTIF MrLengt h, "M-Lengt h", " 11n{);
*/
l ong int MrLengt h()
DATA _OBJECT ar gunent;

/ * :::::::::::::::::::::::::::::::::*/
/* Check for exactly one argunent. */
/ * :::::::::::::::::::::::::::::::::*/

I f (ArgCount Check("nfl", EXACTLY, 1) == -1) return(-1L);

/ * ::*/
/* Check that the 1st argunent is a nultifield value. */
/ * ::*/

i f (ArgTypeCheck("nfl", 1, MULTI FI ELD, &r gunent) == 0)
{ return(-1L); }

/ * ::*/
/* Return the length of the nultifield value. */
/ * ::*/

return ((long) GetDOLength(argunent));
}

The following function counts the number of characters in the symbols and strings
contained within a multifield value.

#i ncl ude "clips. h"

/*

Use DefineFunction2("cnfc",'|"',PTIF Cnt M-Char s, " Cnt M=Char s",
"11m');

*/

l ong int Cnt M=Chars()

DATA OBJECT ar gunent;
VOD *nultifieldPtr;
int end, i;

| ong count = O;

char *tenpPtr;

/ * :::::::::::::::::::::::::::::::::*/
/* Check for exactly one argunent. */
/ * :::::::::::::::::::::::::::::::::*/

28 Section 3 - Integrating CLIPS with External Functions

JSC-25012

i f (ArgCount Check("cnfc", EXACTLY, 1) == -1) return(OL);

/ * ::*/
/* Check that the first argunent is a multifield value. */
/ * ::*/

i f (ArgTypeCheck("cnfc", 1, MILTI FI ELD, &ar gurrent) == 0)
{ return(OL); }

/ * :::::::::::::::::::::::::::::::::::::*/
/* Count the characters in each field. */
/ * :::::::::::::::::::::::::::::::::::::*/

end = Get DOEnd(ar gunent) ;
multifieldPtr = GetVal ue(argunent);
for (i = GetDOBegi n(argunent); i <= end; i++)

if ((GetMType(multifieldPtr,i) == STRING ||
(Get MFType(mul tifieldPtr,i) == SYMBQL))

tempPtr = Val ueToString(Get M~Val ue(multifieldPtr,i));
count += strlen(tenpPtr);

}
}
/ * :::::::::::::::::::::::::::::*/
/* Return the character count. */
/ * :::::::::::::::::::::::::::::*/

return(count);

3.3 RETURNING VALUES TO CLIPS FROM EXTERNAL FUNCTIONS

Functions which return doubles, floats, integers, long integers, characters, external
addresses, and instance addresses can directly return these values to CLIPS. Other
data types including the unknown (or unspecified) data type and multifield data type,
must use functions provided by CLIPS to construct return values.

3.3.1 Returning Symbols, Strings, and Instance Names

CLIPS uses symbol tables to store all symbols, strings, and instance names. Symbol
tables increase both performance and memory efficiency during execution. If a
user-defined function returns a symbol, string, or an instance name (type 's', 'w', or '0’'
in DefineFunction), the symbol must be stored in the CLIPS symbol table prior to
use. Other types of returns (such as unknown and multifield values) may also contain
symbols which must be added to the symbol table. These symbols can be added by
calling the function AddSymbol and using the returned pointer value.

CLIPS Advanced Programming Guide 29

CLIPS Reference Manual (Beta Version—Not For Distribution)

#i ncl ude "clips. h" /* or "synbol.h" */

VA D *AddSynbol (string);
char *string;

Example
This function reverses the character ordering in a string and returns the reversed

string. The null string is returned if an error occurs.

#i ncl ude <stdlib. h> /* ANSI C library header file */

#i ncl ude <stddef. h> /* ANSI C library header file */

#i ncl ude "clips. h"

/~k

Use Defi neFunction2("reverse-str"”,"'s', PTIF Reverse, "Reverse",
"11s");

*/

VO D *Reverse()
DATA_CBJECT t enp;
char *| exenme, *tenpString;
VA D *returnVal ue;
int i, length;
| * ===========—===—=-=—==—=————————————=—==%*

/ * :::::::::::::::::::::::::::::::::*/

I f (ArgCount Check("reverse-str", EXACTLY, 1) == -1)

{ return(AddSynbol ("")); }
/ * :::*/
/[* Get the first argunent using the ArgTypeCheck function. */
/ * :::*/

I f (ArgTypeCheck("reverse-str", 1, STRING & enp) == 0)
{ return(AddSynbol ("")); }
| exemre = DOToString(tenp);

/ * ::*/
/* Allocate tenporary space to store the reversed string. */
/ * ::*/

| ength = strlen(l exene);
tenpString = (char *) malloc(length + 1);

| * ================—=====%*
/* Reverse the string. */
| * ================—=====%*

for (i = 0; i < length; i++)

30 Section 3 - Integrating CLIPS with External Functions

JSC-25012

{ tempString[length - (i + 1)] = lexene[i]; }
tempString[lengthl = "\0";

/ * :::::::::::::::::::::::::::::*/
/* Return the reversed string. */
/ * :::::::::::::::::::::::::::::*/

returnVal ue = AddSynbol (tenmpStri ng);
free(tenpString);
return(returnVal ue);

3.3.2 Returning Boolean Values

A user function may return a boolean value in one of two ways. The user may define
an integer function and use DefineFunction to declare it as a BOOLEAN type ('b’).
The function should then either return the value CLIPS _TRUE or CLIPS_FALSE.
Alternatively, the function may be declare to return a SYMBOL type (‘w') or UNKNOWN
type (‘'u’) and return the symbol CLIPSFalseSymbol or CLIPSTrueSymbol.

#i ncl ude "clips. h" /* or "synbol.h" */

#defi ne CLI PS_FALSE 0
#define CLIPS TRUE 1

VA D *CLI PSFal seSynbol
VA D *CLI PSTr ueSynbol

Examples
This function returns true if its first argument is a number greater than zero. It uses a
boolean return value.

#i ncl ude "clips. h"

/ *
Use Defi neFunction2("positivepl",'b', positivepl, "positivepl"”,
Ny 11n");
int positivepl()
DATA _OBJECT tenp;
/ * :::::::::::::::::::::::::::::::::*/
/* Check for exactly one argunent. */
/ * :::::::::::::::::::::::::::::::::*/
i f (ArgCount Check("positivepl", EXACTLY, 1) == -1)

{ return(CLIPS FALSE); }

CLIPS Advanced Programming Guide 31

CLIPS Reference Manual (Beta Version—Not For Distribution)

/ * :::*/
/* Get the first argument using the ArgTypeCheck function. */
/ * :::*/

i f (ArgTypeCheck("positivepl", 1, | NTEGER CR FLOAT, & enp) == 0)
{ return(CLIPS FALSE); }

/ * :::::::::::::::::::::::::::::::::::::*/
/* Determine if the value is positive. */
/ * :::::::::::::::::::::::::::::::::::::*/

if (CetType(tenp) == | NTEGER)

{ if (DOToLong(tenp) <= OL) return(CLIPS FALSE); }
else /* the type nmust be FLOAT */

{ if (DOToDoubl e(tenp) <= 0.0) return(CLIPS FALSE); }

return(CLI PS_TRUE);
}

This function also returns true if its first argument is a number greater than zero. It uses
a symbolic return value.

#i ncl ude "clips. h"

/*
Use Defi neFunction("positivep2",'w , PTIF positivep2, "positivep2",

"11n");
*/
VA D *positivep2()
DATA _OBJECT tenp;
/ * :::::::::::::::::::::::::::::::::*/
/* Check for exactly one argunent. */
/ * :::::::::::::::::::::::::::::::::*/

i f (ArgCount Check("positivepl", EXACTLY, 1) == -1)
{ return(CLI PSFal seSynbol); }

/ * :::*/
/* Get the first argument using the ArgTypeCheck function. */
/ * :::*/

i f (ArgTypeCheck("positivepl", 1, | NTEGER OR FLOAT, & enp) == 0)
{ return(CLI PSFal seSynbol); }

/ * :::::::::::::::::::::::::::::::::::::*/
/* Determine if the value is positive. */
/ * :::::::::::::::::::::::::::::::::::::*/

if (Cet Type(tenp) == | NTEGER)
{ if (DOToLong(tenp) <= OL) return(CLIPSFal seSynbol); }

32 Section 3 - Integrating CLIPS with External Functions

JSC-25012

else /* the type nmust be FLOAT */
{ if (DOToDoubl e(tenp) <= 0.0) return(CLI PSFal seSynbol); }

ret ur n(CLI PSTr ueSynbol) ;
}

3.3.3 Returning External Addresses and Instance Addresses

A user function may return an external address or an instance address. The user
should use DefineFunction to declare their function as returning an external
address type (‘a’) or an instance address type ('x’). The function should then either
return a pointer that has been typecast to (VOID *). Within CLIPS, the printed
representation of an external address is

<Poi nt er - XXXXXXXXK>

where XXXXXXXX is the external address. Note that it is up to the user to make sure
that external addresses remain valid within CLIPS. The printed representation of an
instance address is

<| nst ance- XXX>
where XXX is the name of the instance.

Example
This function uses the memory allocation function malloc to dynamically allocated 100

bytes of memory and then returns a pointer to the memory to CLIPS.

#i ncl ude <stdlib. h>
#i ncl ude "clips. h"

/~k

Use DefineFunction2("malloc","a',PTIF CLI PSmal | oc, " CLI PSmal | oc",
n OOII);

*/

VO D *CLI PSmal | oc()
*)

{ return((va D mal | oc(100)); 1}

3.3.4 Returning Unknown Data Types

A user-defined function also may return values of an unknown type. The user must
declare the function as returning type unknown; i.e., place a 'u’ for data type in the call
to DefineFunction. The user function will be passed a pointer to a structure of type
DATA_OBJECT (DATA_OBJECT_PTR) which should be modified to contain the return
value. The user should set both the type and the value of the DATA_OBJECT. Note

CLIPS Advanced Programming Guide 33

CLIPS Reference Manual (Beta Version—Not For Distribution)

that the value of a DATA_OBJECT cannot be directly set to a double or long value (the
functions AddLong and AddDouble should be used in a manner similar to
AddSymbol). The actual return value of the user function is ignored.

#i nclude "clips. h" /* or "evaluatn.h" */

i nt Set Type(argunent, type)
i nt Set pType(&r gunent, t ype)

VO D *Set Val ue(argunent, val ue)
VO D *Set pVal ue(&r gunent, val ue)

VO D *AddLong(l ongVal ue);
VO D *AddDoubl e(doubl eval ue);

VO D *CetVal ue(argunent);
VO D *CetpVal ue(&ar gunent) ;

char *Val ueToStri ng(val ue);
doubl e Val ueToDoubl e(val ue);
long Val ueToLong(val ue);

i nt Val ueTol nt eger (val ue) ;

| ong | ongVal ue;
doubl e doubl eVal ue;
VA D *val ue;

int type;

DATA OBJECT ar gunent;

Macros SetType and SetpType can be used to set the type of a DATA_OBJECT or
DATA_OBJECT_PTR respectively. The type parameter should be one of the following
CLIPS defined constants (note that these are not strings): SYMBOL, STRING,
INTEGER, FLOAT, EXTERNAL_ADDRESS, INSTANCE_NAME, or INSTANCE (for
instance address). Macros SetValue (for DATA_OBJECTs) and SetpValue (for
DATA_OBJECT_PTRs) can be used to set the value of a DATA_OBJECT. The
functions AddSymbol (for symbols, strings and instance names), AddLong (for
integers) and AddDouble (for floats) can be used to produce values that can be used
with these macros (external addresses and instance addresses can be used directly).
Macros GetValue (for DATA_OBJECTS) and GetpValue (for DATA_OBJECT_PTRS)
can be used to retrieve the value of a DATA OBJECT. Note that the value for an
external address or an instance address can be retrieved directly using one of these
macros. For other data types, the macros ValueToString (for symbols, strings, and
instance names), ValueToLong (for integers), ValueTolnteger (for integers), and
ValueToDouble (for floats) can be used to convert the retrieved value from a
DATA_OBJECT to a C object of type char *, double, long, or integer respectively.

34 Section 3 - Integrating CLIPS with External Functions

JSC-25012

Example
This function "cubes" its argument returning either an integer or float depending upon

the type of the original argument. It returns the symbol FALSE upon an error.

#i nclude "clips. h"

/*
Use Defi neFunction2("cube","'u', PTIF cube, "cube","11n");
*/

VA D cube(returnVal uebtr)
DATA CBJECT _PTR returnVal uePbtr;

{

VA D *val ue;

| ong | ongVal ue;
doubl e doubl eVal ue;

/ * :::::::::::::::::::::::::::::::::*/
/* Check for exactly one argunent. */
/ * :::::::::::::::::::::::::::::::::*/
I f (ArgCount Check("cube", EXACTLY, 1) == -1)

Set pType(returnVal uePtr, SYMBQL) ;
Set pVal ue(returnVal uePtr, CLI PSFal seSynbol) ;

return,;
}
| *=======—=—=—=—————————m—m————————— === ——————————==%
j, et the Tirst argument using the ArgTypeCheck function. '/

i f (! ArgTypeCheck("cube", 1, | NTEGER OR FLQOAT, ret urnVal uePtr))

Set pType(returnVal uePtr, SYMBQL) ;
Set pVal ue(returnVal uePtr, CLI PSFal seSynbol) ;

return;

}
/ * :::*/
/* Cube the argunent. Note that the return val ue DATA OBJECT */
/* is used to retrieve the function's argunent and return */
[* the function's return val ue. */
/ * :::*/
I f (GetpType(returnVal uePtr) == | NTECER)

{

val ue = CetpVal ue(returnVval uePtr);
| ongVal ue = Val ueToLong(val ue);
val ue = AddLong(l ongVal ue * | ongVval ue * | ongVal ue);

}
else /* the type nust be FLQOAT */
{

CLIPS Advanced Programming Guide 35

CLIPS Reference Manual (Beta Version—Not For Distribution)

val ue = CGet pVal ue(returnVval uebPtr);
doubl evVal ue = Val ueToDoubl e(val ue);
val ue = AddDoubl e(doubl eVal ue * doubl eVal ue * doubl eVal ue) ;

}

/ * :::*/
/* Set the value of the return DATA OBJECT. The return */
/* type does not have to be changed since it will be */
/* the sane as the 1st argunent to the function. */
/ * :::*/
Set pVal ue(returnVal uePtr, val ue);

return;

}

3.3.5 Returning Multifield Values

Multifield values can also be returned from an external function. When defining such
an external function, the data type should be setto 'm' in the call to DefineFunction.
Note that a multifield value can also be returned from a 'u' function, whereas only a
multifield value should be returned from an 'm' function. As with returning unknown
data types, the user function will be passed a pointer of type DATA OBJECT_PTR
which can be modified to set up a multifield value. The following macros and functions
are useful for this purpose:

VOD *CreateMiltifield(size);

i nt Set MFType(mul tifiel dPtr, fiel dPosition,type);
VO D *SetMValue(multifieldPtr,fieldPosition,value);
i nt Set DOBegi n(returnVal ue, fi el dPosi tion);

i nt Set pDOBegi n(& et ur nVal ue, fi el dPosi ti on);

i nt Set DOENnd(r et ur nVal ue, fi el dPosi tion);

i nt Set pDOENd(& et ur nVal ue, fi el dPosi ti on);

VOD SetMiltifieldErrorVal ue(& eturnVal ue);

DATA OBJECT returnVal ue;
int size, fieldPosition;
VOD *multifieldPtr;

VA D *val ue;

If a new multifield is to be created from an existing multifield, then the type and value of
the existing multifield can be copied and the begin and end indices can be modified to
obtain the appropriate subfields of the multifield value. If you wish to create a new
multifield value that is not part of an existing multifield value, then use the function
CreateMultifield. Given an integer argument, this function will create a multifield
value of the specified size with valid indices ranging from one to the given size (zero is
a legitimate parameter to create a multifield value with no fields). The macros
SetMFType and SetMFValue can be used to set the types and values of the fields
of the newly created multifield value. Both macros accept as their first argument the

36 Section 3 - Integrating CLIPS with External Functions

JSC-25012

value returned by CreateMultifield. The second argument should be an integer
representing the position of the multifield value to be set. The third argument is the
same as the arguments used for SetType and SetValue macros.

Do not set the value or type of any field within a multifield value that has been returned
to you by CLIPS. Use these macros only on multifield values created using the
CreateMultifield function.

The macros SetDOBegin, SetpDOBegin, SetDOENnd, SetpDOENd can be used
to assign values to the begin and end indices of a DATA_OBJECT or
DATA_OBJECT_PTR containing a multifield value. These macros are useful for
creating “new” multifield values by manipulating the indices of a currently existing
multifield value. For example, a function that returns the first field of a multifield value
could do so by setting the end index equal to the begin index (if the length of the
multifield value was greater than zero).

The function SetMultifieldErrorValue can be used to create a multifield value of
length zero (which is useful to return as an error value). Its only parameter is a
DATA_OBJECT_PTR which is appropriately modified to create a zero length multifield
value.

Examples
The following example creates a multifield value with two fields, a word and a number:

#i nclude "clips.h"

/~k
Use Defi neFunction2("sanpled4”,'m, PTIF sanpl e4, "sanpl e4","00");
*/

VA D sanpl e4(returnVal uePtr)
DATA OBJECT_PTR returnVal uePtr;

{
VAOD *multifieldPtr;

/ * :::::::::::::::::::::::::::::::::::*/

[* Check for exactly zero argunents. */

/ * :::::::::::::::::::::::::::::::::::*/

I f (ArgCount Check("sanpl e4", EXACTLY, 0) == -1)
SetMul tifieldErrorVal ue(returnVval uebPtr);
return;

}

/ * ::*/

[* Create a multi-field value of length 2 */

/ * ::*/

CLIPS Advanced Programming Guide 37

CLIPS Reference Manual (Beta Version—Not For Distribution)

multifieldPtr = GeateMiltifield(2);

/ * ::*/
/* The first field in the multi-field val ue * [
/* will be a SYMBOL. Its value will be * [
[* "altitude". * [
/ * ::*/
Set MFType(mul ti f I dpPtr, 1, SYMBQL) ;

Set M~val ue(nul tifieldPtr, 1, AddSynbol ("al titude"));
/ * :::*/

/* The second field in the multi-field value */
/* will be a FLOAT. Its value will be 900. *

/ * :::*/

Set MFType(mul ti f I dPtr, 2, FLQAT);

Set M~val ue(nul tifieldPtr, 2 AddDoubI e(900.0));

/ * ::*/
/* Assign the type and value to the return DATA OBJECT. */
/ ::*/

Set pType(returnVal uePtr, MULTI FI ELD) ;
Set pVal ue(returnVal uePtr, multifieldPtr);

/* The length of our multi-field value will be 2. */
/[* Since we will create our own multi-field value */
/* the begin and end i ndexes to our function will */
/* be 1 and the length of the multi-field val ue */
/* respectively. If we are examning a nulti-field */
/* value, or using an existing nulti-field value */
/* to create a new nulti-field value, then the */
/* begin and end indexes nay not correspond to 1 */
/* and the length of the nulti-field val ue. */
/

Set pDOBegi n(r et urnVal uePtr, 1);
Set pDCENnd(r et ur nVal uePtr, 2);

return;

}

The following example returns all but the first field of a multifield value:

#i ncl ude "clips. h"
/*

Use DefineFunction2("rest”, ' m,PTIF rest,"rest"”,"11n');
*/

38 Section 3 - Integrating CLIPS with External Functions

JSC-25012

VA D rest(returnVal uePtr)
DATA OBJECT_PTR returnVal uePtr;

{

| * =======——————————————————————— =k

/* Check for exactly one argunent. */

| * =======——————————————————————— =k

i f (ArgCount Check("rest", EXACTLY, 1) == -1)
Set Mul tifiel dErrorVal ue(returnVal uebPtr);
return;

}

| * ========—===—=—==—=—=——=—=—=———=—=—=%*

/* Check for a MULTIFIELD. */

| * ========—===—=—==—=—=——=—=—=———=—=—=%*

if (ArgTypeCheck("rest", 1, MLLTI FI ELD, r et urnVal uePtr) == 0)
Set Mul tifiel dErrorVal ue(returnVal uebPtr);

return;
}
/ * :::*/
/* Don't bother with a zero length multifield value. */
/ * :::*/

i f (GetpDOBegi n(returnVal uePtr) > Get pDCENd(returnVal uePtr))
{ return; }

/ * :::::::::::::::::::::::::::::::::::*/
/* Increnent the begin index by one. */
/ * :::::::::::::::::::::::::::::::::::*/

Set pDOBegi n(r et ur nVal uePtr, Get pDOBegi n(returnVal uePtr) + 1);

3.4 USER-DEFINED FUNCTION EXAMPLE

This section lists the steps needed to define and implement a user-defined function.
The example given is somewhat trivial, but it demonstrates the point. The user function
merely triples a number and returns the new value.

1) Copy all of the CLIPS source code file to the user directory.

2) Define the user function in a new file.
#i ncl ude "clips. h"

doubl e Tri pl eNunber ()
{

CLIPS Advanced Programming Guide 39

CLIPS Reference Manual (Beta Version—Not For Distribution)

return(3.0 * RtnDouble(l));
}

The preceding function does the job just fine. The following function, however, accom-
plishes the same purpose while providing error handling on arguments and allowing
either an integer or double return value.

#i ncl ude "clips. h"

VA D Tri pl eNunber (returnVal uePtr)
DATA CBJECT _PTR returnVal uebtr;

{
VA D *val ue;
| ong | ongVal ue;
doubl e doubl eVal ue;
/ * :::*/
/* If illegal argunments are passed, return zero. */
/ * :::*/
I f (ArgCount Check("triple", EXACTLY, 1) == -1)

Set pType(returnVal uePtr, | NTECER) ;
Set pVal ue(returnVal uePtr, AddLong(0L));
return;

}
I f (! ArgTypeCheck("triple", 1,1 NTEGER OR FLQAT, ret urnVal uePtr))

Set pType(returnVal uePtr, | NTECER) ;
Set pVal ue(ret urnVal uePtr, AddLong(OL));

return;
}
| * ====================%*
/* Triple the nunber. */
| * ====================%*
I f (GetpType(returnVal uePtr) == | NTEGER)

val ue = CGet pVal ue(returnVal uebPtr);

| ongVal ue = 3 * Val ueToLong(val ue);

Set pVal ue(ret urnVal uePtr, AddLong(| ongVal ue));
else /* the type nust be FLOAT */

val ue = CGet pVal ue(returnVval uebtr);

doubl eVal ue = 3.0 * Val ueToDoubl e(val ue);
Set pVal ue(r et urnVal uePt r, AddDoubl e(doubl eVal ue));

return;

40 Section 3 - Integrating CLIPS with External Functions

JSC-25012

3) Define the constructs which use the new function in a new file (or in an existing
constructs file). For example:

(deffacts init-data
(data 34)
(data 13.2))
(defrul e get-data
(data ?num
=>
(printout t "Tripling " ?numcrlf)
(assert (newvalue (triple ?nun))))
(defrul e get-newval ue
(new-val ue ?num
=>
(printout t crlf "Now equal to " ?numcrlf))

4) Modify the CLIPS main.c file to include the new UserFunctions definition.

User Functi ons()
extern VO D Tripl eNunber () ;

Def i neFunction2("triple","u ,PTIF Tripl eNunber, "TripleNunber",
n 11nll);
}

5) Compile the CLIPS files along with any files which contain user-defined functions.
6) Link all object code files.

7) Execute new CLIPS executable. Load the constructs file and test the new function.

CLIPS Advanced Programming Guide 41

JSC-25012

Section 4 - Embedding CLIPS

CLIPS was designed to be embedded within other programs. When CLIPS is used as
an embedded application, the user must provide a main program. Calls to CLIPS are
made like any other subroutine. To embed CLIPS, add the following include state-
ments to the user's main program file:

#i ncl ude <stdi o. h>
#i ncl ude "clips. h"

(These statements may have to be tailored so the compiler on the user's system can
find the CLIPS include file.) The user's main program must initialize CLIPS by calling
the function InitializeCLIPS at some time prior to loading constructs.
UserFunctions also must be defined, regardless of whether CLIPS calls any
external functions. Compile and link all of the user's code with all CLIPS files except
the object version of main.c. When running CLIPS as an embedded program, many
of the capabilities available in the interactive interface (in addition to others) are
available through function calls. The functions are documented in the following sec-
tions. Prototypes for these functions can be included by using the clips.h header file.

4.1 ENVIRONMENT FUNCTIONS

The following function calls control the CLIPS environment:

4.1.1 AddClearFunction

i nt Addd ear Functi on(cl ear |t enNan®, cl ear Function, priority);
char *cl earltenNang;

VA D (*cl ear Function)();

i nt priority;

VA D cl ear Functi on();

Purpose: Adds a user defined function to the list of functions which are
called when the CLIPS clear command is executed.

Arguments: 1) The name of the new clear item.

2) A pointer to the function which is to be called whenever a
clear command is executed.

3) The priority of the clear item which determines the order
in which clear items are called (higher priority items are
called first). The values -2000 to 2000 are reserved for
CLIPS system defined clear items and should not be
used for user defined clear items.

CLIPS Advanced Programming Guide 43

CLIPS Reference Manual (Beta Version—Not For Distribution)

Returns:

Returns a zero value if the clear item could not be added,
otherwise a non-zero value is returned.

4.1.2 AddPeriodicFunction

i nt

AddPer i odi cFuncti on(peri odi cl t enNane, peri odi cFuncti on,

priority);

char *periodi cltenmNane;
VA D (*peri odi cFunction)();

i nt

priority;

VA D peri odi cFunction();

Purpose:

Arguments:

Returns:

Adds a user defined function to the list of functions which are
called periodically while CLIPS is executing. This ability was
primarily included to allow interfaces to process events and
update displays during CLIPS execution. Care should be
taken not to use any operations in a periodic function which
would affect CLIPS data structures constructively or
destructively, i.e. CLIPS internals may be examined but not
modified during a periodic function.

1) The name of the new periodic item.

2) A pointer to a function which is to be called periodically
while CLIPS is executing.

3) The priority of the periodic item which determines the
order in which periodic items are called (higher priority
items are called first). The values -2000 to 2000 are
reserved for CLIPS system defined periodic items and
should not be used for user defined periodic items.

Returns a zero value if the periodic item could not be added,
otherwise a non-zero value is returned.

4.1.3 AddResetFunction

i nt
char

i nt

AddReset Functi on(reset |t enNane, reset Functi on, priority);
*reset | t enNane;
VA D (*reset Function)();

priority;

VA D reset Function();

Section 4 - Embedding CLIPS

Purpose:

Arguments:

Returns:

4.1.4 Bload

JSC-25012

Adds a user defined function to the list of functions which are
called when the CLIPS reset command is executed.

1) The name of the new reset item.

2) A pointer to the function which is to be called whenever a
reset command is executed.

3) The priority of the reset item which determines the order
in which reset items are called (higher priority items are
called first). The values -2000 to 2000 are reserved for
CLIPS system defined reset items and should not be
used for user defined reset items.

Returns a zero value if the reset item could not be added,
otherwise a non-zero value is returned.

i nt Bl oad(fi |l eNane) ;

char *fil eNane;

Purpose:

Arguments:

Returns:

4.1.5 Bsave

Loads a binary image of constructs into the CLIPS data base
(the C equivalent of the CLIPS bload command).

A string representing the name of the file.

Returns an integer; if zero, an error occurred. A positive one
Is returned upon success.

i nt Bsave(fil eNane);

char *fil eNane;

Purpose:

Arguments:

Returns:

Saves a binary image of constructs from the CLIPS data
base (the C equivalent of the CLIPS bsave command).

A string representing the name of the file.

Returns an integer; if zero, an error occurred. A positive one
Is returned upon success.

CLIPS Advanced Programming Guide 45

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.1.6 Clear
VO D dear();

Purpose:

Arguments:

Returns:

Clears the CLIPS environment (the C equivalent of the
CLIPS clear command).

None.

No meaningful return value.

4.1.7 CLIPSFunctionCall

VA D CLI PSFunctionCal | (functi onNane, argunent s, & esul t);
char *functi onNane, *ar gunent s;
DATA OBJECT result;

Purpose:

Arguments:

Returns:

Example

DATA OBJECT rtn;

Allows CLIPS system functions, deffunctions and generic
functions to be called from C.

1) The name of the system function, deffunction or generic
function to be called.

2) A string containing any constant arguments separated by
blanks (this argument can be NULL).

3) Caller's buffer for storing the result of the function call.

No meaningful return value.

CLI PSFunctionCal | ("+","1 2", &tn);

4.1.8 GetAutoFloatDividend

i nt CGet Aut oFl oat Di vi dend() ;

Purpose:

Arguments:

46

Returns the current value of the auto-float dividend behavior
(the C equivalent of the CLIPS get-auto-float-dividend
command).

None.

Section 4 - Embedding CLIPS

JSC-25012

Returns: An integer; CLIPS_FALSE (0) if the behavior is disabled and
CLIPS_TRUE (1) if the behavior is enabled.

4.1.9 GetDynamicConstraintChecking
i nt Get Dynam cConst r ai nt Checki ng() ;

Purpose: Returns the current value of the dynamic constraint checking
behavior (the C equivalent of the CLIPS
get-dynamic-constraint-checking command).

Arguments: None.

Returns: An integer; CLIPS_FALSE (0) if the behavior is disabled and
CLIPS_TRUE (1) if the behavior is enabled.

4.1.10 GetSequenceOperatorRecognition
i nt Get SequenceQper at or Recogni tion();

Purpose: Returns the current value of the sequence operator
recognition behavior (the C equivalent of the CLIPS get-
sequence-operator-recognition command).

Arguments: None.

Returns: An integer; CLIPS_FALSE (0) if the behavior is disabled and
CLIPS_TRUE (1) if the behavior is enabled.

4.1.11 GetStaticConstraintChecking
i nt Cet St at i cConst rai nt Checki ng();

Purpose: Returns the current value of the static constraint checking
behavior (the C equivalent of the CLIPS
get-static-constraint-checking command).

Arguments: None.

Returns: An integer; CLIPS_FALSE (0) if the behavior is disabled and
CLIPS_TRUE (1) if the behavior is enabled.

CLIPS Advanced Programming Guide ivg

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.1.12 InitializeCLIPS

VAOD InitializeCLIPS();

Purpose:

Arguments:

Returns:

4.1.13 Load

Initializes the CLIPS system. Must be called prior to any
other CLIPS function call. NOTE: This function should be
called only once.

None.

No meaningful return value.

i nt Load(fil eNane);

char *fil eNane;

Purpose:

Arguments:

Returns:

Loads a set of constructs into the CLIPS data base (the C
equivalent of the CLIPS load command).

A string representing the name of the file.

Returns an integer; if zero, file opened OK. If negative, an
error was encountered opening the file. If syntactic errors are
in the constructs, Load still will attempt to read the entire file
and error notices will be sent to werror.

4.1.14 RemoveClearFunction

i nt Renoved ear Functi on(cl ear |t emNane) ;
char *cl earltenmNane;

Purpose:

Arguments:

Returns:

Removes a named function from the list of functions to be
called during a clear command.

The name associated with the user-defined clear function.
This is the same name that was used when the clear function
was added with the function AddClearFunction.

Returns the integer value 1 if the named function was found
and removed, otherwise 0 is returned.

Section 4 - Embedding CLIPS

JSC-25012

4.1.15 RemovePeriodicFunction

i nt RenovePeri odi cFuncti on(peri odi cltenmNane) ;
char *peri odicltenmNane;

Purpose:

Arguments:

Returns:

Removes a named function from the list of functions which
are called periodically while CLIPS is executing.

The name associated with the user-defined periodic
function. This is the same name that was used when the
periodic function was added with the function
AddPeriodicFunction.

Returns the integer value 1 if the named function was found
and removed, otherwise 0 is returned.

4.1.16 RemoveResetFunction

i nt RenmoveReset Functi on(reset|tenNane);
char *resetltenNaneg;

Purpose:

Arguments:

Returns:

4.1.17 Reset
VO D Reset ();

Purpose:

Arguments:

Returns:

Removes a named function from the list of functions to be
called during a reset command.

The name associated with the user-defined reset function.
This is the same name that was used when the reset function
was added with the function AddResetFunction.

Returns the integer value 1 if the named function was found
and removed, otherwise 0 is returned.

Resets the CLIPS environment (the C equivalent of the
CLIPS reset command).

None.

No meaningful return value.

CLIPS Advanced Programming Guide 49

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.1.18 Save

i nt Save(fil eNane);

char *fil eNane;

Purpose:

Arguments:

Returns:

Saves a set of constructs to the specified file (the C
equivalent of the CLIPS save command).

A string representing the name of the file.
Returns an integer; if zero, an error occurred while opening

the file. If non-zero no errors were detected while performing
the save.

4.1.19 SetAutoFloatDividend

i nt Set Aut oFl oat Di vi dend(val ue);

i nt val ue;

Purpose:

Arguments:

Returns:

Sets the auto-float dividend behavior (the C equivalent of the
CLIPS set-auto-float-dividend command). When this
behavior is enabled (by default) the dividend of the division
function is automatically converted to a floating point
number.

The new value for the behavior: CLIPS_TRUE (1) to enable
the behavior and CLIPS_FALSE (0) to disable it.

Returns the old value for the behavior.

4.1.20 SetDynamicConstraintChecking

i nt Set Dynam cConst r ai nt Checki ng(val ue);

i nt val ue;

Purpose:

50

Sets the value of the dynamic constraint checking behavior
(the C equivalent of the CLIPS command
set-dynamic-constraint-checking). When this behavior
is disabled (FALSE by default), newly created data objects
(such as deftemplate facts and instances) do not have their
slot values checked for constraint violations. When this
behavior is enabled (TRUE), the slot values are checked for
constraint violations. The return value for this function is the
old value for the behavior.

Section 4 - Embedding CLIPS

Arguments:

Returns:

JSC-25012

The new value for the behavior: CLIPS_TRUE (1) to enable
the behavior and CLIPS_FALSE (0) to disable it.

Returns the old value for the behavior.

4.1.21 SetSequenceOperator Recognition

i nt Set SequenceQper at or Recogni ti on(val ue);

i nt val ue;

Purpose:

Arguments:

Returns:

Sets the sequence operator recognition behavior (the C
equivalent of the CLIPS set-sequence-operator-
recognition command). When this behavior is disabled (by
default) multifield variables found in function calls are treated
as a single argument. When this behaviour is enabled,
multifield variables are expanded and passed as separate
arguments in the function call.

The new value for the behavior: CLIPS_TRUE (1) to enable
the behavior and CLIPS_FALSE (0) to disable it.

Returns the old value for the behavior.

4.1.22 SetStaticConstraintChecking

i nt Set St at i cConst r ai nt Checki ng(val ue);

i nt val ue;

Purpose:

Arguments:

Returns:

Sets the value of the static constraint checking behavior (the
C equivalent of the CLIPS command
set-static-constraint-checking). When this behavior is
disabled (FALSE), constraint violations are not checked
when function calls and constructs are parsed. When this
behavior is enabled (TRUE by default), constraint violations
are checked when function calls and constructs are parsed.
The return value for this function is the old value for the
behavior.

The new value for the behavior: CLIPS_TRUE (1) to enable
the behavior and CLIPS_FALSE (0) to disable it.

Returns the old value for the behavior.

CLIPS Advanced Programming Guide 51

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.2 DEBUGGING FUNCTIONS

The following function call controls the CLIPS debugging aids:

4.2.1 DribbleActive
int DribbleActive();

Purpose: Determines if the storing of dribble information is active.
Arguments: None.
Returns: Zero if dribbling is not active, non-zero otherwise.

4.2.2 DribbleOff
int DribbleCff();

Purpose: Turns off the storing of dribble information (the C equivalent
of the CLIPS dribble-off command).

Arguments: None.

Returns: A zero if an error occurred closing the file; otherwise a one.

4.2.3 DribbleOn

i nt Dri bbl eOn(fil eNan®e);
char *fil eNane;

Purpose: Allows the dribble function of CLIPS to be turned on (the C
equivalent of the CLIPS dribble-on command).

Arguments: The name of the file in which to store dribble information.
Only one dribble file may be opened at a time.

Returns: A zero if an error occurred opening the file; otherwise a one.

4.2.4 GetWatchltem

i nt CetWatchlten(itemn;
char *item

52 Section 4 - Embedding CLIPS

Purpose:

Arguments:

Returns:

4.2.5 Unwatch

JSC-25012

Returns the current value of a watch item.

The item to be activated or deactivated which should be one
of the following strings: facts, rules, activations, focus,
compilations, statistics, globals, instances, slots, messages,
message-handlers, generic-functions, method, or
deffunctions.

Returns 1 if the watch item is enabled, O if the watch item is
disabled, and -1 if the watch item does not exist.

i nt Unwat ch(iten);

char *item

Purpose:

Arguments:

Returns:

4.2.6 Watch

Allows the tracing facilities of CLIPS to be deactivated (the C
equivalent of the CLIPS unwatch command).

The item to be deactivated which should be one of the
following strings: facts, rules, activations, focus, compilations,
statistics, globals, deffunctions, instances, slots, messages,
message-handlers, generic-functions, methods, or all. If all is
selected, all possible watch items will not be traced.

A one if the watch item was successfully set; otherwise a
zero.

i nt Wat ch(iten);

char *item

Purpose:

Arguments:

Allows the tracing facilities of CLIPS to be activated (the C
equivalent of the CLIPS watch command).

The item to be activated which should be one of the
following strings: facts, rules, activations, focus, compilations,
statistics, globals, deffunctions, instances, slots, messages,
message-handlers, generic-functions, methods, or all. If all is
selected, all possible watch items will be traced.

CLIPS Advanced Programming Guide 53

CLIPS Reference Manual (Beta Version—Not For Distribution)

Returns: A one if the watch item was successfully set; otherwise a
zero.
4.3 DEFTEMPLATE FUNCTIONS

The following function calls are used for manipulating deftemplates.

4.3.1 DeftemplateModule

char *Deftenpl ateModul e(deftenpl atePtr);
VA D *deftenpl atePtr;

Purpose: Returns the module in which a deftemplate is defined (the C
equivalent of the CLIPS deftemplate-module command).

Arguments: A generic pointer to a deftemplate.

Returns: A string containing the name of the module in which the
deftemplate is defined.

4.3.2 FindDeftemplate

VA D *Fi ndDef t enpl at e(def t enpl at eNane) ;
char *deftenpl at eNane;

Purpose: Returns a generic pointer to a named deftemplate.
Arguments: The name of the deftemplate to be found.
Returns: A generic pointer to the named deftemplate if it exists,

otherwise NULL.

4.3.3 GetDeftemplateList

VO D Cet Deft enpl at eLi st (& et urnVal ue, t heModul e) ;
DATA OBJECT ret urnVal ue;
VA D *t heModul e;

Purpose: Returns the list of deftemplates in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-deftemplate-list function).

54 Section 4 - Embedding CLIPS

JSC-25012

Arguments: 1) A pointer to the caller's DATA OBJECT in which the
return value will be stored. The multifield functions
described in section 3.2.4 can be used to retrieve the
deftemplate names from the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

4.3.4 GetDeftemplateName

char *Cet Deft enpl at eNanme(deftenpl atePtr);
VO D *deftenpl atePtr;

Purpose: Returns the name of a deftemplate.
Arguments: A generic pointer to a deftemplate data structure.
Returns: A string containing the name of the deftemplate.

4.3.5 GetDeftemplatePPForm

char *Cet Deft enpl at ePPFor n(deftenpl atePtr);
VO D *deftenpl atePtr;

Purpose: Returns the pretty print representation of a deftemplate.
Arguments: A generic pointer to a deftemplate data structure.
Returns: A string containing the pretty print representation of the

deftemplate (or the NULL pointer if no pretty print
representation exists).

4.3.6 GetDeftemplateWatch

int GetDeftenpl ateWatch(deftenpl atePtr);
VO D *deftenpl atePtr;

Purpose: Indicates whether or not a particular deftemplate is being
watched.
Arguments: A generic pointer to a deftemplate data structure.

CLIPS Advanced Programming Guide 55

CLIPS Reference Manual (Beta Version—Not For Distribution)

Returns: An integer; one (1) if the deftemplate is being watched,
otherwise a zero (0).

4.3.7 GetNextDeftemplate

VA D *Cet Next Deft enpl at e(deftenpl atePtr);
VO D *deftenpl atePtr;

Purpose: Provides access to the list of deftemplates.

Arguments: A generic pointer to a deftemplate data structure (or NULL to
get the first deftemplate).

Returns: A generic pointer to the first deftemplate in the list of
deftemplates if deftemplatePtr is NULL, otherwise a generic
pointer to the deftemplate immediately following
deftemplatePtr in the list of deftemplates. If deftemplatePtr is
the last deftemplate in the list of deftemplates, then NULL is
returned.

4.3.8 IsDeftemplateDeletable

i nt | sDef t enpl at eDel et abl e(deftenpl atePtr);
VO D *deftenpl atePtr;

Purpose: Indicates whether or not a particular deftemplate can be
deleted.

Arguments: A generic pointer to a deftemplate data structure.

Returns: An integer; zero (0) if the deftemplate cannot be deleted,

otherwise a one (1).

4.3.9 ListDeftemplates
VA D Li st Deft enpl at es(| ogi cal Nane, t heModul e) ;
char *1 ogi cal Nane;
VA D *t heModul e;

Purpose: Prints the list of deftemplates (the C equivalent of the CLIPS
list-deftemplates command).

Arguments: 1) The logical name to which the listing output is sent.

56 Section 4 - Embedding CLIPS

JSC-25012

2) A generic pointer to the module containing the
deftemplates to be listed. A NULL pointer indicates that
deftemplate in all modules should be listed.

Returns: No meaningful return value.

4.3.10 SetDeftemplateWatch

VO D Set Deft enpl at eVat ch(newsSt at e, deft enpl atePtr);
i nt newst at e;
VA D *deftenpl atePtr;

Purpose: Sets the facts watch item for a specific deftemplate.

Arguments: The new facts watch state and a generic pointer to a
deftemplate data structure.

4.3.11 Undeftemplate

i nt Undeft enpl at e(deftenpl atePtr);
VA D *deftenpl atePtr;

Purpose: Removes a deftemplate from CLIPS (the C equivalent of the
CLIPS undeftemplate command).

Arguments: A generic pointer to a deftemplate data structure. If the NULL
pointer is used, then all deftemplates will be deleted.

Returns: An integer; zero (0) if the deftemplate could not be deleted,
otherwise a one (1).
4.4 FACT FUNCTIONS

The following function calls manipulate and display information about facts.

4.4.1 Assert

VO D *Assert(factPtr);
VO D *factPtr;

Purpose: Adds a fact created using the function CreateFact to the
fact-list. If the fact was asserted successfully, Assert will

CLIPS Advanced Programming Guide 57

CLIPS Reference Manual (Beta Version—Not For Distribution)

return a pointer to the fact. Otherwise, it will return NULL (i.e.,
the fact was already in the fact-list).

Arguments: A generic pointer to the fact created using CreateFact. The
values of the fact should be initialized before calling Assert.

Returns: A generic pointer to a fact structure. If the fact was asserted
successfully, Assert will return a generic pointer to the fact.
Otherwise, it will return NULL (i.e., the fact was already in the
fact-list).

WARNING: If the return value from Assert is stored as part of a
persistent data structure or in a static data area, then the
function IncrementFactCount should be called to insure
that the fact cannot be disposed while external references to
the fact still exist.

4.4.2 AssertString

VO D *Assert String(string);
char *string;

Purpose: Asserts a fact into the CLIPS fact-list (the C equivalent of the
CLIPS assert-string command).

Arguments: One argument; a pointer to a string containing a list of
primitive data types (symbols, strings, integers, floats, and/or
instance names).

Returns: A generic pointer to a fact structure.

Examples
If the following deftemplate has been processed by CLIPS,

(deftenpl ate exanpl e
(multislot v)
(slot w (default 9))
(slot x)

(slot vy)
(multislot z))

then the following fact

(exanple (x 3) (y red) (z 1.5 b))

58 Section 4 - Embedding CLIPS

JSC-25012

can be added to the fact-list using the function shown below.

VA D AddExanpl eFact 1()

}AssertString("(exarrpIe (x 3) (yred) (z 1.5 b))");

To construct a string based on variable data, use the C library function sprintf as
shown following.

VA D Vari abl eFact Assert (nunber, st at us)
i nt nunber;
char *stat us;

char tenpBuffer[50];

sprintf(tenpBuffer,”(exanple (x %) (y %))", nunber, stat us);
Assert String(tenpBuffer);
}

4.4.3 AssignFactSlotDefaults

i nt AssignFact Sl ot Def aul t s(t heFact) ;
VA D *t heFact;

Purpose: Assigns default values to a fact.
Arguments: A generic pointer to a fact data structure.
Returns: Boolean value. TRUE if the default values were successfully

set, otherwise FALSE.

4.4.4 CreateFact

VO D *COr eat eFact (deftenpl atePtr);
VO D *deftenpl atePtr;

Purpose: Function CreateFact returns a pointer to a fact structure
with factSize fields. Once this fact structure is obtained, the
fields of the fact can be given values by using PutFactSlot
and AssignFactSlotDefaults. Function AddFact should
be called when the fact is ready to be asserted.

Arguments: A generic pointer to a deftemplate data structure (which
indicates the type of fact being created).

CLIPS Advanced Programming Guide 59

CLIPS Reference Manual (Beta Version—Not For Distribution)

Returns:

Other:

Examples

A generic pointer to a fact data structure.

Use the CreateFact function to create a new fact and then
the PutFactSlot function to set one or more slot values. The
AssignFactSlotDefaults function is then used to assign
default values for slots not set with the PutFactSlot function.
Finally, the Assert function is called with the new fact.

Since CreateFact requires a generic deftemplate pointer, it
is not possible to use it to create ordered facts unless the
associated implied deftemplate has already been created. In
cases where the implied deftemplate has not been created,
the function AssertString can be used to create ordered
facts.

This function allows individual fields of a fact to be assigned
under programmer control. This is useful, for example, if a
fact asserted from an external function needs to contain an
external address or an instance address (since the function
AssertString does not permit these data types). For most
situations in which a fact needs to be asserted, however, the
AssertString function should be preferred (it is slighter
slower than using the CreateFact and Assert functions,
but it is much easier to use and less prone to being used
incorrectly).

If the following deftemplate has been processed by CLIPS,

(deftenpl ate exanpl e

(rmultislot v)

(slot w (default 9))

(sl ot x)

(slot y)
(multislot z))

then the following fact

(exanple (x 3) (y red) (z 1.5 b))

can be added to the fact-list using the function shown below.

VA D AddExanpl eFact 2()

{

60

Section 4 - Embedding CLIPS

JSC-25012

VA D *newFact ;

VA D *tenpl atePtr;
VA D *theMul tifield;
DATA OBJECT t heVal ue;

/ * ::::::::::::::::::*/
/* Create the fact. */
/ * ::::::::::::::::::*/

tenpl atePtr = Fi ndDeftenpl at e("exanpl e");
newFact = CreateFact(tenplatePtr);
i f (newFact == NULL) return;

/ * ::::::::::::::::::::::::::::::*/
/* Set the value of the x slot. */
/ * ::::::::::::::::::::::::::::::*/

t heVal ue. type = | NTEGER,
t heVal ue. val ue = AddLong(3);
Put Fact Sl ot (newFact, "x", & heVal ue) ;

/ * ::::::::::::::::::::::::::::::*/
/* Set the value of the y slot. */
/ * ::::::::::::::::::::::::::::::*/

t heval ue. type = SYMBQL;
t heVal ue. val ue = AddSynbol ("red");
Put Fact Sl ot (newFact, "y", & heVal ue) ;

/ * ::::::::::::::::::::::::::::::*/
/* Set the value of the z slot. */
/ * ::::::::::::::::::::::::::::::*/

theMultifield = CreateMul tifield(2);

Set MFType(theMul tifield, 1, FLOAT);

Set M~Val ue(theMul tifield, 1, AddDoubl e(1.5));
Set MType(theMul tifield, 2, SYMBQL) ;

Set M~Val ue(theMul tifield, 2, AddSynbol ("b"));
Set DOBegi n(t heVal ue, 1) ;

Set DCENnd(t heVval ue, 2);

t heVal ue. type = MULTI FI ELD;
t heVal ue. val ue = theMultifield;
Put Fact Sl ot (newFact, "z", & heVal ue) ;

/ * :::::::::::::::::::::::::::::::::*/
/* Assign default values since all */
/* slots were not initialized. */
/ * :::::::::::::::::::::::::::::::::*/

/* Assert the fact. */

CLIPS Advanced Programming Guide 61

CLIPS Reference Manual (Beta Version—Not For Distribution)

Assert (newFact) ;
}
4.4.5 DecrementFactCount

VA D Decr enent Fact Count (factPtr);
VO D *factbtr;

Purpose: This function should only be called to reverse the effects of a
previous call to IncrementFactCount. As long as an fact's
count is greater than zero, the memory allocated to it cannot
be released for other use.

Arguments: A generic pointer to a fact.

Returns: No meaningful return value.

4.4.6 Factlndex

long int Factlndex(factPtr);
VA D *factPtr;

Purpose: Returns the fact index of a fact (the C equivalent of the
CLIPS fact-index command).

Arguments: A generic pointer to a fact data structure.
Returns: A long integer (the fact-index of the fact).
4.4.7 Facts

VA D Fact s(| ogi cal Nane, t heMbdul e, start, end, max) ;
char *| ogi cal Nane;

VA D *t heModul e;

| ong start, end, max;

Purpose: Prints the list of all facts currently in the fact-list (the C
equivalent of the CLIPS facts command). Output is sent to
the logical name wdisplay.

Arguments: 1) The logical name to which the listing output is sent.

62 Section 4 - Embedding CLIPS

Returns:

JSC-25012

2) A generic pointer to the module containing the facts to be
listed (all facts visible to that module). A NULL pointer
indicates that all facts in all modules should be listed.

3) The start index of the facts to be listed. Facts with indices
less than this value are not listed. A value of -1 indicates
that the argument is unspecified and should not restrict
the facts printed.

4) The end index of the facts to be listed. Facts with indices
greater than this value are not listed. A value of -1
indicates that the argument is unspecified and should not
restrict the facts printed.

5) The maximum number of facts to be listed. Facts in
excess of this limit are not listed. A value of -1 indicates
that the argument is unspecified and should not restrict
the facts printed.

No meaningful return value.

4.4.8 GetFactDuplication

i nt CGet Fact Duplication();

Purpose:

Arguments:

Returns:

Returns the current value of the fact duplication behavior
(the C equivalent of the CLIPS get-fact-duplication
command).

None.

An integer; CLIPS_FALSE (0) if the behavior is disabled and
CLIPS_TRUE (1) if the behavior is enabled.

4.4.9 GetFactListChanged

i nt Get Fact Li st Changed() ;

Purpose:

Determines if any changes to the fact list have occurred. If
this function returns a non-zero integer, it is the user's
responsibility to call SetFactListChanged(0) to reset the
internal flag. Otherwise, this function will continue to return
non-zero even when no changes have occurred. This
function is primarily used to determine when to update a
display tracking the fact list.

CLIPS Advanced Programming Guide 63

CLIPS Reference Manual (Beta Version—Not For Distribution)

Arguments:

Returns:

None.

0 if no changes to the fact list have occurred, non-zero
otherwise.

4.4.10 GetFactPPForm

VO D Cet Fact PPFor n(buf fer, bufferLength, factPtr);

char *buffer;

i nt buf f er Lengt h;

VA D *factPtr;

Purpose:

Arguments:

Returns:

4.4.11 GetFactSlot

Returns the pretty print representation of a fact in the caller's
buffer.

1) A pointer to the caller's character buffer.

2) The maximum number of characters which could be
stored in the caller's buffer (not including space for the
terminating null character).

3) A generic pointer to a fact data structure.

No meaningful return value. The fact pretty print form is
stored in the caller's buffer.

int GetFact Sl ot(factPtr, sl ot Nane, & heVval ue) ;

VA D *factPtr;

char *sl ot Nane;

DATA CBJECT t heVal ue;

Purpose:

Arguments:

Returns:

Retrieves a slot value from a fact.

1) A generic pointer to a fact data structure.

2) The name of the slot to be retrieved (NULL should be
used for the implied multifield slot of an implied
deftemplate).

3) A pointer to a DATA_OBJECT in which to place the slot’s
value.

Boolean value. TRUE if the slot value was successfully
retrieved, otherwise FALSE.

Section 4 - Embedding CLIPS

4.4.12 GetNextFact

JSC-25012

VA D *CGet Next Fact (factPtr);

VA D *factPtr;

Purpose:

Arguments:

Returns:

Other:

WARNING:

Provides access to the fact-list.

A generic pointer to a fact data structure (or NULL to get the
first fact in the fact-list).

A generic pointer to the first fact in the fact-list if factPtr is
NULL, otherwise a generic pointer to the fact immediately
following factPtr in the fact-list. If factPtr is the last fact in the
fact-list, then NULL is returned.

Once this generic pointer to the fact structure is obtained, the
fields of the fact can be examined by using the macros
GetMFType and GetMFValue. The values of a fact
obtained using this function should never be changed. See
CreateFact for details on accessing deftemplate facts.

Do not call this function with a pointer to a fact that has been
retracted. If the return value from GetNextFact is stored as
part of a persistent data structure or in a static data area,
then the function IncrementFactCount should be called to
insure that the fact cannot be disposed while external
references to the fact still exist.

4.4.13 IncrementFactCount

VA D | ncrenent Fact Count (factPtr);

VO D *factPtr;

Purpose:

This function should be called for each external copy of
pointer to a fact to let CLIPS know that such an outstanding
external reference exists. As long as an fact's count is
greater than zero, CLIPS will not release its memory
because there may be outstanding pointers to the fact.
However, the fact can still be functionally retracted, i.e. the
fact will appear to no longer be in the fact-list. The fact
address always can be safely examined using the fact
access functions as long as the count for the fact is greater
than zero. Retracting an already retracted fact will have no
effect, however, the function AddFact should not be called

CLIPS Advanced Programming Guide 65

CLIPS Reference Manual (Beta Version—Not For Distribution)

Arguments:

Returns:

4.4.14 LoadFacts

twice for the same pointer created using CreateFact. Note
that this function only needs to be called if you are storing
pointers to facts that may later be referenced by external
code after the fact has been retracted.

A generic pointer to a fact.

No meaningful return value.

i nt LoadFact s(fil eNane) ;

char *fil eNane;

Purpose:

Arguments:

Returns:

4.4.15 PutFactSlot

Loads a set of facts into the CLIPS data base (the C
equivalent of the CLIPS load-facts command).

A string representing the name of the file.
Returns an integer; if zero, an error occurred while opening

the file. If non-zero no errors were detected while performing
the load.

int Put Fact Sl ot (fact Ptr, sl ot Nane, & heVal ue) ;

VO D *factPtr;
char *sl ot Nane;

DATA OBJECT t heVal ue;

Purpose:

Arguments:

Returns:

66

Sets the slot value of a fact.

1) A generic pointer to a fact data structure.

2) The name of the slot to be set (NULL should be used for
the implied multifield slot of an implied deftemplate).

3) A pointer to a DATA_OBJECT that contains the slot’'s new
value. A multifield or implied multifield slot should only be
passed a multifield value. A single field slot should only
be passed a single field value.

Boolean value. TRUE if the slot value was successfully set,
otherwise FALSE.

Section 4 - Embedding CLIPS

JSC-25012

Warning: Do not use this function to change the slot value of a fact that
has already been asserted. This function should only be
used on facts created using CreateFact.

4.4.16 Retract

int Retract(factPtr);
VO D *factPtr;

Purpose: Retracts a fact from the CLIPS fact-list (the C equivalent of
the CLIPS retract command).

Arguments: A generic pointer to a fact structure (usually captured as the
return value from a call to AssertString or Assert). If the
NULL pointer is used, then all facts will be retracted.

Returns: An integer; zero (0) if fact already has been retracted, other-
wise a one (1).

Other: The caller of RetractFact is responsible for insuring that the
fact passed as an argument is still valid. The functions
IncrementFactCount and DecrementFactCount can be
used to inform CLIPS whether a fact is still in use.

4.4.17 SaveFacts

i nt SaveFact s(fi | eNane, saveScope, NULL) ;
char *fil eNane,
I nt saveScope;

Purpose: Saves the facts in the fact-list to the specified file (the C
equivalent of the CLIPS save-facts command).

Arguments: A string representing the name of the file and an integer
constant representing the scope for the facts being saved
which should be either LOCAL_SAVE or VISIBLE_ SAVE.
The third argument is used internally by the CLIPS
save-facts command and should be set to NULL when called
from user code.

Returns: Returns an integer; if zero, an error occurred while opening

the file. If non-zero no errors were detected while performing
the save.

CLIPS Advanced Programming Guide 67

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.4.18 SetFactDuplication

i nt Set Fact Dupl i cati on(val ue);

i nt val ue;

Purpose:

Arguments:

Returns:

Sets the fact duplication behavior (the C equivalent of the
CLIPS set-fact-duplication command). When this
behavior is disabled (by default), asserting a duplicate of a
fact already in the fact-list produces no effect. When enabled,
the duplicate fact is asserted with a new fact-index.

The new value for the behavior: CLIPS_TRUE (1) to enable
the behavior and CLIPS_FALSE (0) to disable it.

Returns the old value for the behavior.

4.4.19 SetFactListChanged

VA D Set Fact Li st Changed(changedFl ag) ;

i nt changedFl ag;

Purpose:

Arguments:

Returns:

Sets the internal boolean flag which indicates when
changes to the fact list have occurred. This function is
normally used to reset the flag to =zero after
GetFactListChanged() returns non-zero.

An integer indicating whether changes in the fact list have
occurred (non-zero) or not (0).

Nothing useful.

4.5 DEFFACTS FUNCTIONS

The following function calls are used for manipulating deffacts.

4.5.1 DeffactsModule

char *Deffact sMdul e(theDeffacts);
VO D *t heDef f act s;

Purpose:

Arguments:

68

Returns the module in which a deffacts is defined (the C
equivalent of the CLIPS deffacts-module command).

A generic pointer to a deffacts.

Section 4 - Embedding CLIPS

JSC-25012

Returns: A string containing the name of the module in which the
deffacts is defined.

4.5.2 FindDeffacts

VA D *Fi ndDef f act s(def f act sNane) ;
char *deffact sNane;

Purpose: Returns a generic pointer to a named deffacts.

Arguments: The name of the deffacts to be found.

Returns: A generic pointer to the named deffacts if it exists, otherwise
NULL.

4.5.3 GetDeffactsList

VO D Get Def f act sLi st (& et urnVal ue, t heMbdul e) ;
DATA OBJECT returnVal ue;
VA D *t heMbdul e;

Purpose: Returns the list of deffacts in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-deffacts-list function).

Arguments: 1) A pointer to the caller's DATA_OBJECT in which the
return value will be stored. The multifield functions
described in section 3.2.4 can be used to retrieve the
deffacts names from the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

4.5.4 GetDeffactsName

char *Get Def f act sNane(deffactsPtr);
VO D *deffactsPtr;

Purpose: Returns the name of a deffacts.

CLIPS Advanced Programming Guide 69

CLIPS Reference Manual (Beta Version—Not For Distribution)

Arguments: A generic pointer to a deffacts data structure.

Returns: A string containing the name of the deffacts.

455 GetDeffactsPPForm

char *Cet Def f act sPPFor n(deffactsPtr);
VO D *deffactsPtr;

Purpose: Returns the pretty print representation of a deffacts.

Arguments: A generic pointer to a deffacts data structure.

Returns: A string containing the pretty print representation of the
deffacts (or the NULL pointer if no pretty print representation
exists).

4.5.6 GetNextDeffacts

VO D *CGet Next Def f act s(deffactsPtr);
VO D *deffactsPtr;

Purpose: Provides access to the list of deffacts.

Arguments: A generic pointer to a deffacts data structure (or NULL to get
the first deffacts).

Returns: A generic pointer to the first deffacts in the list of deffacts if

deffactsPtr is NULL, otherwise a generic pointer to the
deffacts immediately following deffactsPtr in the list of
deffacts. If deffactsPtr is the last deffacts in the list of deffacts,
then NULL is returned.

4.5.7 IsDeffactsDeletable

i nt | sDef f act sDel et abl e(deffactsPtr);
VO D *deffactsPtr;

Purpose: Indicates whether or not a particular deffacts can be deleted.

Arguments: A generic pointer to a deffacts data structure.

70 Section 4 - Embedding CLIPS

JSC-25012

Returns: An integer; zero (0) if the deffacts cannot be deleted,
otherwise a one (1).

4.5.8 ListDeffacts
VA D Li st Def fact s(1 ogi cal Nane, t heMbdul e) ;
char *I| ogi cal Nane;
VA D *t heMobdul e;

Purpose: Prints the list of deffacts (the C equivalent of the CLIPS
list-deffacts command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the deffacts to
be listed. A NULL pointer indicates that deffacts in all
modules should be listed.

Returns: No meaningful return value.

4.5.9 Undeffacts

i nt Undef f act s(deffactsPtr);
VO D *deffactsPtr;

Purpose: Removes a deffacts construct from CLIPS (the C equivalent
of the CLIPS undeffacts command).

Arguments: A generic pointer to a deffacts data structure. If the NULL
pointer is used, then all deffacts will be deleted.

Returns: An integer; zero (0) if the deffacts could not be deleted,
otherwise a one (1).

4.6 DEFRULE FUNCTIONS

The following function calls are used for manipulating defrules.

4.6.1 DefruleHasBreakpoint

int Defrul eHasBreakpoi nt (defrul ePtr);
VO D *defrul ePtr;

CLIPS Advanced Programming Guide 71

CLIPS Reference Manual (Beta Version—Not For Distribution)

Purpose: Indicates whether or not a particular defrule has a breakpoint
set.

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; one (1) if a breakpoint exists for the rule,

otherwise a zero (0).

4.6.2 DefruleModule

char *Defrul eModul e(t heDefrul e);
VA D *t heDef rul e;

Purpose: Returns the module in which a defrule is defined (the C
equivalent of the CLIPS defrule-module command).

Arguments: A generic pointer to a defrule.

Returns: A string containing the name of the module in which the
defrule is defined.

4.6.3 FindDefrule

VA D *Fi ndDef r ul e(def rul eNane) ;
char *defrul eNane;

Purpose: Returns a generic pointer to a named defrule.

Arguments: The name of the defrule to be found.

Returns: A generic pointer to the named defrule if it exists, otherwise
NULL.

4.6.4 GetDefruleList

VA D Get Def rul eLi st (& et urnVal ue, t heModul e) ;
DATA OBJECT returnVal ue;
VA D *t heMbdul e;

Purpose: Returns the list of defrules in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-defrule-list function)..

72 Section 4 - Embedding CLIPS

JSC-25012

Arguments: 1) A pointer to the caller's DATA OBJECT in which the
return value will be stored. The multifield functions
described in section 3.2.4 can be used to retrieve the
defrule names from the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

4.6.5 GetDefruleName

char *Cet Defrul eNanme(defrul ePtr);
VA D *defrul ePtr;

Purpose: Returns the name of a defrule.
Arguments: A generic pointer to a defrule data structure.
Returns: A string containing the name of the defrule.

4.6.6 GetDefrulePPForm

char *Cet Def rul ePPFor n(defrul ePtr);
VA D *defrul ePtr;

Purpose: Returns the pretty print representation of a defrule.

Arguments: A generic pointer to a defrule data structure.

Returns: A string containing the pretty print representation of the
defrule (or the NULL pointer if no pretty print representation
exists).

4.6.7 GetDefruleWatchActivations

i nt Get Defrul eatchActivations(defrul ePtr);
VO D *defrul ePtr;

Purpose: Indicates whether or not a particular defrule is being
watched for activations.

Arguments: A generic pointer to a defrule data structure.

CLIPS Advanced Programming Guide 73

CLIPS Reference Manual (Beta Version—Not For Distribution)

Returns: An integer; one (1) if the defrule is being watched for
activations, otherwise a zero (0).

4.6.8 GetDefruleWatchFirings

int Get Defrul evatchFirings(defrul ePtr);
VO D *defrul ePtr;

Purpose: Indicates whether or not a particular defrule is being
watched for rule firings.

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; one (1) if the defrule is being watched for rule
firings, otherwise a zero (0).

4.6.9 GetlncrementalReset

i nt Get I ncrenment al Reset () ;

Purpose: Returns the current value of the incremental reset behavior
(the C equivalent of the CLIPS get-incremental-reset
command).

Arguments: None.

Returns: An integer; CLIPS_FALSE (0) if the behavior is disabled and

CLIPS_TRUE (1) if the behavior is enabled.

4.6.10 GetNextDefrule

VA D *CGet Next Defrul e(defrul ePtr);
VO D *defrul ePtr;

Purpose: Provides access to the list of defrules.

Arguments: A generic pointer to a defrule data structure (or NULL to get
the first defrule).

Returns: A generic pointer to the first defrule in the list of defrules if

defrulePtr is NULL, otherwise a generic pointer to the defrule
immediately following defrulePtr in the list of defrules. If

74 Section 4 - Embedding CLIPS

JSC-25012

defrulePtr is the last defrule in the list of defrules, then NULL
is returned.

4.6.11 IsDefruleDeletable

i nt | sDef rul eDel et abl e(defrul ePtr);
VO D *defrul ePtr;

Purpose: Indicates whether or not a particular defrule can be deleted.
Arguments: A generic pointer to a defrule data structure.
Returns: An integer; zero (0) if the defrule cannot be deleted,

otherwise a one (1).

4.6.12 ListDefrules

VA D Li st Defrul es(l ogi cal Nane, t heMbdul e) ;
char *1| ogi cal Nane;
VA D *t heModul e;

Purpose: Prints the list of defrules (the C equivalent of the CLIPS
list-defrules command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defrules to
be listed. A NULL pointer indicates that defrules in all
modules should be listed.

Returns: No meaningful return value.

4.6.13 Matches

int Matches(defrulePtr);
VO D *defrul ePtr;

Purpose: Prints the partial matches and activations of a defrule (the C
equivalent of the CLIPS matches command).

Arguments: A generic pointer to a defrule data structure.
Returns: An integer; zero (0) if the rule was not found, otherwise a one
1)

CLIPS Advanced Programming Guide 75

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.6.14 Refresh

i nt Refresh(defrul ePtr);
VA D *defrul ePtr;

Purpose: Refreshes a rule (the C equivalent of the CLIPS refresh
command).

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; zero (0) if the rule was not found, otherwise a one
(1)

4.6.15 RemoveBreak

i nt RenoveBreak(defrul ePtr);
VA D *defrul ePtr;

Purpose: Removes a breakpoint for the specified defrule (the C
equivalent of the CLIPS remove-break command).

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; zero (0) if a breakpoint did not exist for the rule,
otherwise a one (1).

4.6.16 SetBreak

VA D Set Break(defrul ePtr);
VA D *defrul ePtr;

Purpose: Adds a breakpoint for the specified defrule (the C equivalent
of the CLIPS set-break command).

Arguments: A generic pointer to a defrule data structure.

Returns: No meaningful return value.

4.6.17 SetDefruleWatchActivations
VA D Set Def rul eWat chActi vati ons(newSt at e, defrul ePtr);

i nt newst at e;
VA D *defrul ePtr;

76 Section 4 - Embedding CLIPS

JSC-25012

Purpose: Sets the activations watch item for a specific defrule.

Arguments: The new activations watch state and a generic pointer to a
defrule data structure.

4.6.18 SetDefruleWatchFirings
VA D Set Def rul eWat chFi ri ngs(newSt at e, defrul ePtr);
i nt newsSt at e;
VA D *defrul ePtr;

Purpose: Sets the rule firing watch item for a specific defrule.

Arguments: The new rule firing watch state and a generic pointer to a
defrule data structure.

4.6.19 SetincrementalReset

i nt Set | ncr enent al Reset (val ue);
i nt val ue;

Purpose: Sets the incremental reset behavior. When this behavior is
enabled (by default), newly defined rules are update based
upon the current state of the fact-list. When disabled, newly
defined rules are only updated by facts added after the rule
is defined (the C equivalent of the CLIPS set-incremental-
reset command).

Arguments: The new value for the behavior: CLIPS_TRUE (1) to enable
the behavior and CLIPS_FALSE (0) to disable it.

Returns: Returns the old value for the behavior.

4.6.20 ShowBreaks
VO D ShowBr eaks(| ogi cal Nane, t heMbdul e) ;
char *1 ogi cal Nane;
VA D *t heModul e;

Purpose: Prints the list of all rule breakpoints (the C equivalent of the
CLIPS show-breaks command).

Arguments: 1) The logical name to which the listing output is sent.

CLIPS Advanced Programming Guide 77

CLIPS Reference Manual (Beta Version—Not For Distribution)

2) A generic pointer to the module for which the breakpoints
are to be listed. A NULL pointer indicates that the the
breakpoints in all modules should be listed.

Returns: No meaningful return value.

4.6.21 Undefrule

i nt Undefrul e(defrul ePtr);
VO D *defrul ePtr;

Purpose: Removes a defrule from CLIPS (the C equivalent of the
CLIPS undefrule command).

Arguments: A generic pointer to a defrule data structure. If the NULL
pointer is used, then all defrules will be deleted.

Returns: An integer; zero (0) if the defrule could not be deleted,
otherwise a one (1).

4.7 AGENDA FUNCTIONS

The following function calls are used for manipulating the agenda.

4.7.1 AddRunFunction

i nt AddRunFunct i on(runl t enNane, runFunction, priority);
char *runltenNane;

VA D (*runFunction)();

i nt priority;

VA D runFunction();

Purpose: Allows a user-defined function to be called after each rule
firing. Such a feature is useful, for example, when bringing
data in from some type of external device which does not
operate in a synchronous manner. A user may define an
external function which will be called by CLIPS after every
rule is fired to check for the existence of new data.

Arguments: 1) The name associated with the user-defined run function.

This name IS used by the function
RemoveRunFunction.

78 Section 4 - Embedding CLIPS

JSC-25012

2) A pointer to the user-defined function which is to be
called after every rule firing.

3) The priority of the run item which determines the order in
which run items are called (higher priority items are
called first). The values -2000 to 2000 are reserved for
CLIPS system defined run items and should not be used
for user defined run items.

Returns: Returns a zero value if the run item could not be added,
otherwise a non-zero value is returned.

Example
This following function checks to see if a key on the keyboard has been hit. If a key has

been hit, then the fact (stop-processing) is asserted into the fact-list.
VA D CheckKB()
I f (CheckKeyboardStatus() == KB_HT)
{ AssertString("stop-processing”); }
}

This function can now be added to the list of functions called after every rule firing by
making the following function call.

AddRunFunct i on(" check- kb", checkKB, 3000);

4.7.2 Agenda
VA D Agenda(| ogi cal Nane, t heMbdul e)
char *| ogi cal Nane;
VA D *t heMbdul e;

Purpose: Prints the list of rules currently on the agenda (the C
equivalent of the CLIPS agenda command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the agenda to
be listed. A NULL pointer indicates that the agendas of all
modules should be listed.

Returns: No meaningful return value.

4.7.3 ClearFocusStack

VA D d ear FocusSt ack() ;

CLIPS Advanced Programming Guide 79

CLIPS Reference Manual (Beta Version—Not For Distribution)

Purpose: Removes all modules from the focus stack (the C equivalent
of the CLIPS clear-focus-stack command).

Arguments: None.

Returns: No meaningful return value.

4.7.4 DeleteActivation

i nt Del et eActi vation(activationPtr);
VA D *activationPtr;

Purpose: Removes an activation from the agenda.

Arguments: A generic pointer to an activation data structure. If the NULL
pointer is used, then all activations will be deleted.

Returns: An integer; zero (0) if the activation could not be deleted,
otherwise a one (1).

4.7.5 Focus

VA D Focus(def nodul ePtr);
VA D *def nodul ePtr;

Purpose: Sets the current focus (the C equivalent of the CLIPS focus
command).

Arguments: A generic pointer to a defmodule data structure.

Returns: No meaningful value.

4.7.6 GetActivationName

char *CGet ActivationNane(activationPtr);
VA D *activationPtr;

Purpose: Returns the name of the defrule from which the activation
was generated.

Arguments: A generic pointer to an activation data structure.

Returns: A string containing a defrule name.

80 Section 4 - Embedding CLIPS

JSC-25012

4.7.7 GetActivationPPForm

VO D CetActivationPPForn(buffer, bufferLength, activationPtr);
char *buffer;

i nt buf f er Lengt h;

VO D *activationPtr;

Purpose: Returns the pretty print representation of an agenda
activation in the caller's buffer.

Arguments: 1) A pointer to the caller's character buffer.

2) The maximum number of characters which could be
stored in the caller's buffer (not including space for the
terminating null character).

3) A generic pointer to an activation data structure.

4.7.8 GetActivationSalience

i nt Get ActivationSal i ence(activationPtr);
VA D *activationPtr;

Purpose: Returns the salience value associated with an activation.
This salience value may be different from the the salience
value of the defrule which generated the activation (due to
dynamic salience).

Arguments: A generic pointer to an activation data structure.

Returns: The integer salience value of an activation.

4.7.9 GetAgendaChanged
i nt Get AgendaChanged();

Purpose: Determines if any changes to the agenda of rule activations
have occurred. If this function returns a non-zero integer, it is
the user's responsibility to call SetAgendaChanged(0) to
reset the internal flag. Otherwise, this function will continue
to return non-zero even when no changes have occurred.
This function is primarily used to determine when to update a
display tracking rule activations.

Arguments: None.

CLIPS Advanced Programming Guide 81

CLIPS Reference Manual (Beta Version—Not For Distribution)

Returns: 0 if no changes to the agenda have occurred, non-zero
otherwise.

4.7.10 GetFocus
VA D *CGet Focus();

Purpose: Returns the module associated with the current focus (the C
equivalent of the CLIPS get-focus function).

Arguments: None.

Returns: A generic pointer to a defmodule data structure (or NULL if
the focus stack is empty).

4.7.11 GetFocusStack

VA D Get FocusSt ack(& et ur nVal ue) ;
DATA OBJECT returnVal ue;

Purpose: Returns the module names in the focus stack as a multifield
value in the returnValue DATA _OBJECT (the C equivalent of
the CLIPS get-focus-stack function).

Arguments: A pointer to the caller's DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the defrule names from
the list.

4.7.12 GetNextActivation

VO D *CGet Next Activation(activationPtr);
VA D *activationPtr;

Purpose: Provides access to the list of activations on the agenda.

Arguments: A generic pointer to an activation data structure (or NULL to
get the first activation on the agenda).

Returns: A generic pointer to the first activation on the agenda if

activationPtr is NULL, otherwise a generic pointer to the
activation immediately following activationPtr on the agenda.

82 Section 4 - Embedding CLIPS

JSC-25012

If activationPtr is the last activation on the agenda, then
NULL is returned.

4.7.13 GetSalienceEvaluation

i nt Cet Sal i enceEval uation();

Purpose: Returns the current salience evaluation behavior (the C
equivalent of the CLIPS get-salience-evaluation
command).

Arguments: None.

Returns: An integer (see SetSalienceEvaluation for the list of defined
constants).

4.7.14 GetStrategy
i nt Cet Strategy();

Purpose: Returns the current conflict resolution strategy (the C
equivalent of the CLIPS get-strategy command).

Arguments: None.
Returns: An integer (see SetStrategy for the list of defined strategy
constants).

4.7.15 ListFocusStack

VA D Li st FocusSt ack(| ogi cal Nane) ;
char *1| ogi cal Nane;

Purpose: Prints the current focus stack (the C equivalent of the CLIPS
list-focus-stack command).

Arguments: The logical name to which the listing output is sent.

Returns: No meaningful return value.

4.7.16 PopFocus
VA D *PopFocus();

CLIPS Advanced Programming Guide 83

CLIPS Reference Manual (Beta Version—Not For Distribution)

Purpose: Removes the current focus from the focus stack and returns
the module associated with that focus (the C equivalent of
the CLIPS pop-focus function).

Arguments: None.

Returns: A generic pointer to a defmodule data structure.

4.7.17 RefreshAgenda

VA D RefreshAgenda(t heMbdul e);
VA D *t heModul e;

Purpose: Recomputes the salience values for all activations on the
agenda and then reorders the agenda (the C equivalent of
the CLIPS refresh-agenda command).

Arguments: A generic pointer to the module containing the agenda to be
refreshed. A NULL pointer indicates that the agendas of all
modules should be refreshed.

Returns: No meaningful return value.run

4.7.18 RemoveRunFunction

i nt RermoveRunFuncti on(runl t emNane) ;
char *runlt emNane;

Purpose: Removes a named function from the list of functions to be
called after every rule firing.

Arguments: The name associated with the user-defined run function.
This is the same name that was used when the run function
was added with the function AddRunFunction.

Returns: Returns the integer value 1 if the named function was found
and removed, otherwise 0 is returned.

4.7.19 ReorderAgenda

VA D Reor der Agenda(t heMbdul e) ;
VA D *t heModul e;

84 Section 4 - Embedding CLIPS

JSC-25012

Purpose: Reorders the agenda based on the current conflict resolution
strategy and current activation saliences.

Arguments: A generic pointer to the module containing the agenda to be
reordered. A NULL pointer indicates that the agendas of all
modules should be reordered.

Returns: No meaningful return value.

4.7.20 Run

long int Run(runLimt);
long int runLimt;

Purpose: Allows rules to execute (the C equivalent of the CLIPS run
command).
Arguments: An integer which defines how many rules should fire before

returning. If runLimit is a negative integer, rules will fire until
the agenda is empty.

Returns: Returns an integer value; the number of rules that were fired.

4.7.21 SetActivationSalience

i nt Set ActivationSal i ence(activationPtr, newSal i ence);
VA D *activationPtr;
i nt newSal i ence;

Purpose: Sets the salience value of an activation. The salience value
of the defrule which generated the activation is unchanged.

Arguments: 1) A generic pointer to an activation data structure.
2) The new salience value (which is not restricted to the
-10000 to +10000 range).

Returns: The old salience value of the activation.

Other: The function ReorderAgenda should be called after
salience values have been changed to update the agenda.

CLIPS Advanced Programming Guide 85

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.7.22 SetAgendaChanged

VA D Set AgendaChanged(changedFl ag) ;
i nt changedFl ag;

Purpose: Sets the internal boolean flag which indicates when
changes to the agenda of rule activations have occurred.
This function is normally used to reset the flag to zero after
GetAgendaChanged() returns non-zero.

Arguments: An integer indicating whether changes in the agenda have
occurred (non-zero) or not (0).

Returns: Nothing useful.

4.7.23 SetSalienceEvaluation

i nt Set Sal i enceEval uati on(val ue);
i nt val ue;

Purpose: Sets the salience evaluation behavior (the C equivalent of
the CLIPS set-salience-evaluation command).

Arguments: The new value for the behavior — one of the following
defined integer constants:

WHEN_DEFINED
WHEN_ACTIVATED
EVERY_CYCLE

Returns: Returns the old value for the behavior.

4.7.24 SetStrategy

i nt Set Strat egy(val ue);
i nt val ue;

Purpose: Sets the conflict resolution strategy (the C equivalent of the
CLIPS set-strategy command).

Arguments: The new value for the behavior — one of the following
defined integer constants:

DEPTH_STRATEGY

86 Section 4 - Embedding CLIPS

JSC-25012

BREADTH_STRATEGY
LEX_STRATEGY
MEA_STRATEGY
COMPLEXITY_STRATEGY
SIMPLICITY_STRATEGY
RANDOM_STRATEGY

Returns: Returns the old value for the strategy.

4.8 DEFGLOBAL FUNCTIONS

The following function calls are used for manipulating defglobals.

4.8.1 DefglobalModule

char *Def gl obal Modul e(t heDef gl obal) ;
VA D *t heDef gl obal ;

Purpose: Returns the module in which a defglobal is defined (the C
equivalent of the CLIPS defglobal-module command).

Arguments: A generic pointer to a defglobal.

Returns: A string containing the name of the module in which the
defglobal is defined.

4.8.2 FindDefglobal

VA D *Fi ndDef gl obal (gl obal Nane) ;
char *gl obal Nane;

Purpose: Returns a generic pointer to a named defglobal.
Arguments: The name of the defglobal to be found (e.g. x for ?2*x*).
Returns: A generic pointer to the named defglobal if it exists,

otherwise NULL.

4.8.3 GetDefglobalList
VO D Cet Def gl obal Li st (& et urnVal ue, t heModul e) ;

DATA OBJECT ret urnVal ue;
VA D *t heModul e;

CLIPS Advanced Programming Guide 87

CLIPS Reference Manual (Beta Version—Not For Distribution)

Purpose: Returns the list of defglobals in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-defglobal-list function).

Arguments: 1) A pointer to the caller’'s DATA_OBJECT in which the
return value will be stored. The multifield functions
described in section 3.2.4 can be used to retrieve the
defglobal names from the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

4.8.4 GetDefglobalName

char *Cet Def gl obal Nare(def gl obal Ptr);
VA D *def gl obal Ptr;

Purpose: Returns the name of a defglobal.
Arguments: A generic pointer to a defglobal data structure.
Returns: A string containing the name of the defglobal (e.g. x for ?*x*).

4.8.5 GetDefglobalPPForm

char *Cet Def gl obal PPFor n(def gl obal Ptr) ;
VA D *def gl obal Ptr;

Purpose: Returns the pretty print representation of a defglobal.
Arguments: A generic pointer to a defglobal data structure.
Returns: A string containing the pretty print representation of the

defglobal (or the NULL pointer if no pretty print
representation exists).

4.8.6 GetDefglobalValue

i nt CGet Def gl obal Val ue(gl obal Nane, & Ptr);
char *gl obal Nane;
DATA OBJECT vPtr;

88 Section 4 - Embedding CLIPS

Purpose:

Arguments:

Returns:

JSC-25012

Returns the value of a defglobal.

1) The name of the global variable to be retrieved (e.g. y for
?*y*)'

2) A pointer to a DATA_OBJECT in which the value is stored
(see sections 3.2.3 and 3.3.4 for details on this data
structure).

An integer; zero (0) if the defglobal was not found, otherwise
a one (1). The DATA_OBJECT vPtr is assigned the current
value of the defglobal.

4.8.7 GetDefglobalValueForm

VO D GCet Def gl obal Val ueFor n(buf f er, buf f er Lengt h, def gl obal Ptr);

char *buffer;

i nt buf f er Lengt h;
VA D *def gl obal Ptr;

Purpose:

Arguments:

Returns a printed representation of a defglobal and its
current value in the caller's buffer. For example,

?*x* =5

1) A pointer to the caller’s character buffer.

2) The maximum number of characters which could be
stored in the caller's buffer (not including space for the
terminating null character).

3) A generic pointer to a defglobal data structure.

4.8.8 GetDefglobalWatch

i nt Get Def gl obal WAt ch(def gl obal Ptr);
VA D *def gl obal Ptr;

Purpose:

Arguments:

Returns:

Indicates whether or not a particular defglobal is being
watched.

A generic pointer to a defglobal data structure.

An integer; one (1) if the defglobal is being watched,
otherwise a zero (0).

CLIPS Advanced Programming Guide 89

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.8.9 GetGlobalsChanged
i nt Get d obal sChanged();

Purpose: Determines if any changes to global variables have
occurred. If this function returns a non-zero integer, it is the
user's responsibility to call SetGlobalsChanged(0) to reset
the internal flag. Otherwise, this function will continue to
return non-zero even when no changes have occurred. This
function is primarily used to determine when to update a
display tracking global variables.

Arguments: None.
Returns: 0 if no changes to global variables have occurred, non-zero
otherwise.

4.8.10 GetNextDefglobal

VA D *Get Next Def gl obal (def gl obal Ptr);
VA D *def gl obal Ptr;

Purpose: Provides access to the list of defglobals.

Arguments: A generic pointer to a defglobal data structure (or NULL to
get the first defglobal).

Returns: A generic pointer to the first defglobal in the list of defglobals

if defglobalPtr is NULL, otherwise a generic pointer to the
defglobal immediately following defglobalPtr in the list of
defglobals. If defglobalPtr is the last defglobal in the list of
defglobals, then NULL is returned.

4.8.11 GetResetGlobals
i nt Cet Reset @ obal s() ;

Purpose: Returns the current value of the reset global variables
behavior (the C equivalent of the CLIPS
get-reset-globals command).

Arguments: None.

90 Section 4 - Embedding CLIPS

JSC-25012

Returns: An integer; CLIPS_FALSE (0) if globals are not reset and
CLIPS_TRUE (1) if globals are reset.

4.8.12 IsDefglobalDeletable

i nt | sDef gl obal Del et abl e(def gl obal Ptr);
VA D *def gl obal Ptr;

Purpose: Indicates whether or not a particular defglobal can be
deleted.

Arguments: A generic pointer to a defglobal data structure.

Returns: An integer; zero (0) if the defglobal cannot be deleted,

otherwise a one (1).

4.8.13 ListDefglobals

VA D Li st Def gl obal s(1 ogi cal Nane, t heMbdul e) ;
char *I| ogi cal Nane;
VA D *t heModul e;

Purpose: Prints the list of defglobals (the C equivalent of the CLIPS
list-defglobals command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defglobals
to be listed. A NULL pointer indicates that defglobals in
all modules should be listed.

Returns: No meaningful return value.

4.8.14 SetDefglobalValue

i nt Set Def gl obal Val ue(gl obal Nane, &Ptr);
char *gl obal Nane;
DATA OBJECT vPtr;

Purpose: Sets the value of a defglobal.

Arguments: 1) The name of the global variable to be set (e.g. y for ?*y*).
2) A pointer to a DATA_OBJECT in which the new value is
contained (see sections 3.2.3 and 3.3.4 for details on this

data structure).

CLIPS Advanced Programming Guide 91

CLIPS Reference Manual (Beta Version—Not For Distribution)

Returns:

An integer; zero (0) if the defglobal was not found, otherwise
aone (1).

4.8.15 SetDefglobalWatch

VA D Set Def gl obal Wat ch(newSt at e, def gl obal Ptr);

i nt newst at e;

VA D *def gl obal Ptr;

Purpose:

Arguments:

Sets the globals watch item for a specific defglobal.

The new globals watch state and a generic pointer to a

defglobal data structure.

4.8.16 SetGlobalsChanged

VA D Set d obal sChanged(changedFl ag) ;

i nt changedFl ag;

Purpose:

Arguments:

Returns:

Sets the internal boolean flag which indicates when
changes to global variables have occurred. This function is
normally used to reset the flag to zero after
GetGlobalsChanged() returns non-zero.

An integer indicating whether changes in global variables
have occurred (non-zero) or not (0).

Nothing useful.

4.8.17 SetResetGlobals

i nt Set Reset A obal s(val ue) ;

i nt val ue;

Purpose:

Arguments:

Returns:

92

Sets the reset-globals behavior (the C equivalent of the
CLIPS set-reset-globals command). When this behavior
is enabled (by default) global variables are reset to their
original values when the reset command is performed.

The new value for the behavior: CLIPS_TRUE (1) to enable
the behavior and CLIPS_FALSE (0) to disable it.

Returns the old value for the behavior.

Section 4 - Embedding CLIPS

JSC-25012

4.8.18 ShowDefglobals
VA D ShowDef gl obal s(1 ogi cal Nane, t heMbdul e) ;
char *I| ogi cal Nane;
VA D *t heMobdul e;

Purpose: Prints the list of defglobals and their current values (the C
equivalent of the CLIPS show-defglobals command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defglobals
to be displayed. A NULL pointer indicates that defglobals
in all modules should be displayed.

Returns: No meaningful return value.

4.8.19 Undefglobal

i nt Undef gl obal (def gl obal Ptr);
VA D *def gl obal Ptr;

Purpose: Removes a defglobal from CLIPS (the C equivalent of the
CLIPS undefglobal command).

Arguments: A generic pointer to a defglobal data structure. If the NULL
pointer is used, then all defglobals will be deleted.

Returns: An integer; zero (0) if the defglobal could not be deleted,
otherwise a one (1).

4.9 DEFFUNCTION FUNCTIONS

The following function calls are used for manipulating deffunctions.

4.9.1 DeffunctionModule

char *Deffuncti onModul e(t heDef function);
VA D *t heDef functi on;

Purpose: Returns the module in which a deffunction is defined (the C
equivalent of the CLIPS deffunction-module command).

Arguments: A generic pointer to a deffunction.

CLIPS Advanced Programming Guide 93

CLIPS Reference Manual (Beta Version—Not For Distribution)

Returns: A string containing the name of the module in which the
deffunction is defined.

4.9.2 FindDeffunction

VA D *Fi ndDef f uncti on(def functi onNane) ;
char *deffuncti onNane;

Purpose: Returns a generic pointer to a named deffunction.
Arguments: The name of the deffunction to be found.
Returns: A generic pointer to the named deffunction if it exists,

otherwise NULL.

4.9.3 GetDeffunctionList

VA D Cet Def functi onLi st (& et ur nVal ue, t heMbdul e) ;
DATA OBJECT ret urnVal ue;
VA D *t heMbdul e;

Purpose: Returns the list of deffunctions in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-deffunction-list function).

Arguments: 1) A pointer to the caller's DATA _OBJECT in which the
return value will be stored. The multifield functions
described in section 3.2.4 can be used to retrieve the
deffunction names from the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

4.9.4 GetDeffunctionName

char *Cet Def f uncti onNane(def functionPtr);
VA D *def functionPtr;

Purpose: Returns the name of a deffunction.

Arguments: A generic pointer to a deffunction data structure.

94 Section 4 - Embedding CLIPS

JSC-25012

Returns: A string containing the name of the deffunction.

4.9.5 GetDeffunctionPPForm

char *Cet Def functi onPPFor n(def functionPtr);
VA D *def functionPtr;

Purpose: Returns the pretty print representation of a deffunction.
Arguments: A generic pointer to a deffunction data structure.
Returns: A string containing the pretty print representation of the

deffunction (or the NULL pointer if no pretty print
representation exists).

4.9.6 GetDeffunctionWatch

i nt Get Deffuncti onWat ch(deffunctionPtr);
VA D *def functionPtr;

Purpose: Indicates whether or not a particular deffunction is being
watched.

Arguments: A generic pointer to a deffunction data structure.

Returns: An integer; one (1) if the deffunction is being watched,

otherwise a zero (0).

4.9.7 GetNextDeffunction

VA D *Get Next Def functi on(deffunctionPtr);
VA D *def functionPtr;

Purpose: Provides access to the list of deffunctions.

Arguments: A generic pointer to a deffunction data structure (or NULL to
get the first deffunction).

Returns: A generic pointer to the first deffunction in the list of
deffunctions if deffunctionPtr is NULL, otherwise a generic
pointer to the deffunction immediately following
deffunctionPtr in the list of deffunctions. If deffunctionPtr is

CLIPS Advanced Programming Guide 95

CLIPS Reference Manual (Beta Version—Not For Distribution)

the last deffunction in the list of deffunctions, then NULL is
returned.

4.9.8 IsDeffunctionDeletable

i nt | sDef functi onDel et abl e(def functionPtr);
VA D *def functionPtr;
Purpose: Indicates whether or not a particular deffunction can be
deleted.
Arguments: A generic pointer to a deffunction data structure.
Returns: An integer; zero (0) if the deffunction cannot be deleted,

otherwise a one (1).

4.9.9 ListDeffunctions
VA D Li st Def functi ons(| ogi cal Nane, t heMbdul e) ;
char *I| ogi cal Nane;
VA D *t heModul e;

Purpose: Prints the list of deffunction (the C equivalent of the CLIPS
list-deffunctions command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the
deffunctions to be listed. A NULL pointer indicates that
deffunctions in all modules should be listed.

Returns: No meaningful return value.

4.9.10 SetDeffunctionWatch
VA D Set Def f unct i onWat ch(newSt at e, def functi onPtr);
i nt newst at e;
VA D *def functi onPtr;

Purpose: Sets the deffunctions watch item for a specific deffunction.

Arguments: The new deffunctions watch state and a generic pointer to a
deffunction data structure.

96 Section 4 - Embedding CLIPS

JSC-25012

4.9.11 Undeffunction

i nt Undef functi on(def functionPtr);
VA D *def functionPtr;

Purpose: Removes a deffunction from CLIPS (the C equivalent of the
CLIPS undeffunction command).

Arguments: A generic pointer to the deffunction (NULL means to delete
all deffunctions).

Returns: An integer; zero (0) if the deffunction could not be deleted,
otherwise a one (1).

4.10 DEFGENERIC FUNCTIONS

The following function calls are used for manipulating generic functions.

4.10.1 DefgenericModule

char *Def generi cModul e(t heDef generic);
VA D *t heDef generi c;

Purpose: Returns the module in which a defgeneric is defined (the C
equivalent of the CLIPS defgeneric-module command).

Arguments: A generic pointer to a defgeneric.

Returns: A string containing the name of the module in which the
defgeneric is defined.

4.10.2 FindDefgeneric

VA D *Fi ndDef generi c(def generi cNane) ;
char *def generi cNane;

Purpose: Returns a generic pointer to a named generic function.
Arguments: The name of the generic to be found.
Returns: A generic pointer to the named generic function if it exists,

otherwise NULL.

CLIPS Advanced Programming Guide 97

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.10.3 GetDefgenericList

VA D Get Def generi cLi st (& et urnVal ue, t heModul e) ;
DATA OBJECT returnVal ue;
VA D *t heMbdul e;

Purpose: Returns the list of defgenerics in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-defgeneric-list function).

Arguments: 1) A pointer to the caller's DATA_OBJECT in which the
return value will be stored. The multifield functions
described in section 3.2.4 can be used to retrieve the
defgeneric names from the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

4.10.4 GetDefgenericName

char *Cet Def generi cNane(def genericPtr);
VA D *def genericPtr;

Purpose: Returns the name of a generic function.
Arguments: A generic pointer to a defgeneric data structure.
Returns: A string containing the name of the generic function.

4.10.5 GetDefgenericPPForm

char *Cet Def generi cPPFor n{ def genericPtr);
VA D *def genericPtr;

Purpose: Returns the pretty print representation of a generic function.
Arguments: A generic pointer to a defgeneric data structure.
Returns: A string containing the pretty print representation of the

generic function (or the NULL pointer if no pretty print
representation exists).

98 Section 4 - Embedding CLIPS

JSC-25012

4.10.6 GetDefgenericWatch

i nt Get Def generi cWat ch(def generichkPtr);
VA D *def genericPtr;

Purpose: Indicates whether or not a particular defgeneric is being
watched.

Arguments: A generic pointer to a defgeneric data structure.

Returns: An integer; one (1) if the defgeneric is being watched,

otherwise a zero (0).

4.10.7 GetNextDefgeneric

VA D *CGet Next Def generi c(def generichkPtr);
VA D *def genericPtr;

Purpose: Provides access to the list of generic functions.

Arguments: A generic pointer to a defgeneric data structure (or NULL to
get the first generic function).

Returns: A generic pointer to the first generic function in the list of
generic functions if defgenericPtr is NULL, otherwise a
generic pointer to the generic function immediately following
defgenericPtr in the list of generic functions. If defgenericPtr
is the last generic function in the list of generic functions,
then NULL is returned.

4.10.8 IsDefgenericDeletable

i nt | sDef generi cDel et abl e(def generi cPtr);
VA D *def genericPtr;

Purpose: Indicates whether or not a particular generic function and all
its methods can be deleted.

Arguments: A generic pointer to a defgeneric data structure.

Returns: An integer: zero (0) if the generic function and all its methods
cannot be deleted, otherwise a one (1).

CLIPS Advanced Programming Guide 99

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.10.9 ListDefgenerics
VA D Li st Def generi cs(| ogi cal Nane, t heModul e) ;
char *I| ogi cal Nane;
VA D *t heMobdul e;

Purpose: Prints the list of defgenerics (the C equivalent of the CLIPS
list-defgenerics command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the
defgenerics to be listed. A NULL pointer indicates that
defgenerics in all modules should be listed.

Returns: No meaningful return value.

4.10.10 SetDefgenericWatch

VA D Set Def generi cWat ch(newSt at e, def generi cPtr);
i nt newsSt at e;
VA D *def genericPtr;

Purpose: Sets the defgenerics watch item for a specific defgeneric.

Arguments: The new generic-functions watch state and a generic pointer
to a defgeneric data structure.

4.10.11 Undefgeneric

i nt Undef generi c(def genericPtr);
VA D *def generi cPtr;

Purpose: Removes a generic function and all its methods from CLIPS
(the C equivalent of the CLIPS undefgeneric command).

Arguments: A generic pointer to the generic function (NULL means to
delete all generic functions).

Returns: An integer: zero (0) if the generic function and all its methods
could not be deleted, otherwise a one (1).

4.11 DEFMETHOD FUNCTIONS

The following function calls are used for manipulating generic function methods.

100 Section 4 - Embedding CLIPS

JSC-25012

4.11.1 GetDefmethodDescription

VA D Get Def net hodDescri pti on(buffer, bufferLength,

char *buf;
i nt buf Lengt h;

def generi cPt r, nmet hodl ndex) ;

VA D *def genericPtr;
unsi gned net hodl ndex;

Purpose:

Arguments:

Returns:

Stores a synopsis of the method parameter restrictions in the
caller's buffer.

1) A pointer to the caller's buffer.

2) The maximum number of characters which could be
stored in the caller's buffer (not including space for the
terminating null character).

3) A generic pointer to a defgeneric data structure.

4) The index of the generic function method.

No meaningful return value.

4.11.2 GetDefmethodList

VA D Get Def net hodLi st (def generi cPtr, & et urnVal ue);
VA D *def genericPtr;
DATA CBJECT returnVal ue;

Purpose:

Arguments:

Returns:

Returns the list of currently defined defmethods for the
specified defgeneric. This function is the C equivalent of the
CLIPS get-defmethod-list command).

1) A generic pointer to the defgeneric (NULL for all
defgenerics).

2) A pointer to the DATA_OBJECT in which the list of
defmethod constructs is to be stored.

A multifield value containing the list of defmethods constructs
for the specified defgeneric. The multifield functions
described in section 3.2.4 can be used to retrieve the
defmethod names and indices from the list. Note that the
name and index for each defmethod are stored as pairs in
the return multifield value.

CLIPS Advanced Programming Guide 101

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.11.3 GetDefmethodPPForm

char *Get Def net hodPPFor n(def generi cPtr, net hodl ndex) ;
VA D *def genericPtr;
unsi gned net hodl ndex;

Purpose: Returns the pretty print representation of a generic function
method.
Arguments: 1) A generic pointer to a defgeneric data structure.

2) The index of the generic function method.

Returns: A string containing the pretty print representation of the
generic function method (or the NULL pointer if no pretty
print representation exists).

4.11.4 GetDefmethodWatch

i nt Get Def net hodWat ch(def generi cPtr, nmet hodl ndex) ;
VA D *def genericPtr;
unsi gned net hodl ndex

Purpose: Indicates whether or not a particular defmethod is being
watched.
Arguments: A generic pointer to a defgeneric data structure and the

index of the generic function method.

Returns: An integer; one (1) if the defmethod is being watched,
otherwise a zero (0).

4.11.5 GetMethodRestrictions

VO D CGet Met hodRestri ctions(defgeneri cPtr, met hodl ndex,
& et urnVal ue);

VA D *def generi cPtr;

unsi gned met hodl ndex;

DATA OBJECT returnVal ue;

Purpose: Returns the restrictions for the specified method. This
function is the C equivalent of the CLIPS get-method-
restrictions function.

Arguments: 1) A generic pointer to the defgeneric (NULL for all
defgenerics).

102 Section 4 - Embedding CLIPS

JSC-25012

2) The index of the generic function method.
3) A pointer to the DATA_OBJECT in which the method
restrictions are stored.

Returns: A multifield value containing the restrictions for the specified
method (the description of the get-method-restrictions
function in the Basic Programming Guide explains the
meaning of the fields in the multifield value). The multifield
functions described in section 3.2.4 can be used to retrieve
the method restrictions from the list.

4.11.6 GetNextDefmethod

unsi gned Cet Next Def net hod(def generi cPtr, nmet hodl ndex) ;
VA D *def genericPtr;
unsi gned net hodl ndex;

Purpose: Provides access to the list of methods for a particular generic
function.
Arguments: 1) A generic pointer to a defgeneric data structure.

2) The index of a generic function method (O to get the first
method of the generic function).

Returns: The index of the first method in the list of methods for the
generic function if methodindex is 0, otherwise the index of
the method immediately following methodindex in the list of
methods for the generic function. If methodIindex is the last
method in the list of methods for the generic function, then 0
IS returned.

4.11.7 IsDefmethodDeletable

i nt | sDef met hodDel et abl e(def generi cPtr, net hodl ndex) ;
VA D *def genericPtr;
unsi gned net hodl ndex;

Purpose: Indicates whether or not a particular generic function method
can be deleted.

Arguments: 1) A generic pointer to a defgeneric data structure.
2) The index of the generic function method.

CLIPS Advanced Programming Guide 103

CLIPS Reference Manual (Beta Version—Not For Distribution)

Returns: An integer: zero (0) if the method cannot be deleted,
otherwise a one (1).

4.11.8 ListDefmethods

VA D Li st Def et hods(| ogi cal Nane, def genericPtr);
char *I| ogi cal Nane;
VA D *def genericPtr;

Purpose: Prints the list of methods for a particular generic function (the
C equivalent of the CLIPS list-defmethods command).

Arguments: 1) The logical name of the output destination to which tosend
the method listing
2) A generic pointer to the generic function (NULL to list
methods for all generic functions).

Returns: No meaningful return value.

4.11.9 SetDefmethodWatch

VA D Set Def net hodWat ch(newSt at e, def generi cPt r, net hodl ndex) ;
i nt newsSt at e;

VA D *def genericPtr;

unsi gned net hodl ndex

Purpose: Sets the methods watch item for a specific defmethod.

Arguments: The new methods watch state, a generic pointer to a
defgeneric data structure, and the index of the generic
function method.

4.11.10 Undefmethod
i nt Undef net hod(def generi cPtr, nmet hodl ndex) ;
VA D *def genericPtr;
unsi gned net hodl ndex;

Purpose: Removes a generic function method from CLIPS (the C
equivalent of the CLIPS undefmethod command).

Arguments: 1) A generic pointer to a defgeneric data structure (NULL to
delete all methods for all generic functions).

104 Section 4 - Embedding CLIPS

JSC-25012

2) The index of the generic function method (0 to delete all
methods of the generic function - must be 0 Iif
defgenericPtr is NULL).

Returns: An integer: zero (0) if the method could not be deleted,
otherwise a one (1).

4.12 DEFCLASS FUNCTIONS

The following function calls are used for manipulating defclasses.

4.12.1 BrowseClasses

VA D Browsed asses(| ogi cal Nane, def cl assPtr);
char *I| ogi cal Nane;
VO D *def cl assPtr;

Purpose: Prints a “graph” of all classes which inherit from the specified
class. This function is the C equivalent of the CLIPS
browse-classes command.

Arguments: 1) The logical name of the output destination to which to
send the browse display.
2) A generic pointer to the class which is to be browsed.

Returns: No meaningful return value.

4.12.2 ClassAbstractP

int CassAbstract P(defclasshtr);
VO D *def cl assPtr;

Purpose: Determines if a class is concrete or abstract, i.e. if a class
can have direct instances or not. This function is the C
equivalent of the CLIPS class-abstractp command.

Arguments: A generic pointer to the class.
Returns: The integer 1 if the class is abstract, or O if the class is
concrete.

CLIPS Advanced Programming Guide 105

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.12.3 ClassReactiveP

int CdassReactiveP(defclassPtr);
VO D *def cl assPtr;

Purpose: Determines if a class is reactive or non-reactive, i.e. if objects
of the class can match object patterns. This function is the C
equivalent of the CLIPS class-reactivep command.

Arguments: A generic pointer to the class.

Returns: The integer 1 if the class is reactive, or O if the class is
non-reactive.

4.12.4 ClassSlots

VO D d assSl ot s(defcl assPtr, & esult,inheritFlag);
VA D *def cl assPtr;

DATA OBJECT result;

int inheritFl ag;

Purpose: Groups the names of slots of a class into a multifield data
object. This function is the C equivalent of the CLIPS class-
slots command.

Arguments: 1) A generic pointer to the class.
2) Pointer to the data object in which to store the multifield.
3) The integer 1 to include inherited slots or 0 to only include
explicitly defined slots.

Returns: No meaningful return value.

4.12.5 ClassSubclasses

VA D d assSubcl asses(defcl assPtr, & esult,inheritFl ag);
VO D *def cl assPtr;

DATA OBJECT result;

int inheritFl ag;

Purpose: Groups the names of subclasses of a class into a multifield
data object. This function is the C equivalent of the CLIPS
class-subclasses command.

Arguments: 1) A generic pointer to the class.
2) Pointer to the data object in which to store the multifield.

106 Section 4 - Embedding CLIPS

JSC-25012

3) The integer 1 to include inherited subclasses or 0 to only
include direct subclasses.

Returns: No meaningful return value.

4.12.6 ClassSuperclasses

VA D d assSupercl asses(defcl assPtr, & esult,inheritFlag);
VO D *def cl assPtr;

DATA OBJECT result;

int inheritFl ag;

Purpose: Groups the names of superclasses of a class into a
multifield data object. This function is the C equivalent of the
CLIPS class-superclasses command.

Arguments: 1) A generic pointer to the class.
2) Pointer to the data object in which to store the multifield.
3) The integer 1 to include inherited superclasses or 0 to
only include direct superclasses.

Returns: No meaningful return value.

4.12.7 DefclassModule

char *Def cl assModul e(t heDef cl ass);
VA D *t heDef cl ass;

Purpose: Returns the module in which a defclass is defined (the C
equivalent of the CLIPS defclass-module command).

Arguments: A generic pointer to a defclass.

Returns: A string containing the name of the module in which the
defclass is defined.

4.12.8 DescribeClass
VA D Descri bed ass(| ogi cal Nane, def cl assPtr);
char *1| ogi cal Nane;
VA D *def cl assPtr;

Purpose: Prints a summary of the specified class including:
abstract/concrete behavior, slots and facets (direct and

CLIPS Advanced Programming Guide 107

CLIPS Reference Manual (Beta Version—Not For Distribution)

inherited) and recognized message-handlers (direct and
inherited). This function is the C equivalent of the CLIPS
describe-class command.

Arguments: 1) The logical name of the output destination to which to
send the description.
2) A generic pointer to the class which is to be described.

Returns: No meaningful return value.

4.12.9 FindDefclass

VA D *Fi ndDef cl ass(def cl assNane) ;
char *def cl assNane;

Purpose: Returns a generic pointer to a named class.

Arguments: The name of the class to be found.

Returns: A generic pointer to the named class if it exists, otherwise
NULL.

4.12.10 GetDefclassList

VO D Get Def cl assLi st (& et urnVal ue, t heMbdul e) ;
DATA OBJECT returnVal ue;
VA D *t heMbdul e;

Purpose: Returns the list of defclasses in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-defclass-list function).

Arguments: 1) A pointer to the caller's DATA_OBJECT in which the
return value will be stored. The multifield functions
described in section 3.2.4 can be used to retrieve the
defclass names from the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

108 Section 4 - Embedding CLIPS

JSC-25012

4.12.11 GetDefclassName

char *Get Def cl assNane(defcl assPtr);
VO D *def cl assPtr;

Purpose: Returns the name of a class.
Arguments: A generic pointer to a defclass data structure.
Returns: A string containing the name of the class.

4.12.12 GetDefclassPPForm

char *Get Def cl assPPFor n{ def cl assPtr);
VO D *def cl assPtr;

Purpose: Returns the pretty print representation of a class.
Arguments: A generic pointer to a defclass data structure.
Returns: A string containing the pretty print representation of the class

(or the NULL pointer if no pretty print representation exists).

4.12.13 GetDefclassWatchlnstances

i nt Cet Def cl assWat chl nst ances(def cl assPtr);
VA D *def cl assPtr;

Purpose: Indicates whether or not a particular defclass is being
watched for instance creation and deletions.

Arguments: A generic pointer to a defclass data structure.

Returns: An integer; one (1) if the defclass is being watched,
otherwise a zero (0).

4.12.14 GetDefclassWatchSlots

i nt CGet Def cl assWat chSl ot s(def cl assPtr);
VA D *def cl assPtr;

Purpose: Indicates whether or not a particular defclass is being
watched for slot changes.

CLIPS Advanced Programming Guide 109

CLIPS Reference Manual (Beta Version—Not For Distribution)

Arguments:

Returns:

A generic pointer to a defclass data structure.

An integer; one (1) if the defclass is being watched for slot
changes, otherwise a zero (0).

4.12.15 GetNextDefclass

VA D *CGet Next Def cl ass(defcl assPtr);
VO D *def cl assPtr;

Purpose:

Arguments:

Returns:

Provides access to the list of classes.

A generic pointer to a defclass data structure (or NULL to get
the first class).

A generic pointer to the first class in the list of classes if
defclassPtr is NULL, otherwise a generic pointer to the class
immediately following defclassPtr in the list of classes. If
defclassPtr is the last class in the list of classes, then NULL
is returned.

4.12.16 IsDefclassDeletable

i nt | sDef cl assDel et abl e(def cl assPtr);
VA D *def cl assPtr;

Purpose:

Arguments:

Returns:

Indicates whether or not a particular class and all its
subclasses can be deleted.

A generic pointer to a defclass data structure.

An integer; zero (0) if the class cannot be deleted, otherwise
aone (1).

4.12.17 ListDefclasses

VA D Li st Def cl asses(| ogi cal Nane, t heMbdul e) ;
char *1 ogi cal Nane;

VA D *t heModul e;

Purpose:

Arguments:

110

Prints the list of defclasses (the C equivalent of the CLIPS
list-defclasses command).

1) The logical name to which the listing output is sent.

Section 4 - Embedding CLIPS

JSC-25012

2) A generic pointer to the module containing the defclasses
to be listed. A NULL pointer indicates that defclasses in
all modules should be listed.

Returns: No meaningful return value.

4.12.18 SetDefclassWatchlinstances
VA D Set Def cl assWat chl nst ances(newSt at e, def cl assPtr);
i nt newst at e;
VA D *defcl assPtr;

Purpose: Sets the instances watch item for a specific defclass.

Arguments: The new instances watch state and a generic pointer to a
defclass data structure.

4.12.19 SetDefclassWatchSlots

VA D Set Def cl assWat chSl ot s(newSt at e, def cl assPtr);
i nt newst at e;
VA D *defcl assPtr;

Purpose: Sets the slots watch item for a specific defclass.

Arguments: The new slots watch state and a generic pointer to a defclass
data structure.

4.12.20 SlotAllowedValues

VO D Sl ot Al | onedVal ues(def cl assPtr, sl ot Nane, & esul t);
VA D *def cl assPtr;

char *sl| ot Nane;

DATA OBJECT result;

Purpose: Groups the allowed-values for a slot into a multifield data
object. This function is the C equivalent of the CLIPS
slot-allowed-values function.

Arguments: 1) A generic pointer to the class.
2) Name of the slot.

3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

CLIPS Advanced Programming Guide 111

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.12.21 SlotCardinality

VO D Sl ot Cardi nality(defclassPtr, sl ot Nane, result);
VO D *def cl assPtr;

char *sl ot Nane;

DATA CBJECT *result;

Purpose: Groups the cardinality information for a slot into a multifield
data object. This function is the C equivalent of the CLIPS
slot-cardinality function.

Arguments: 1) A generic pointer to the class.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.12.22 SlotDirectAccessP
int SlotDrectAccessP(defclassPtr, sl ot Nane) ;
VA D *defcl assPtr,
char *sl ot Nane;

Purpose: Determines if the specified slot is directly accessible.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: 1 if the slot is directly accessible, otherwise 0.

4.12.23 SlotExistP

int Sl otExistP(defclassPtr, sl ot Nane, i nheritFl ag);
VA D *defcl assPtr,

char *sl ot Nane;

int inheritFl ag;

Purpose: Determines if the specified slot exists.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: If inheritFlag is O and the slot is directly defined in
the specified class, then 1 is returned, otherwise 0 is
returned. If inheritFlag is 1 and the slot is defined either in

112 Section 4 - Embedding CLIPS

JSC-25012

the specified class or an inherited class, then 1 is returned,
otherwise 0 is returned.

4.12.24 SlotFacets
VA D Sl ot Facet s(defcl assPtr, sl ot Nane, resul t);
VA D *defcl assPtr;
char *sl ot Nane;
DATA CBJECT *result;

Purpose: Groups the facet values of a class slot into a multifield data
object. This function is the C equivalent of the CLIPS slot-
facets command. See section 10.8.1.11 in the Basic
Programming Guide for more detail.

Arguments: 1) A generic pointer to the class.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.12.25 SlotlnitableP
int Slotlnitabl eP(defclassPtr, sl ot Nane);
VA D *def cl assPtr,
char *sl ot Nane;

Purpose: Determines if the specified slot is initable.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: 1 if the slot is initable, otherwise 0.

4.12.26 SlotPublicP
i nt Sl ot PublicP(defclassPtr, sl otNane);
VA D *defcl assPtr,
char *sl ot Nane;

Purpose: Determines if the specified slot is public.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

CLIPS Advanced Programming Guide 113

CLIPS Reference Manual (Beta Version—Not For Distribution)

Returns: An integer: 1 if the slot is public, otherwise O.

4.12.27 SlotRange

VA D Sl ot Range(def cl assPtr, sl ot Nane, resul t);
VO D *def cl assPtr;

char *sl ot Nane;

DATA CBJECT *result;

Purpose: Groups the numeric range information for a slot into a
multifield data object. This function is the C equivalent of the
CLIPS slot-range function.

Arguments: 1) A generic pointer to the class.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.12.28 SlotSources

VA D Sl ot Sour ces(defcl assPtr, sl ot Nane, resul t);
VO D *def cl assPtr;

char *sl ot Nane,

DATA CBJECT *result;

Purpose: Groups the names of the class sources of a slot into a
multifield data object. This function is the C equivalent of the
CLIPS slot-sources command. See section 10.8.1.12 in
the Basic Programming Guide for more detail.

Arguments: 1) A generic pointer to the class.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.12.29 SlotTypes

VO D Sl ot Types(defcl assPtr, sl ot Nane, resul t);
VA D *def cl assPtr;

char *sl| ot Nane;

DATA OBJECT *resul t;

114 Section 4 - Embedding CLIPS

JSC-25012

Purpose: Groups the names of the primitive data types allowed for a
slot into a multifield data object. This function is the C
equivalent of the CLIPS slot-types function.

Arguments: 1) A generic pointer to the class.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.12.30 SlotWritableP
int SlotWitabl eP(defclassPtr, sl ot Nane);
VA D *def cl assPtr,
char *sl ot Nane;

Purpose: Determines if the specified slot is writable.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: 1 if the slot is writable, otherwise O.

4.12.31 SubclassP

i nt Subcl assP(defcl assPtr1, defcl assPtr2);
VA D *defclassPtrl, *defclassPtr2;

Purpose: Determines if a class is a subclass of another class.

Arguments: 1) A generic pointer to a defclass data structure.
2) A generic pointer to a defclass data structure.

Returns: An integer: 1 if the first class is a subclass of the second
class.

4.12.32 SuperclassP

i nt Supercl assP(defcl assPtrl, defcl assPtr2);
VO D *defclassPtr1, *defclassPtr2,;

Purpose: Determines if a class is a superclass of another class.

Arguments: 1) A generic pointer to a defclass data structure.

CLIPS Advanced Programming Guide 115

CLIPS Reference Manual (Beta Version—Not For Distribution)

2) A generic pointer to a defclass data structure.

Returns: An integer: 1 if the first class is a superclass of the second
class.

4.12.33 Undefclass

i nt Undef cl ass(def cl assPtr);
VO D *def cl assPtr;

Purpose: Removes a class and all its subclasses from CLIPS (the C
equivalent of the CLIPS undefclass command).

Arguments: A generic pointer to a defclass data structure.

Returns: An integer; zero (0) if the class could not be deleted,
otherwise a one (1).
4.13 INSTANCE FUNCTIONS

The following function calls are used for manipulating instances.

4.13.1 BinaryLoadlInstances

| ong Bi narylLoadl nstances(fil eNane);
char *fil eNane,

Purpose: Loads a set of instances from a binary file into the CLIPS
data base (the C equivalent of the CLIPS bload-instances
command).

Arguments: A string representing the name of the binary file.

Returns: Returns the number of instances restored or -1 if the file

could not be accessed.

4.13.2 BinarySavelnstances
| ong Bi narySavel nstances(fil eNanme, saveCode, NULL, CLI PS_TRUE) ;

char *fil eNane;
i nt saveCode;

116 Section 4 - Embedding CLIPS

JSC-25012

Purpose: Saves the instances in the system to the specified binary file
(the C equivalent of the CLIPS bsave-instances
command).

Arguments: 1) A string representing the name of the binary file.

2) An integer flag indicating whether to save local (current
module only) or visible instances. Use either the constant
LOCAL_SAVE or VISIBLE_SAVE.

3) Should always be NULL.

4) Should always be CLIPS_TRUE.

Returns: Returns the number of instances saved.

4.13.3 CreateRawlnstance

VA D *COr eat eRaw nst ance(def cl assPtr, i nst anceNane) ;
VA D *defcl assPtr;
char *instanceNane;

Purpose: Creates an empty instance with the specified name of the
specified class. No slot overrides or class default
initializations are performed for the instance.

Arguments: 1) A generic pointer to the class of the new instance.
2) The name of the new instance.

Returns: A generic pointer to the new instance, NULL on errors.

WARNING: This function bypasses message-passing.

4.13.4 DecrementlinstanceCount

VA D Decrenent | nst anceCount (i nst ancePtr);
VA D *instancePtr;

Purpose: This function should only be called to reverse the effects of a
previous call to IncrementinstanceCount(). As long as an
instance's count is greater than zero, the memory allocated
to it cannot be released for other use.

Arguments: A generic pointer to the instance.

Returns: No meaningful return value.

CLIPS Advanced Programming Guide 117

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.13.5 Deletelnstance

i nt Del etelnstance(instancePtr);
VA D *i nstancePtr;

Purpose:

Arguments:

Returns:

WARNING:

4.13.6 DirectGetSlot

Deletes the specified instance(s).

A generic pointer to the instance to be deleted. If the pointer
is NULL, all instances in the system are deleted.

Non-zero if successful, 0 otherwise.

This function bypasses message-passing.

VO D DirectCGet Sl ot (i nstancePtr, sl ot Name, resul t);
VA D *instancePtr;

char *sl ot Nane;

DATA OBJECT *resul t;

Purpose:

Arguments:

Returns:

WARNING:

4.13.7 DirectPutSlot

Stores the value of the specified slot of the specified
instance in the caller's buffer (the C equivalent of the CLIPS
dynamic-get function).

1) A generic pointer to the instance.
2) The name of the slot.
3) The caller's buffer for the slot value.

No meaningful return value.

This function bypasses message-passing.

int DirectPutSlot(instancePtr, sl ot Name, newval ue) ;
VA D *instancePtr;

char *sl ot Nane;

DATA OBJECT *newval ue;

Purpose:

Arguments:

118

Stores a value in the specified slot of the specified instance
(the C equivalent of the CLIPS dynamic-put function).

1) A generic pointer to the instance.
2) The name of the slot.

Section 4 - Embedding CLIPS

JSC-25012

3) The caller's buffer containing the new value (an error is
generated if this value is NULL).

Returns: Returns an integer; if zero, an error occurred while setting
the slot. If non-zero, no errors occurred.

WARNING: This function bypasses message-passing.

4.13.8 FindInstance

VA D *Fi ndl nst ance(t heMbdul e, i nst anceNane, sear chl nports) ;
VA D *t heModul e;

char *instanceNane;

int searchlnports;

Purpose: Returns the address of the specified instance.

Arguments: 1) A generic pointer to the module to be searched (NULL to
search the current module).
2) The name of the instance (should not include a module
specifier).
3) A boolean flag indicating whether imported modules
should also be searched: TRUE to search imported
modules, otherwise FALSE.

Returns: A generic pointer to the instance, NULL if the instance does
not exist.

4.13.9 GetlnstanceClass

VA D *Cet |l nstanced ass(i nstancePtr);
VA D *i nstancePtr;

Purpose: Determines the class of an instance.
Arguments: A generic pointer to an instance.
Returns: A generic pointer to the class of the instance.

4.13.10 GetlnstanceName

char *Cet | nstanceNane(i nstancePtr);
VA D *i nstancePtr;

CLIPS Advanced Programming Guide 119

CLIPS Reference Manual (Beta Version—Not For Distribution)

Purpose:
Arguments:

Returns:

Determines the name of an instance.
A generic pointer to an instance.

The name of the instance.

4.13.11 GetlnstancePPForm

VA D Cet | nst ancePPFor n(buf f er, buf f er Lengt h, i nstancePtr);

char *buffer;

i nt buf f er Lengt h;
VA D *i nstancePtr;

Purpose:

Arguments:

Returns:

Returns the pretty print representation of an instance in the
caller's buffer.

1) A pointer to the caller's character buffer.

2) The maximum number of characters which could be
stored in the caller's buffer (not including space for the
terminating null character).

3) A generic pointer to an instance.

No meaningful return value. The instance pretty print form is
stored in the caller's buffer.

4.13.12 GetinstancesChanged

int CGetlnstancesChanged();

Purpose:

Arguments:

Returns:

120

Determines if any changes to instances of user-defined
instances have occurred, e.g. instance creations/deletions or
slot value changes. If this function returns a non-zero integer,
it is the user's responsibility to call SetinstancesChanged(0)
to reset the internal flag. Otherwise, this function will
continue to return non-zero even when no changes have
occurred. This function is primarily used to determine when
to update a display tracking instances.

None.

0 if no changes to instances of user-defined classes have
occurred, non-zero otherwise.

Section 4 - Embedding CLIPS

JSC-25012

4.13.13 GetNextlnstance

VA D *CGet Next | nstance(i nstancePtr);
VA D *i nstancePtr;

Purpose:

Arguments:

Returns:

Provides access to the list of instances.

A generic pointer to an instance (or NULL to get the first
instance in the list).

A generic pointer to the first instance in the list of instances if
instancePtr is NULL, otherwise a pointer to the instance
immediately following instancePtr in the list. If instancePtr is
the last instance in the list, then NULL is returned.

4.13.14 GetNextlnstancelnClass

VA D *CGet Next | nst ancel nd ass(defcl assPtr,instancePtr);
VO D *def cl assPtr, *i nstancePtr;

Purpose:

Arguments:

Returns:

Provides access to the list of instances for a particular class.

1) A generic pointer to a class.
2) A generic pointer to an instance (or NULL to get the first
instance in the specified class).

A generic pointer to the first instance in the list of instances
for the specified class if instancePtr is NULL, otherwise a
pointer to the instance immediately following instancePtr in
the list. If instancePtr is the last instance in the class, then
NULL is returned.

4.13.15 IncrementinstanceCount

VA D I ncrenent | nst anceCount (i nstancePtr);
VA D *instancePtr;

Purpose:

This function should be called for each external copy of an
instance address to let CLIPS know that such an outstanding
external reference exists. As long as an instance's count is
greater than zero, CLIPS will not release its memory
because there may be outstanding pointers to the instance.
However, the instance can still be functionally deleted, i.e.
the instance will appear to no longer be in the system. The

CLIPS Advanced Programming Guide 121

CLIPS Reference Manual (Beta Version—Not For Distribution)

instance address always can be safely passed to instance
access functions as long as the count for the instance is
greater than zero. These functions will recognize when an
instance has been functionally deleted.

Arguments: A generic pointer to the instance.

Returns: No meaningful return value.

VA D | nst anceRef er enceExanpl e
VA D *nyl nst ancePtr;
nyl nstancePtr = Fi ndl nstance(NULL, "ny-i nstance", CLI PS_TRUE) ;

/ * :::*/
/* Instance ny-instance could be potentially */
/* deleted during the run. */
/ * :::*/
Run(-1L);

/ * :::*/
/[* This next function call could dereference */
/* a dangling pointer and cause a crash. */
/ * :::*/

VA D | nst anceRef er enceExanpl e
VA D *nyl nst ancePtr;
nyl nstancePtr = Fi ndl nstance(NULL, "ny-instance", CLI PS_TRUE) ;
[P ———————

/* The instance is correctly marked so that a dangling */
/* pointer cannot be created during the run. */

122 Section 4 - Embedding CLIPS

JSC-25012

I ncrermrent | nst anceCount (nyl nst ancePtr);
Run(-1L);
Decr enent | nst anceCount (nmyl nst ancePtr) ;

/ * :::*/
/* The instance can now be safely del eted using the pointer. */
/ * :::*/

Del et el nst ance(nyl nst ancePtr);

4.13.16 Instances

VA D I nst ances(| ogi cal Nane, nodul ePt r, cl assNane, subcl assFl ag) ;
char *1 ogi cal Nane;

VA D *def nodul ePtr;

char *cl assNane;

i nt subcl assFl ag;

Purpose: Prints the list of all direct instances of a specified class
currently in the system (the C equivalent of the CLIPS
instances command).

Arguments: 1) The logical name to which output is sent.

2) A generic pointer to a defmodule data structure (NULL
indicates to list all instances of all classes in all
modules—the third and fourth arguments are ignored).

3) The name of the class for which to list instances (NULL
indicates to list all instances of all classes in the specified
module—the fourth argument is ignored).

4) A flag indicating whether or not to list recursively direct
instances of subclasses of the named class in the
specified module. 0 indicates no, and any other value
indicates yes.

Returns: No meaningful return value.

4.13.17 LoadIlnstances

| ong Loadl nstances(fil eNane);
char *fil eName;

Purpose: Loads a set of instances into the CLIPS data base (the C
equivalent of the CLIPS load-instances command).

Arguments: A string representing the name of the file.

CLIPS Advanced Programming Guide 123

CLIPS Reference Manual (Beta Version—Not For Distribution)

Returns: Returns the number of instances loaded or -1 if the file could
not be accessed.

4.13.18 Makelnstance

VA D *Makel nst ance(makeComrand) ;
char *makeConmmand;

Purpose: Creates and initializes an instance of a user-defined class
(the C equivalent of the CLIPS make-instance function).

Arguments: A string containing a make-instance command in the
format below:

(<instance-name> of <class-name> <slot-override>*)
<slot-override> :== (<slot-name> <constant>*)

Returns: A generic pointer to the new instance, NULL on errors.

Example

Makel nst ance(" (henry of boy (age 8))");:

4.13.19 Restorelnstances

| ong Restorel nstances(fil eNane);
char *fil eNane;

Purpose: Loads a set of instances into the CLIPS data base (the C
equivalent of the CLIPS restore-instances command).

Arguments: A string representing the name of the file.

Returns: Returns the number of instances restored or -1 if the file
could not be accessed.

4.13.20 Savelnstances
| ong Savel nstances(fil eNane, saveCode, NULL, CLI PS_TRUE) ;

char *fil eNane;
i nt saveCode;

124 Section 4 - Embedding CLIPS

Purpose:

Arguments:

Returns:

4.13.21 Send

JSC-25012

Saves the instances in the system to the specified file (the C
equivalent of the CLIPS save-instances command).

1) A string representing the name of the file.

2) An integer flag indicating whether to save local (current
module only) or visible instances. Use either the constant
LOCAL_SAVE or VISIBLE_SAVE.

3) Should always be NULL.

4) Should always be CLIPS_TRUE.

Returns the number of instances saved.

VA D Send(i nstanceBuffer, nsg, nsgArgs, result);
DATA OBJECT *instanceBuffer, *result;
char *nsg, *nsgAr gs;

Purpose:

Arguments:

Returns:

Example

Message-passing from C Sends a message with the
specified arguments to the specified object and stores the
result in the caller's buffer (the C equivalent of the CLIPS
send function).

1) A data value holding the object (instance, symbol, float,
etc.) which will receive the message.

2) The message.

3) A string containing any constant arguments separated by
blanks (this argument can be NULL).

4) Caller's buffer for storing the result of the message.

No meaningful return value.

VO D SendMessageExanpl e()

DATA OBJECT insdata, rtn;
VA D *nyl nstancePtr;

nyl nst ancePt r

= Makel nstance(" (ny-i nstance of M-CLASS");

Set Type(i nsdat a, | NSTANCE _ADDRESS) ;
Set Val ue(i nsdat a, nyl nst ancePtr);
Send(& nsdat a, "ny-nsg","1 abc 3", &tn);

CLIPS Advanced Programming Guide 125

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.13.22 SetlnstancesChanged

VA D Set | nst ancesChanged(changedFl ag) ;
i nt changedFl ag;

Purpose: Sets the internal boolean flag which indicates when
changes to instances of user-defined classes have occurred.
This function is normally used to reset the flag to zero after
GetlnstancesChanged() returns non-zero.

Arguments: An integer indicating whether changes in instances of
user-defined classes have occurred (non-zero) or not (0).

Returns: Nothing useful.

4.13.23 Unmakelnstance

i nt Unmakel nstance(i nstancePtr);
VA D *i nstancePtr;

Purpose: This function is equivalent to Deletelnstance except that it
uses message-passing instead of directly deleting the
instance(s).

Arguments: A generic pointer to the instance to be deleted. If the pointer

is NULL, all instances in the system are deleted.

Returns: Non-zero if successful, 0 otherwise.

4.13.24 ValidinstanceAddress

int ValidlnstanceAddress(instancePtr);
VA D *instancePtr;

Purpose: Determines if an instance referenced by an address still
exists. See the description of IncrementinstanceCount.

Arguments: The address of the instance.

Returns: The integer 1 if the instance still exists, O otherwise.

4.14 DEFMESSAGE-HANDLER FUNCTIONS

The following function calls are used for manipulating defmessage-handlers.

126 Section 4 - Embedding CLIPS

JSC-25012

4.14.1 FindDefmessageHandler

unsi gned Fi ndDef nessageHandl| er (def cl assPtr,

handl er Nane, handl er Type) ;

VO D *def cl assPtr,
char *handl er Nane, *handl er Type;

Purpose:

Arguments:

Returns:

Returns an index to the specified message-handler within
the list of handlers for a particular class.

1) A generic pointer to the class to which the handler is
attached.

2) The name of the handler.

3) The type of the handler: around, before, primary or after.

An index to the specified handler if it exists, otherwise 0.

4.14.2 GetDefmessageHandlerList

VA D Get Def nessageHandl er Li st (def cl assPtr, & et ur nVal ue,

i ncl udel nheritedp);

VO D *def cl assPtr;
DATA CBJECT returnVal ue;
i nt includel nheritedp

Purpose:

Arguments:

Returns:

Returns the list of currently defined defmessage-handlers for
the specified class. This function is the C equivalent of the
CLIPS get-defmessage-handler-list command).

1) A generic pointer to the class (NULL for all classes).

2) A pointer to the DATA OBJECT in which the list of
defmessage-handler constructs is to be stored.

3) An integer flag indicating whether to list inherited
handlers (CLIPS_TRUE to list them or CLIPS_FALSE to
not list them).

No meaningful value. The second argument to this function
Is setto a multifield value containing the list of defmessage-
handler constructs for the specified class. The multifield
functions described in section 3.2.4 can be used to retrieve
the defmessage-handler class, name, and type from the list.
Note that the class, name, and type for each defmessage-
handler are stored as triplets in the return multifield value.

CLIPS Advanced Programming Guide 127

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.14.3 GetDefmessageHandlerName

char *Cet Def nessageHandl er Nane(def cl assPtr, handl er | ndex) ;

VO D *def cl assPtr;
unsi gned handl er | ndex;

Purpose: Returns the name of a message-handler.

Arguments: 1) A generic pointer to a defclass data structure.
2) The index of a message-handler.

Returns: A string containing the name of the message-handler.

4.14.4 GetDefmessageHandlerPPForm

char *Cet Def messageHand! er PPFor n(def cl assPt r, handl er | ndex) ;

VA D *defcl assPtr;
unsi gned handl er | ndex;

Purpose: Returns the pretty print representation of a message-handler.

Arguments: 1) A generic pointer to a defclass data structure.
2) The index of a message-handler.

Returns: A string containing the pretty print representation of the
message-handler (or the NULL pointer if no pretty print

representation exists).

4.14.5 GetDefmessageHandlerType

char *Cet Def nessageHandl er Type(def cl assPtr, handl er | ndex) ;

VO D *def cl assPtr;
unsi gned handl er | ndex;

Purpose: Returns the type (around, before, primary or after) of a
message-handler.

Arguments: 1) A generic pointer to a defclass data structure.
2) The index of a message-handler.

Returns: A string containing the type of the message-handler.

128 Section 4 - Embedding CLIPS

JSC-25012

4.14.6 GetDefmessageHandlerWatch

i nt Get Def nessageHandl er Wat ch(def cl assPtr, handl er | ndex) ;
VO D *def cl assPtr;
unsi gned handl er | ndex

Purpose:

Arguments:

Returns:

Indicates whether or not a particular defmessage-handler is
being watched.

A generic pointer to a defclass data structure and the index
of the message-handler.

An integer; one (1) if the defmessage-handler is being
watched, otherwise a zero (0).

4.14.7 GetNextDefmessageHandler

unsi gned Cet Next Def nessageHand| er (def cl assPtr, handl er | ndex) ;
VA D *def cl assPtr;
unsi gned handl er | ndex;

Purpose:

Arguments:

Returns:

Provides access to the list of message-handlers.

1) A generic pointer to a defclass data structure.
2) An index to a particular message-handler for the class (or
0 to get the first message-handler).

An index to the first handler in the list of handlers if
handlerindex is 0, otherwise an index to the handler
immediately following handlerindex in the list of handlers for
the class. If handlerindex is the last handler in the list of
handlers for the class, then 0 is returned.

4.14.8 IsDefmessageHandlerDeletable

i nt | sDef messageHand| er Del et abl e(def cl assPtr, handl er | ndex) ;
VA D *def cl assPtr;
unsi gned handl er | ndex;

Purpose:

Arguments:

Indicates whether or not a particular message-handler can
be deleted.

1) A generic pointer to a defclass data structure.
2) The index of a message-handler.

CLIPS Advanced Programming Guide 129

CLIPS Reference Manual (Beta Version—Not For Distribution)

Returns: An integer; zero (0) if the message-handler cannot be
deleted, otherwise a one (1).

4.14.9 ListDefmessageHandlers

VA D Li st Def messageHandl| er s(| ogi cal Nane, def cl assPtr,
I ncl udel nheritedp);

char *I| ogi cal Nane;

VO D *def cl assPtr;

i nt includelnheritedp

Purpose: Prints the list of message-handlers for the specified class.
This function is the C equivalent of the CLIPS
list-defmessage-handlers command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the class (NULL for all classes).
3) An integer flag indicating whether to list inherited
handlers (CLIPS_TRUE to list them or CLIPS_FALSE to
not list them).

Returns: No meaningful return value.

4.14.10 PreviewSend

VA D Previ ewSend(| ogi cal Nane, def cl assPtr, nessageNane) ;
char *I| ogi cal Nane;
VO D *def cl assPtr;
char *nessageNane;

Purpose: Prints a list of all applicable message-handlers for a
message sent to an instance of a particular class (the C
equivalent of the CLIPS preview-send command). Output
is sent to the logical name wdisplay.

Arguments: 1) The logical name to which output is sent.
2) A generic pointer to the class.
3) The message name.

Returns: No meaningful return value.

4.14.11 SetDefmessageHandlerWatch

VA D Set Def mnessageHand! er Wat ch(newSt at e, def cl assPtr,

130 Section 4 - Embedding CLIPS

JSC-25012

handl er | ndex) ;
i nt newst at e;
VA D *def cl assPtr;
unsi gned handl er | ndex

Purpose: Sets the message-handlers watch item for a specific
defmessage-handler.

Arguments: The new message-handlers watch state, a generic pointer to
a defclass data structure, and the index of the
message-handler.

4.14.12 UndefmessageHandler
i nt Undef nessageHand! er (def cl assPt r, handl er | ndex) ;

VA D *defcl assPtr;
unsi gned handl er | ndex;

Purpose: Removes a message-handler from CLIPS (similar but not
equivalent to the CLIPS undefmessage-handler
command - see WildDeleteHandler).

Arguments: 1) A generic pointer to a defclass data structure (NULL to
delete all message-handlers in all classes).
2) The index of the message-handler (0 to delete all
message-handlers in the class - must be 0 if defclassPtr
is NULL).

Returns: An integer; zero (0) if the message-handler could not be
deleted, otherwise a one (1).
4.15 DEFINSTANCES FUNCTIONS

The following function calls are used for manipulating definstances.

4.15.1 DefinstancesModule

char *Defi nstancesMdul e(theDefi nstances);
VO D *t heDef i nst ances;

Purpose: Returns the module in which a definstances is defined (the C
equivalent of the CLIPS definstances-module command).

Arguments: A generic pointer to a definstances.

CLIPS Advanced Programming Guide 131

CLIPS Reference Manual (Beta Version—Not For Distribution)

Returns: A string containing the name of the module in which the
definstances is defined.

4.15.2 FindDefinstances

VA D *Fi ndDef i nst ances(defi nst ancesNane) ;
char *defi nstancesNang;

Purpose: Returns a generic pointer to a named definstances.
Arguments: The name of the definstances to be found.
Returns: A generic pointer to the named definstances if it exists,

otherwise NULL.

4.15.3 GetDefinstancesList

VA D Get Defi nstancesLi st (& et urnVal ue, t heMbdul e) ;
DATA OBJECT returnVal ue;
VA D *t heMbdul e;

Purpose: Returns the list of definstances in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-definstances-list function).

Arguments: 1) A pointer to the caller's DATA_OBJECT in which the
return value will be stored. The multifield functions
described in section 3.2.4 can be used to retrieve the
definstances names from the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

4.15.4 GetDefinstancesName

char *Cet Defi nst ancesNane(defi nstancesPtr);
VO D *defi nstancesPtr;

Purpose: Returns the name of a definstances.

Arguments: A generic pointer to a definstances data structure.

132 Section 4 - Embedding CLIPS

JSC-25012

Returns: A string containing the name of the definstances.

4.15.5 GetDefinstancesPPForm

char *Cet Defi nstancesPPFor n{defi nstancesPtr);
VO D *defi nstancesPtr;

Purpose: Returns the pretty print representation of a definstances.
Arguments: A generic pointer to a definstances data structure.
Returns: A string containing the pretty print representation of the

definstances (or the NULL pointer if no pretty print
representation exists).

4.15.6 GetNextDefinstances

VA D *CGet Next Def i nst ances(defi nstancesPtr);
VO D *defi nstancesPtr;

Purpose: Provides access to the list of definstances.

Arguments: A generic pointer to a definstances data structure (or NULL
to get the first definstances).

Returns: A generic pointer to the first definstances in the list of
definstances if definstancesPtris NULL, otherwise a generic
pointer to the definstances immediately following
definstancesPtr in the list of definstances. If definstancesPtr
is the last definstances in the list of definstances, then NULL
IS returned.

4.15.7 IsDefinstancesDeletable

i nt | sDef i nst ancesDel et abl e(defi nstancesPtr);
VO D *defi nstancesPtr;

Purpose: Indicates whether or not a particular class definstances can
be deleted.

Arguments: A generic pointer to a definstances data structure.

CLIPS Advanced Programming Guide 133

CLIPS Reference Manual (Beta Version—Not For Distribution)

Returns: An integer; zero (0) if the definstances cannot be deleted,
otherwise a one (1).

4.15.8 ListDefinstances

VA D Li st Defi nstances(| ogi cal Nane, t heMbdul e) ;
char *I| ogi cal Nane;
VA D *t heMobdul e;

Purpose: Prints the list of definstances (the C equivalent of the CLIPS
list-definstances command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the
definstances to be listed. A NULL pointer indicates that
definstances in all modules should be listed.

Returns: No meaningful return value.

4.15.9 Undefinstances

i nt Undef i nst ances(defi nstancesPtr);
VO D *defi nstancesPtr;

Purpose: Removes a definstances from CLIPS (the C equivalent of the
CLIPS undefinstances command).

Arguments: A generic pointer to a definstances data structure.

Returns: An integer; zero (0) if the definstances could not be deleted,
otherwise a one (1).

4.16 DEFMODULE FUNCTIONS

The following function calls are used for manipulating defmodules.

4.16.1 FindDefmodule

VA D *Fi ndDef nodul e(def nodul eNane) ;
char *def nodul eNane,;

Purpose: Returns a generic pointer to a named defmodule.

134 Section 4 - Embedding CLIPS

JSC-25012

Arguments: The name of the defmodule to be found.

Returns: A generic pointer to the named defmodule if it exists,
otherwise NULL.

4.16.2 GetCurrentModule
VA D *CGet Current Modul e() ;

Purpose: Returns the current module (the C equivalent of the CLIPS
get-current-module function).

Arguments: None.

Returns: A generic pointer to the generic defmodule data structure
that is the current module.

4.16.3 GetDefmoduleList

VA D Get Def nodul eLi st (& et urnVval ue);
DATA OBJECT returnVal ue;

Purpose: Returns the list of defmodules as a multifield value in the
returnValue DATA_OBJECT (the C equivalent of the CLIPS
get-defmodule-list function).

Arguments: A pointer to the caller’'s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the defmodule names
from the list.

Returns: No meaningful return value.

4.16.4 GetDefmoduleName

char *Cet Def nodul eNane(def nodul ePtr);
VA D *def nodul ePtr;

Purpose: Returns the name of a defmodule.
Arguments: A generic pointer to a defmodule data structure.
Returns: A string containing the name of the defmodule.

CLIPS Advanced Programming Guide 135

CLIPS Reference Manual (Beta Version—Not For Distribution)

4.16.5 GetDefmodulePPForm

char *Get Def nodul ePPFor n(def nodul ePtr) ;
VA D *def nodul ePtr;

Purpose: Returns the pretty print representation of a defmodule.
Arguments: A generic pointer to a defmodule data structure.
Returns: A string containing the pretty print representation of the

defmodule (or the NULL pointer if no pretty print
representation exists).
4.16.6 GetNextDefmodule

VA D *CGet Next Def nodul e(def nodul ePtr);
VA D *def nodul ePtr;

Purpose: Provides access to the list of defmodules.

Arguments: A generic pointer to a defmodule data structure (or NULL to
get the first defmodule).

Returns: A generic pointer to the first defmodule in the list of
defmodules if defmodulePtr is NULL, otherwise a generic
pointer to the defmodule immediately following defmodulePtr
in the list of defmodules. If defmodulePtr is the last
defmodule in the list of defmodules, then NULL is returned.

4.16.7 ListDefmodules

VA D Li st Def nodul es(| ogi cal Nane) ;
char *1| ogi cal Nane;

Purpose: Prints the list of defmodules (the C equivalent of the CLIPS
list-defmodules command).

Arguments: 1) The logical name to which the listing output is sent.

Returns: No meaningful return value.

4.16.8 SetCurrentModule

VA D *Set Cur rent Modul e(def nodul ePtr);

136 Section 4 - Embedding CLIPS

JSC-25012

VA D *def nodul ePtr;

Purpose: Sets the current module to the specified module (the C
equivalent of the CLIPS set-current-module function).

Arguments: A generic pointer to a defmodule data structure.
Returns: A generic pointer to the previous current defmodule data
structure.

4.17 EMBEDDED APPLICATION EXAMPLES

4.17.1 User-Defined Functions

This section lists the steps needed to define and use an embedded CLIPS application.
The example given is the same system used in section 3.4, now set up to run as an
embedded application.

1) Copy all of the CLIPS source code file to the user directory.

2) Define the user function (TripleNumber), a new main routine, and UserFunctions
in a new file. These could go in separate files if desired. For this example, they will
all be included in a single file.

#i ncl ude "clips. h"
mai n()

InitializeCLIPS();
Load("constructs.clp");
Reset () ;

Run(- 1L)

VA D Tri pl eNurrber (ret urnVal uePtr)
DATA OBJECT_PTR returnVal uePtr;

{
va D *val ue;
| ong | ongVal ue;
doubl e doubl eVal ue;
/ * :::*/
[* If illegal arguments are passed, return zero. */
/ * :::*/

CLIPS Advanced Programming Guide 137

CLIPS Reference Manual (Beta Version—Not For Distribution)

i f (ArgCount Check("triple", EXACTLY, 1) == -1)

Set pType(returnVal uePtr, | NTECER) ;
Set pVal ue(r et urnVal uePt r, AddLong(0OL));
return;

}
if (! ArgTypeCheck("triple", 1, I NTEGER OR FLQAT, returnVal uePtr))

Set pType(returnVal uePtr, | NTECER) ;
Set pVal ue(r et urnVal uePt r, AddLong(OL));

return;
}
| * ============—====—=—===*
[* Triple the nunber. */
| * ============—====—=—===*
i f (CGetpType(returnVal uePtr) == | NTEGER)

val ue = CGet pVal ue(returnVval uebPtr);
| ongVal ue = 3 * Val ueToLong(val ue);
Set pVal ue(ret urnVal uePt r, AddLong(| ongVal ue));

else /* the type nmust be FLOAT */
val ue = CGet pVal ue(returnVval uebPtr);

doubl eVal ue = 3.0 * Val ueToDoubl e(val ue) ;
Set pVal ue(r et urnVal uePt r, AddDoubl e(doubl eVal ue));

return;

}
User Functi ons()
extern VO D Tri pl eNunber () ;

Defi neFunction2("triple","u ,PTIF TripleNunber, "TripleNunber",
n 11nll);
}

3) Define constructs which use the new function in a file called constructs.clp (or
any file; just be sure the call to LoadConstructs loads all necessary constructs
prior to execution).

(deffacts init-data
(data 34)
(data 13.2))

138 Section 4 - Embedding CLIPS

JSC-25012

(defrul e get-data
(data ?num
=>
(printout t "Tripling " ?numcrlf)
(assert (newvalue (triple ?nunj))))

(defrul e get-newval ue
(new val ue ?nunj
=>
(printout t crlf "Now equal to " ?numcrlf))

4) Compile all CLIPS files, except main.c, along with all user files.
5) Link all object code files.

6) Execute new CLIPS executable.

4.17.2 Manipulating Objects and Calling CLIPS Functions

This section lists the steps needed to define and use an embedded CLIPS application.
The example illustrates how to call deffunctions and generic functions as well as
manipulate objects from C.

1) Copy all of the CLIPS source code file to the user directory.

2) Define a new main routine in a new file.

#i ncl ude <stdi o. h>
#i ncl ude "clips. h"

mai n()

VA D *cl, *c2, *c3;
DATA OBJECT insdata, result;
char nunbuf [20] ;

InitializeCLIPS();

/ * :::*/
/* Load the classes, message-handl ers, generic functions */
/* and generic functions necessary for handling conplex */

/* nunbers. *f
/ * :::*/

/ * :::*/
/* Create two conpl ex nunbers. Message-passing is used to */
/* create the first instance cl, but c2 is created and has */

CLIPS Advanced Programming Guide 139

CLIPS Reference Manual (Beta Version—Not For Distribution)

140

/* its slots set directly. */
/ * :::*/
cl Makel nstance("(cl of COWPLEX (real 1) (imag 10))");

Cr eat eRawl nst ance(Fi ndDef cl ass(" COWLEX"), "c2");

resul t.type = | NTECER;
result.val ue = AddLong(3L);
DirectPutSlot(c2,"real"”, & esult);

resul t.type = | NTECER;
resul t.val ue = AddLong(-7L);
DirectPutSlot(c2, "inmag", & esult);

/* Call the function '+ which has been overl oaded to handl e */
/* conpl ex nunbers. The result of the conplex addition is */
/* stored in a new instance of the COWLEX cl ass. */
/ * :::*/

CLI PSFunctionCal | ("+","[cl1] [c2]", & esult);
c3 = Findl nstance(NULL, DOToString(result), CLI PS TRUE);

/* Print out a sunmary of the conplex addition using the */
[* "print" and "magni tude" nmessages to get information */
/* about the three conpl ex nunbers. */

Print CLI PS("stdout","The addition of\n\n");
Set Type(i nsdat a, | NSTANCE_ADDRESS)

Set Val ue(i nsdat a, c1);

Send(& nsdat a, "print", NULL, & esul t);

Print CLI PS("stdout", "\ nand\ n\n");

Set Type(i nsdat a, | NSTANCE_ADDRESS)

Set Val ue(i nsdat a, c2);

Send(& nsdat a, "print", NULL, & esul t);

Print CLI PS("stdout"”, "\ nis\n\n");

Set Type(i nsdat a, | NSTANCE_ADDRESS)

Set Val ue(i nsdat a, c3);

Send(& nsdat a, "print", NULL, & esul t);

Print CLI PS("stdout","\nand the resulting magnitude is\n\n");
Set Type(i nsdat a, | NSTANCE_ADDRESS)

Set Val ue(i nsdat a, c3);

Send(& nsdat a, "magni t ude”, NULL, & esul t);
sprintf(nunbuf, "% f\n", DOToDoubl e(resul t));

Section 4 - Embedding CLIPS

JSC-25012

Print CLI PS(" st dout", nunbuf);
}

User Functi ons()

3) Define constructs which use the new function in a file called complex.clp (or any
file; just be sure the call to LoadConstructs loads all necessary constructs prior
to execution).

(defcl ass COWLEX (is-a USER)
(rol e concrete)
(slot real (create-accessor read-wite))
(slot imag (create-accessor read-wite)))

(def et hod + ((?a COWLEX) (?b COWPLEX))
(rmake-i nstance of COVPLEX
(real (+ (send ?a get-real) (send ?b get-real)))
(imag (+ (send ?a get-imag) (send ?b get-inmag)))))

(def message- handl er COVPLEX magni t ude ()
(sqrt (+ (** ?self:real 2) (** ?self:inmag 2))))

4) Compile all CLIPS files, except main.c, along with all user files.
5) Link all object code files.

6) Execute new CLIPS executable.

CLIPS Advanced Programming Guide 141

JSC-25012

Section 5 - Creating a CLIPS Run-time Program

5.1 COMPILING THE CONSTRUCTS

This section describes the procedure for creating a CLIPS run-time module. A run-time
program compiles all of the constructs (defrule, deffacts, deftemplate, etc.) into a single
executable and reduces the size of the executable image. Creating a run-time module
can be achieved by the following steps:

1) Start CLIPS and load in all of the constructs that will constitute a run-time module.
Call the constructs-to-c command using the following syntax:

(constructs-to-c <file-name> <id> [<xmax-elements>])

where <file-name> is a string or a symbol, <id> is an integer, and the optional
argument <max-elements> is also an integer. For example, if the construct file
loaded was named "expert.clp”, the conversion command might be

(construct-to-c exp 1)

This command would store the converted constructs in several output files
("expl_1.c", "expl _2.c", ..., "exp7_1.c") and use a module id of 1 for this collection
of constructs. The use of the module id will be discussed in greater detail later.
Once the conversion is complete, exit CLIPS. For large systems, this output may
be very large (> 200K). It is possible to limit the size of the generated files by using
the <max-elements> argument. This argument indicates the maximum number of
structures which may be placed in a single array stored in a file. Where possible, if
this number is exceeded new files will be created to store additional information.
This feature is useful for compilers that may place a limitation on the size of a file
that may be compiled.

Note that the .c extension is added by CLIPS. When giving the file name prefix,
users should consider the maximum number of characters their system allows in a
file name. For example, under MS-DOS, only eight characters are allowed in the
file name. For very large systems, it is possible for CLIPS to add up to 5 characters
to the file name prefix. Therefore, for system which allow only 8 character file
names, the prefix should be no more than 3 characters.

Constraint information associated with constructs is not saved to the C files

generated by the constructs-to-c command unless dynamic constraint checking
is enabled (using the set-dynamic-constraint-checking command).

CLIPS Advanced Programming Guide 143

CLIPS Reference Manual (Beta Version—Not For Distribution)

2)

3)

4)

144

The constructs-to-c command is not available in the standard CLIPS distribution
executable. Users wishing to create a run-time program must recompile CLIPS to
include this capability (see section 2.2 for information on tailoring CLIPS and the
CONSTRUCT_COMPILER setup flag).

Set the RUN_TIME setup flag in the setup.h header file to 1 and compile all of the
c files just generated.

Recompile all of the CLIPS source code (the RUN_TIME flag should still be 1).
This causes several modifications in the CLIPS code. The run-time CLIPS module
does not have the capability to load new constructs. Do NOT change any other
compiler flags! Because of the time involved in recompiling CLIPS, it may be
appropriate to recompile the run-time version of CLIPS into a separate library from
the full version of CLIPS.

Modify the main.c module for embedded operation. Unless the user has other
specific uses, the argc and argv arguments to the main function should be elimi-
nated. The user still must call the function InitializeCLIPS in the main module. It
will have been modified to make appropriate initializations for the run-time version.
Do not define any functions in the UserFunctions function. The function
UserFunctions is not called during initialization. All of the function definitions
have already been compiled in the 'C' constructs code. In addition to calling
InitializeCLIPS, a function must be called to initialize the constructs module.
This function is defined in the 'C' constructs code, and its name is dependent upon
the id used when translating the constructs to 'C' code. The name of the function is
InitCIlmage_<id> where <id> is the integer used as the construct module <id>.
In the example above, the function name would be InitCimage_1. These two
initialization steps probably would be followed by any user initialization, then by a
reset and run. An example main.c file would be

Section 5 - Creating a CLIPS Run-time Program

JSC-25012

#i ncl ude <stdi o. h>
#i ncl ude "clips. h"

mai n()
InitializeCLIPS();
InitC mage_1();
. /* Any user Initialization */
Reset () ;
Run(-1L);
. /* Any ot her code */
}

User Functi ons()

/* UserFunctions is not called for a run-tine version. */

}

5) Link all regular CLIPS modules together with any user-defined function modules
and the 'C' construct modules. Make sure that any user-defined functions have
global scope. Do not place the construct modules within a library for the purposes
of linking (the regular CLIPS modules, however, can be placed in a library). Some
linkers (most notably the VAX VMS linker) will not correctly resolve references to
global data that is stored in a module consisting only of global data.

6) The run-time module which includes user constructs is now ready to run.

Note that individual constructs may not be added or removed in a run-time
environment. The clear command will also not remove any constructs (although it will
clear facts and instances). Use calls to the InitCimage_... functions to clear the
environment and replace it with a new set of constructs. In addition, the eval and build
functions do not work in a run-time environment.

Switching between different images created using the constructs-to-c function is now
supported. Switching, however, may not occur while a CLIPS program is executing
(e.g. you cannot call a function from the RHS of a rule which switches a different image
into memory). Note that switching between construct images will clear all facts and
instances from the CLIPS environment. It is possible to switch to the same image more
than once. An example main program which switches between two different construct
images is shown following.

mai n()
extern int failure;

CLIPS Advanced Programming Guide 145

CLIPS Reference Manual (Beta Version—Not For Distribution)

InitializeCLIPS();

/ * ::::::::::::::::::::::::::::::::::*/
/* Set up and run the first portion */
/* of the expert system */
/ * ::::::::::::::::::::::::::::::::::*/

InitC mage_1();

Reset () ;
Run(-1L);

/ * :::*/
/* Check a global variable that was defined to */
/* indicate which portion of the expert system */
/* to run next. */
/ * :::*/

if (failure) InitC mage_2();
el se InitC mage 3();

/ * :::*/
/* Run the remaining portion of the expert system */
/ * :::*/
Reset () ;
Run(-1L);

}

Additional Considerations

The construct compiler is a feature that does not work as well as might be desired on
some machines. It has been tested on a VAX using VMS, a SUN workstation using
UNIX, a Macintosh with Think C and MPW C, and an IBM PC AT using several different
compilers. All machines are able to produce run-time modules for relatively small
programs (several dozen constructs). However, the Macintosh and the IBM PC AT
compilers have limitations and/or additional compilation and link options which must
be taken into consideration when large amounts of static data are defined in a
program. These considerations are described below.

Macintosh (THINK C V5.04)

Enable the Far DATA option using the Set Project Type... menu item before
compiling the CLIPS source files and constructs-to-c generated files. Note that
individual source files are restricted to less than 32K of static data, so it may be
necessary to limit the size of the files generated by the constructs-to-c command
(see step 1 above).

Macintosh (MPW C V3.2)

146 Section 5 - Creating a CLIPS Run-time Program

JSC-25012

When compiling (C command) and linking (Link command) the CLIPS source files and
constructs-to-c generated files, use the -b3 and -model far options. In addition, use
the -srt option for linking.

IBM PC AT (Microsoft C V6.0A using MS-DOS)

Itis recommended that you use a <max-elements> size of about 300 when using the
constructs-to-c command to limit the size of the generated files. All files (both CLIPS
source files and constructs-to-c generated files) should be compiled using the /AH
and /Gt1024 options. The resulting object files should be linked using the /ISEG: 256,
/ST:8192, and /NOI options. You may wish to use other options as well or use
different parameters for some of the options above.

IBM PC AT (Borland C++ V3.1 using Windows 3.1)

Borland C does not allow the huge memory module to be used for a Windows
application, so the limit of 64K of static data prevents using the construct compiler for
anything but very small programs.

IBM PC AT (Borland C++ V3.1 using MS-DOS)

Itis recommended that you use a <max-elements> size of about 300 when using the
constructs-to-c command to limit the size of the generated files. All files (both CLIPS
source files and constructs-to-c generated files) should be compiled using the -mh
and -d options.

IBM PC AT (Zortech C++ V3.1 using MS-DOS)

There is a compiler bug which manifests itself when dead code optimizations are
performed. When compiling the CLIPS source files, specify the -o-dc option to remove
dead code optimizations. In addition, use the -mx option when compiling and the
=16000 option when linking.

15.2 PORTING COMPILED CONSTRUCTS

Unlike previous version of files generated by the rules-to-c command, the files
generated for version 6.0 by the constructs-to-c function should be completely portable
to other machines.

CLIPS Advanced Programming Guide 147

JSC-25012

Section 6 - Combining CLIPS with Languages Other Than C

CLIPS is developed in C and is most easily combined with user functions written in C.
However, other languages can be used for user-defined functions, and CLIPS even
may be embedded within a program written in another language. Users wishing to
embed CLIPS with Ada should consider using CLIPS/Ada (see the CLIPS/Ada
Advanced Programming Guide).

6.1 INTRODUCTION

This section will describe how to combine CLIPS with Ada or FORTRAN routines.
Specific code examples will be used to illustrate the concepts. The code used in these
examples is valid for VAX VMS systems which have the DEC C compiler, the DEC
FORTRAN compiler, and the DEC Ada compiler.

Three basic capabilities are needed for complete language mixing.
* A program in another language may be used as the main program.

» The C access functions to CLIPS can be called from the other language and have
parameters passed to them.

* Functions written in the other language can be called by CLIPS and have
parameters passed to them.

The integration of CLIPS (and C) with other languages requires an understanding of
how each language passes parameters between routines. In general, interface
functions will be needed to pass parameters from C to another language and from
another language to C. The basic concepts of mixed language parameter passing are
the same regardless of the language or machine. However, since every machine and
operating system passes parameters differently, specific details (and code) may differ
from machine to machine. To improve usability and to minimize the amount of
recoding needed for each machine, interface packages can be developed which allow
user routines to call the standard CLIPS embedded command functions. The details of
passing information from external routines to CLIPS generally are handled inside of
the interface package. To pass parameters from CLIPS to an external routine, users
will have to write interface functions. Example interface packages for VMS FORTRAN
and VMS Ada to selected CLIPS functions are listed in appendix A. Section 6.9 will
discuss how to construct an interface package for other machines/compilers.

CLIPS Advanced Programming Guide 149

CLIPS Reference Manual (Beta Version—Not For Distribution)

6.2 ADA AND FORTRAN INTERFACE PACKAGE FUNCTION LIST

The Ada and FORTRAN interface packages in appendix A provide many of the
embedded CLIPS commands discussed in section 4 of this manual. Each function in
the interface package prepends an x to the beginning of the corresponding C function
name. A list of the C functions and their FORTRAN or Ada corollaries which are
provided in the interface packages listed in the appendices appears below.

C Function Ada/FORTRAN Function
InitializeCLIPS xInitializeCLIPS
Reset xReset

Load xLoad

Run XRun

Facts xFacts

Watch xWatch
Unwatch xUnwatch
AssertString xAssertString
Retract xRetract
PrintCLIPS XPrintCLIPS
FindDefrule xFindDefrule
Undefrule xUndefrule

The arguments to these functions are the same as described in section 4, however, the
corresponding data type in either Ada or FORTRAN should be passed as a parameter.
For example, when using Ada, the function xLoadConstructs should be passed an Ada
string, not a C string (the function xLoadConstructs will perform the conversion).
FORTRAN function names defined above do not follow ANSI 77 name standards. The
VMS FORTRAN implementation described in this section allows long function names.

6.3 EMBEDDED CLIPS - USING AN EXTERNAL MAIN PROGRAM

Any program may be used as the main program for embedded CLIPS applications.
The main program works essentially the same as in C.

Example Ada Main Program
w th CLIPS; use CLIPS;

with TEXT IQ use TEXT_IQ

procedure MAIN is

Fi | e_Nane : string (1..50);
File_Open_Status : integer;
Rul es_Fired . integer;

150 Section 6 - Combining CLIPS with Languages Other Than C

JSC-25012

begi n
xlnitializeCLIPS;
File Narme (1..7)

-- Load rules
File Qpen_Status :

"mab. cl p";

xLoad (File_Nane);

if File Open_Status = 1 then
XReset ;
Rules Fired := xRun (-1);
PUT (integer' | MAGE (Rules _Fired));
PUT_LINE (" Rules Fired");
el se
PUT_LINE ("Unable to open rules file");
end if;

end MAI N

Example FORTRAN Main Program
PROGRAM MAI N

C
| NTEGER xLoad, FILE OPEN_STATUS
CHARACTER *8 FI LE_NAME
I NTEGER xRun, RULES FI RED

CALL xInitializeCLIPS

FI LE_ NAME = ' mab. cl p'
FI LE_OPEN_STATUS = xLoad (FI LE_NAVE)

| F (FI LE_OPEN_STATUS . EQ 1) THEN
CALL xReset
RULES FI RED = xRun (-1)
WRI TE (6, 100) RULES _FI RED
ELSE
WRI TE (6, 101)
END | F

100 FORVAT (18,' RULES FIRED)

101 FORVAT (' UNABLE TO OPEN RULES FI LE')
STCOP
END

SUBRQUTI NE User Functi ons

RETURN
END

6.4 ASSERTING FACTS INTO CLIPS

An external function may assert a fact into CLIPS by calling xAssertString. External
functions also may retract a fact previously asserted from outside of CLIPS. Note that

CLIPS Advanced Programming Guide 151

CLIPS Reference Manual (Beta Version—Not For Distribution)

the parameter passed to XxRetract must have been received from a call to
xAssertString. Any other value will cause unpredictable results.

Ada Example
Fact Poi nter . integer;
Not Previously Retracted : bool ean;

Fact Pointer := xAssertString ("dummy hello0");
Not Previously Retracted := xRetract (Fact_Pointer);

FORTRAN Example
CHARACTER *20 FACT_STRI NG
| NTEGER xAssert String, FACT_PO NTER
| NTEGER xRetract, NOTI_PREVI QUSLY RETRACTED

FACT_STRI NG = ' dunmy hel | 0
FACT_PQO NTER = xAssertString (FACT_STRI NG
NOT_PREVI QUSLY_RETRACTED = xRetract (FACT_PO NTER)

6.5 CALLING A SUBROUTINE FROM CLIPS

Like any other user-defined functions, subroutines written in other languages may be
called from CLIPS. Depending on the language, the return value from the function call
may or may not be useful. For example, most FORTRAN implementations allow a
return value from a function but not from a subroutine. In these instances, the
subroutine may be called for side effect only. As with defined functions written in C, the
user must create an entry in UserFunctions for the subroutine (see section 3.1). An
extern definition also must appear in the same file as the UserFunctions function,
defining the type of data that the function will return. If the function does not return a
value (Ada procedures or FORTRAN subroutines), it should be defined as returning a
void value. See section 3.1 for the allowed return values for user-defined functions.

Ada Example

1: procedure DI SPLAY is

2:-- Standard Ada definitions and decl arati ons
3: begin

4 --

5:-- Any kind of nornmal Ada code may be used
6: --

7. --

8: end DI SPLAY;

152 Section 6 - Combining CLIPS with Languages Other Than C

JSC-25012

FORTRAN Example
subroutine displ ay

C
C Any kind of normal FORTRAN code may be used
C

return
end

UserFunctions entry for either example
extern VA D displ ay();

User Functi ons()
Def i neFuncti on("di spl ay",'v', PTIF di spl ay, "di spl ay");

/* Any ot her user-defined functions. */

6.6 PASSING ARGUMENTS FROM CLIPS TO AN EXTERNAL FUNCTION

Arguments may be passed from CLIPS to an external function. CLIPS does not
actually pass arguments to the function; instead arguments must be pulled from
internal CLIPS buffers by using the functions described in section 3. Although the
argument access functions could be called directly from Ada or FORTRAN, it probably
is easier to write an interface function in C. CLIPS will call the C routine, which gathers
the arguments and passes them in the proper manner to the external subprogram.

In this situation, the user must ensure argument compatibility. In particular, string vari-
ables must be converted from C arrays to FORTRAN or Ada string descriptors. The
actual code used in the interface routine for argument conversion will depend on the
language. Examples are given below for Ada and FORTRAN. Each example assumes
the subroutine is called as follows:

(dummy 3.7 "An exanple string")

VMS Ada Example

Note the procedure definition in line 2 of the Ada routine. The numerical value is
defined as an IN OUT type and the string as an IN. Also note the compiler PRAGMA on
line 4-5. PRAGMA is DEC-Ada-specific, and a similar statement will be needed for

CLIPS Advanced Programming Guide 153

CLIPS Reference Manual (Beta Version—Not For Distribution)

other compilers. Following the Ada routine is an example of a C interface function that
calls the Ada subroutine. The C routine must convert a C string into an Ada string
descriptor using the MakeStringDsc (see section 6.7 for more on string conversion)
function as shown in line 16 of the C routine. Note that the C function passes the
address of the numerical parameters to the Ada subprogram (line 16) and a pointer to
a descriptor for the string parameter. Note also that the UserFunctions definition
(lines 21-24) calls the dummy C routine, not the Ada program.

package DUMW _PKG i s

procedure DUMW (Val ue : inout float ;
Nane : in string);
(The following two |lines are DEC Ada specific)

pragnma EXPORT_PROCEDURE (DUMWY
PARAMVETER TYPES => (float,string));

end DUMMY_PKG

-- Ada interface to CLIPS internal functions, see Appendi x A
with CLI PS_| NTERNALS; use CLIPS | NTERNALS;

PACKAGE Dummy_PKG | S
package body DUMW _PKG i s

procedure DUMW (Value : in out float ;
Nane : in string) is

begi n
-- Value and Nane may be used as nornal Ada vari abl es.
-- Nanme should not be nodified by this procedure since
-- it has a direct pointer to a CLIPS C string.

end DUMWY;

end DUMMY_PKG

154 Section 6 - Combining CLIPS with Languages Other Than C

JSC-25012

C interface routine
#i ncl ude <stdi o. h>
#i nclude "clips. h"

(The following two |lines are VAX VMS specific)

#i ncl ude <descrip. h>
struct dsc$descriptor_s *MakeStringDsc();

c_dunmmy()
doubl e val ue;
char *nane;
extern int dumy();
val ue = Rt nDoubl e(1);
nanme = RtnLexene(2);

dummy(&al ue, MakeStringDsc(nane));

return(0);

User Functi ons()

Def i neFuncti on("dunmmy", 'i', c_dummy, "c_dumy");
}

VMS FORTRAN Example
The VMS FORTRAN routine looks very similar to the Ada routine and, in fact, uses the
same C interface function listed for VMS Ada.

subroutine dumy(val ue, nane)
C

REAL val ue

CHARACTER *80 narme

C value and nane may now be used as nornmal FORTRAN vari abl es

return
end

Note that the previous two examples performed the string conversion in C, not in the

language (Ada or FORTRAN) to which the string was being passed. On some
machines, it may be easier to convert the string in the language (Ada or FORTRAN) to

CLIPS Advanced Programming Guide 155

CLIPS Reference Manual (Beta Version—Not For Distribution)

which the string is being passed rather than in the language (C) from which the string
is being passed.

6.7 STRING CONVERSION

Much of the information that needs to be passed between CLIPS and another lan-
guage typically is stored as strings. The storage of string variables can differ radically
between languages. Both Ada and FORTRAN use a special (machine-dependent)
string descriptor for string data types, whereas C uses simple arrays. Because of this
difference, special functions must be defined to convert FORTRAN or Ada strings to C
strings and back. The implementation of these functions will be different for every lan-
guage and computer. Typically, two functions are needed: one to convert an Ada or a
FORTRAN string to a C string, and one to convert a C string to an Ada or a FORTRAN
string descriptor. When converting C strings that have been provided by CLIPS to
strings suitable for other languages, do not modify the original C string. The following
table shows the string conversion routines provided in the interface packages in
appendix A.

Environment Function to Convert Function to Convert
TO a C string FROM a C string
VMS Ada ADA TO_ C STRING MakeStringDsc
VMS FORTRAN CONVERT _TO_C_STRING MakeStringDsc

The interface package does all of the converting from Ada or FORTRAN strings to C
strings. Users will have to convert from C when defining functions that are passed
parameters from CLIPS. Appendix A.3 has a listing for a function that will convert C
strings to Ada or FORTRAN character strings under VAX VMS.

6.8 COMPILING AND LINKING

After all routines are defined, they must be compiled and linked to execute. The man-
ner of compilation will depend on the machine on which the user is working. Two
examples are given below: one for VMS Ada and one for VMS FORTRAN.

6.8.1 VMS Ada Version

1) Copy all of the CLIPS include files and Ada interface package to the user directory.

$copy [{CLIPS master directory}]*.h [{user directory}]
$copy [{CLIPS master directory}]*.ada [{user directory}]

156 Section 6 - Combining CLIPS with Languages Other Than C

JSC-25012

2) Create an object file from the file holding the UserFunctions definition.

$cc usrfuncs.c

3) Set up the Ada library and compile the Ada routine(s).

$acs create library [{user directory}.adalib]

$acs set library [{user directory}.adalib]

$ada {Ada files, including the interface packages}

4) Export the Ada object code from the DEC ACS library.

$acs export/main {Ada files, including the interface package}

5) Define the link libraries and link all of the files together. Note that, prior to linking,
each user must define the standard link libraries with the define Ink$library
command. This usually is done once in the login.com file during login. This

definition may be different for each VMS system.

$link/executable={exec name} {Ada files}, usrfuncs, [{CLIPS master directory}]
clipslib/library

This will create an embedded version of CLIPS using an Ada routine as the main pro-
gram. To create a program that uses the CLIPS interface but calls Ada subprograms,
modify step 4 to read

$acs export {user's Ada packages}

5) Copy the CLIPS main.c file from the CLIPS master directory and remove the
UserFunctions definition from the CLIPS main.c routine. Then recompile

$cc main
6) Link with the following command:

$link/executable={exec name} {Ada files}, main, usrfuncs , [{CLIPS
master directory}] clipslib/library

6.8.2 VMS FORTRAN Version

1) Copy all of the CLIPS include files to the user directory.

CLIPS Advanced Programming Guide 157

CLIPS Reference Manual (Beta Version—Not For Distribution)

$copy [{CLIPS master directory}]*.h [{user directory}]

2) Create an object file from the file holding the UserFunctions definition.
$cc usrfuncs.c

3) Compile the FORTRAN routine(s).

$fortran {FORTRAN files}

4) Link all of the files together.

$link/executable={exec name} {FORTRAN files}, usrfuncs, [{CLIPS master
directory}] clipslib/library, clipsforlib/library

Note that one of the FORTRAN programs must be a main program.

6.8.3 CLIPS Library

All of the previous examples assume a CLIPS library has been created on the user's
machine. A CLIPS library can be made with any standard object code library program
and should include all of the CLIPS object code files except the main.c file. A library
also may be made for the interface packages.

6.9 BUILDING AN INTERFACE PACKAGE

To develop an interface package for CLIPS and FORTRAN, Ada, or any other lan-
guage, the primary need is the string conversion routines. Once these have been
developed, the rest of the interface package should look very similar to the examples
shown in appendices A.1 to A.3. The majority of the conversion work should be done
in the interface package. Note that if a CLIPS function takes no arguments then it is not
necessary to write an interface function for it. For example, the function ListFacts takes
no arguments and has no return value and can therefore be called directly (however,
some languages, such as Ada, will require the function to be declared). The Ada listing
in appendix A.1 use pragmas to map the C ListFacts function to the Ada xListFacts
function (for consistency with the other functions which are proceeded by an x). The
FORTRAN listings in appendix A include interface routines to function which do not
require them as well. The functions listed in appendix A also directly mimic the
equivalent C functions. That is, functions which return the integer 0 or 1 in C have the
exact same value returned by their Ada and FORTRAN counterparts (rather than a
boolean or logical value). It would normally be more useful to directly map these

158 Section 6 - Combining CLIPS with Languages Other Than C

JSC-25012

integers values into their boolean counterparts (TRUE or FALSE) in the other
language.

CLIPS Advanced Programming Guide 159

JSC-25012

Section 7 - I/O Router System

The I/O router system provided in CLIPS is quite flexible and will allow a wide va-
riety of interfaces to be developed and easily attached to CLIPS. The system is rela-
tively easy to use and is explained fully in sections 7.1 through 7.4. The CLIPS 1/O
functions for using the router system are described in sections 7.5 and 7.6, and finally,
in appendix B, some examples are included which show how I/O routing could be
used for simple interfaces.

7.1 INTRODUCTION

The problem that originally inspired the idea of I/O routing will be considered as an
introduction to 1/0O routing. Because CLIPS was designed with portability as a major
goal, it was not possible to build a sophisticated user interface that would support
many of the features found in the interfaces of commercial expert system building
tools. A prototype was built of a semi-portable interface for CLIPS using the CURSES
screen management package. Many problems were encountered during this effort in-
volving both portability concerns and CLIPS internal features. For example, every
statement in the source code which used the C print function, printf, for printing to the
terminal had to be replaced by the CURSES function, wprintw, which would print to a
window on the terminal. In addition to changing function call names, different types of
I/O had to be directed to different windows. The tracing information was to be sent to
one window, the command prompt was to appear in another window, and output from
printout statements was to be sent to yet another window.

This prototype effort pointed out two major needs: First, the need for generic 1/0O func-
tions that would remain the same regardless of whether 1/O was directed to a standard
terminal interface or to a more complex interface (such as windows); and second, the
need to be able to specify different sources and destinations for I/O. I/O routing was
designed in CLIPS to handle these needs. The concept of I/O routing will be further
explained in the following sections.

7.2 LOGICAL NAMES

One of the key concepts of I/O routing is the use of logical names. An analogy will be
useful in explaining this concept. Consider the Acme company which has two com-
puters: computers X and Y. The Acme company stores three data sets on these two
computers: a personnel data set, an accounting data set, and a documentation data
set. One of the employees, Joe, wishes to update the payroll information in the
accounting data set. If the payroll information was located in directory A on computer
Y, Joe's command would be

CLIPS Advanced Programming Guide 161

CLIPS Reference Manual (Beta Version—Not For Distribution)

update Y:[A] payroll

If the data were moved to directory B on computer X, Joe’s command would have to be
changed to

update X [B]payroll

To update the payroll file, Joe must know its location. If the file is moved, Joe must be
informed of its new location to be able to update it. From Joe’s point of view, he does
not care where the file is located physically. He simply wants to be able to specify that
he wants the information from the accounting data set. He would rather use a com-
mand like

updat e accounti ng: payrol |

By using logical names, the information about where the accounting files are located
physically can be hidden from Joe while still allowing him to access them. The loca-
tions of the files are equated with logical names as shown here.

accounti ng = X[A
docunentation = X |[(
per sonnel = Y:[B]

Now, if the files are moved, Joe does not have to be informed of their relocation so
long as the logical names are updated. This is the power of using logical names. Joe
does not have to be aware of the physical location of the files to access them; he only
needs to be aware that accounting is the logical name for the location of the account-
ing data files. Logical names allow reference to an object without having to understand
the details of the implementation of the reference.

In CLIPS, logical names are used to send I/O requests without having to know which
device and/or function is handling the request. Consider the message that is printed in
CLIPS when rule tracing is turned on and a rule has just fired. A typical message
would be

FI RE 1 exanple-rule: f-0

The routine that requests this message be printed should not have to know where the
message is being sent. Different routines are required to print this message to a stan-
dard terminal, a window interface, or a printer. The tracing routine should be able to
send this message to a logical name (for example, trace-out) and should not have to
know if the device to which the message is being sent is a terminal or a printer. The
logical name trace-out allows tracing information to be sent simply to “the place
where tracing information is displayed.” In short, logical names allow I/O requests to be

162 Section 7 - 1/0 Router System

JSC-25012

sent to specific locations without having to specify the details of how the I/O request is
to be handled.

Many functions in CLIPS make use of logical names. Both the printout and format
functions require a logical name as their first argument. The read function can take a
logical name as an optional argument. The open function causes the association of a
logical name with a file, and the close function removes this association.

Several logical names are predefined by CLIPS and are used extensively throughout
the system code. These are

Name Description

stdin The default for all user inputs. The read and readline
functions read from stdin if t is specified as the logical
name.

stdout The default for all user outputs. The format and printout
functions send output to stdout ift is specified as the logical
name.

wclips The CLIPS prompt is sent to this logical name.

wdialog All informational messages are sent to this logical name.

wdisplay Requests to display CLIPS information, such as facts or

rules, are sent to this logical name.

werror All error messages are sent to this logical name.
wwarning All warning messages are sent to this logical name.
wtrace All watch information is sent to this logical name (with the

exception of compilations which is sent to wdialog).

7.3 ROUTERS

The use of logical names has solved two problems. Logical names make it easy to
create generic I/O functions, and they allow the specification of different sources and
destinations for 1/0. The use of logical names allows CLIPS to ignore the specifics of
an 1/0 request. However, such requests must still be specified at some level. 1/0O
routers are provided to handle the specific details of a request.

CLIPS Advanced Programming Guide 163

CLIPS Reference Manual (Beta Version—Not For Distribution)

A router consists of three components. The first component is a function which can
determine whether the router can handle an 1/O request for a given logical name. The
router which recognizes 1/0O requests that are to be sent to the serial port may not
recognize the same logical names as that which recognizes I/O requests that are to be
sent to the terminal. On the other hand, two routers may recognize the same logical
names. A router that keeps a log of a CLIPS session (a dribble file) may recognize the
same logical names as that which handles 1/0 requests for the terminal.

The second component of a router is its priority. When CLIPS receives an I/O request,
it begins to question each router to discover whether it can handle an I/O request.
Routers with high priorities are questioned before routers with low priorities. Priorities
are very important when dealing with one or more routers that can each process the
same I/O request. This is particularly true when a router is going to redefine the stan-
dard user interface. The router associated with the standard interface will handle the
same 1/O requests as the new router; but, if the new router is given a higher priority, the
standard router will never receive any I/O requests. The new router will "intercept” all of
the 1/O requests. Priorities will be discussed in more detail in the next section.

The third component of a router consists of the functions which actually handle an 1/0
request. These include functions for printing strings, getting a character from an input
buffer, returning a character to an input buffer, and a function to clean up (e.g., close
files, remove windows) when CLIPS is exited.

7.4 ROUTER PRIORITIES

Each I/O router has a priority. Priority determines which routers are queried first when
determining the router that will handle an I/O request. Routers with high priorities are
queried before routers with low priorities. Priorities are assigned as integer values (the
higher the integer, the higher the priority). Priorities are important because more than
one router can handle an 1/O request for a single logical name, and they enable the
user to define a custom interface for CLIPS. For example, the user could build a
custom router which handles all logical names normally handled by the default router
associated with the standard interface. The user adds the custom router with a priority
higher than the priority of the router for the standard interface. The custom router will
then intercept all I/O requests intended for the standard interface and specially process
those requests to the custom interface.

Once the router system sends an 1/O request out to a router, it considers the request
satisfied. If a router is going to share an 1/O request (i.e., process it) then allow other
routers to process the request also, that router must deactivate itself and call
PrintCLIPS again. These types of routers should use a priority of either 30 or 40. An
example is given in appendix B.2.

164 Section 7 - 1/0 Router System

JSC-25012

Priority Router Description
50 Any router that uses "unique" logical names and does not
want to share 1/O with catch-all routers.

40 Any router that wants to grab standard 1/O and is willing to
share it with other routers. A dribble file is a good example of
this type of router. The dribble file router needs to grab all
output that normally would go to the terminal so it can be
placed in the dribble file, but this same output also needs to
be sent to the router which displays output on the terminal.

30 Any router that uses "unique" logical names and is willing to
share 1/0O with catch-all routers.

20 Any router that wants to grab standard logical names and is
not willing to share them with other routers.

10 This priority is used by a router which redefines the default
user interface 1/0O router. Only one router should use this
priority.

0 This priority is used by the default router for handling stan-
dard and file logical names. Other routers should not use this
priority.

7.5 INTERNAL I/O FUNCTIONS

The following functions are called internally by CLIPS. These functions search the list
of active routers and determine which router should handle an 1/O request. Some
routers may wish to deactivate themselves and call one of these functions to allow the
next router to process an I/O request. Prototypes for these functions can be included by
using the clips.h header file or the router.h header file.

ExitCLIPS
VA D Exit CLI PS(exit Code);
i nt exitCode;
Purpose: The function ExitCLIPS calls the exit function associated

with each active router before exiting CLIPS.

CLIPS Advanced Programming Guide 165

CLIPS Reference Manual (Beta Version—Not For Distribution)

Arguments:

Returns:

Info:

The exitCode argument corresponds to the value that
normally would be sent to the system exit function. Consult
a C system manual for more details on the meaning of this
argument.

No meaningful return value.
The function ExitCLIPS calls the system function exit with

the argument num after calling all exit functions associated
with I/O routers.

GetcCLIPS

i nt Get cCLI PS(| ogi cal Nane) ;
char *| ogi cal Nane;

Purpose:

Arguments:

Returns:

Info:

The function GetcCLIPS queries all active routers until it
finds a router that recognizes the logical name associated
with this I/O request to get a character. It then calls the get
character function associated with that router.

The logical name associated with the get character 1/0O
request.

An integer; the ASCII code of the character.

This function should be used by any user-defined function in
place of getc to ensure that character input from the function
can be received from a custom interface. On machines which
default to unbuffered 1/O, user code should be prepared to
handle special characters like the backspace.

PrintCLIPS

i nt Print CLI PS(| ogi cal Nane, str);
char *|ogi cal Nane, *str;

Purpose:

Arguments:

166

The function PrintCLIPS queries all active routers until it
finds a router that recognizes the logical name associated
with this I/O request to print a string. It then calls the print
function associated with that router.

1) The logical name associated with the location at which
the string is to be printed.

Section 7 - 1/0O Router System

Returns:

Info:

JSC-25012

2) The string that is to be printed.

Returns a non-zero value if the logical name is recognized,
otherwise it returns zero.

This function should be used by any user-defined function in
place of printf to ensure that output from the function can be
sent to a custom interface.

UngetcCLIPS

i nt Unget cCLI PS(ch, | ogi cal Nane) ;

i nt ch;

char *1 ogi cal Nane;

Purpose:

Arguments:

Returns:

Info:

The function UngetcCLIPS queries all active routers until it
finds a router that recognizes the logical name associated
with this I/O request. It then calls the ungetc function asso-
ciated with that router.

1) The ASCII code of the character to be returned.
2) The logical name associated with the ungetc character
I/O request.

Returns ch if successful, otherwise -1.

This function should be used by any user-defined function in
place of UngetcCLIPS to ensure that character input from
the function can be received from a custom interface. As with
GetcCLIPS, user code should be prepared to handle
special characters like the backspace on machines with
unbuffered 1/O.

7.6 ROUTER HANDLING FUNCTIONS

The following functions are used for creating, deleting, and handling 1/0O routers. They
are intended for use within user-defined functions. Prototypes for these functions can
be included by using the clips.h header file or the router.h header file.

ActivateRouter

i nt Act i vat eRout er (r out er Nane) ;

char *rout er Nane;

CLIPS Advanced Programming Guide 167

CLIPS Reference Manual (Beta Version—Not For Distribution)

Purpose: The function ActivateRouter activates an existing 1/O

router. This router will be queried to see if it can handle an
I/O request. Newly created routers do not have to be

activated.
Arguments: The name of the 1/O router to be activated.
Returns: Returns a non-zero value if the logical name is recognized,

otherwise it returns zero.

AddRouter

i nt

AddRout er (rout er Nane, priority, queryFunction, print Functi on,
get cFuncti on, unget cFuncti on, exi t Functi on) ;

char *rout er Nane;

int priority;
int (*queryFunction)(), (*printFunction)();
int (*getcFunction)(), (*ungetcFunction)(), (*exitFunction)();
i nt queryFunction(l ogi cal Nane) ;
i nt printFunction(logical Nane, str);
i nt getcFunction(l ogi cal Nane) ;
i nt unget cFunction(ch, | ogi cal Nane) ;
i nt exitFunction(exitCode);
char *I ogi cal Nane, *str, ch;
i nt exi t Code;
Purpose: The function AddRouter adds a new I/O router to the list of
I/O routers.
Arguments: 1) The name of the I/O router. This name is used to

168

reference the router by the other 1/0O router handling
functions.

2) The priority of the 1/0O router. I/O routers are queried in
descending order of priorities.

3) A pointer to the query function associated with this router.
This query function should accept a single argument, a
logical name, and return either TRUE (1) or FALSE (0)
depending upon whether the router recognizes the
logical name.

4) A pointer to the print function associated with this router.
This print function should accept two arguments: a logical

Section 7 - 1/0O Router System

5)

6)

7

JSC-25012

name and a character string. The return value of the print
function is not meaningful.

A pointer to the get character function associated with this
router. The get character function should accept a single
argument, a logical name. The return value of the get
character function should be an integer which represents
the character or end of file (EOF) read from the source
represented by logical name.

A pointer to the ungetc character function associated with
this router. The ungetc character function accepts two ar-
guments: a logical name and a character. The return
value of the unget character function should be an
integer which represents the character which was passed
to it as an argument if the ungetc is successful or end of
file (EOF) is the ungetc is not successful.

A pointer to the exit function associated with this router.
The exit function should accept a single argument: the
exit code represented by num.

Returns: Returns a zero value if the router could not be added,
otherwise a non-zero value is returned.

Info: I/O routers are active upon being created. See the examples
in appendix B for further information on how to use this
function.

DeactivateRouter

i nt Deact i vat eRout er (r out er Nane) ;

char *rout er Nane;

Purpose: The function DeactivateRouter deactivates an existing 1/0
router. This router will not be queried to see if it can handle
an 1/0O request. The syntax of the DeactivateRouter
function is as follows.

Arguments: The name of the I/O router to be deactivated.

Returns: Returns a non-zero value if the logical name is recognized,
otherwise it returns zero.

DeleteRouter

CLIPS Advanced Programming Guide

169

CLIPS Reference Manual (Beta Version—Not For Distribution)

i nt Del et eRout er (r out er Nane) ;
char *rout er Nane;

Purpose: The function DeleteRouter removes an existing 1/O router
from the list of I/O routers.

Arguments: The name of the 1/O router to be deleted.

Returns: Returns a non-zero value if the logical name is recognized,
otherwise it returns zero.

170 Section 7 - 1/0 Router System

JSC-25012

Section 8 - Memory Management

Efficient use of memory is a very important aspect of an expert system tool. Expert sys-
tems are highly memory intensive and require comparatively large amounts of mem-
ory. To optimize both storage and processing speed, CLIPS does much of its own
memory management. Section 8.1 describes the basic memory management scheme
used in CLIPS. Section 8.2 describes some functions that may be used to monitor/
control memory usage.

8.1 HOW CLIPS USES MEMORY

The CLIPS internal data structures used to represent constructs and other data entities
require the allocation of dynamic memory to create and execute. Memory can also be
released as these data structures are no longer needed and are removed. All
requests, either to allocate memory or to free memory, are routed through the CLIPS
memory management functions. These functions request memory from the operating
system and store previously used memory for reuse. By providing its own memory
management, CLIPS is able to reduce the number of malloc calls to the operating
system. This is very important since malloc calls are handled differently on each ma-
chine, and some implementations of malloc are very inefficient.

When new memory is needed by any CLIPS function, CLIPS first checks its own data
buffers for a pointer to a free structure of the type requested. If one is found, the stored
pointer is returned. Otherwise, a call is made to malloc for the proper amount of data
and a new pointer is returned.

When a data structure is no longer needed, CLIPS saves the pointer to that memory
against the next request for a structure of that type. Memory actually is released to the
operating system only under limited circumstances. If a malloc call in a CLIPS func-
tion returns NULL,all free memory internally stored by CLIPS is released to the oper-
ating system and the malloc call is tried again. This usually happens during rule
execution, and the message

*** DEALLOCATING MEMORY ***
*** MEMORY DEALLOCATED ***

will be printed out to the wdialog stream. Users also may force memory to be re-
leased to the operating system (see section 8.2).

CLIPS uses the generic C function malloc to request memory. Some machines pro-
vide lower-level memory allocation/deallocation functions that are considerably faster

CLIPS Advanced Programming Guide 171

CLIPS Reference Manual (Beta Version—Not For Distribution)

than malloc. Generic CLIPS memory allocation and deallocation functions are stored
in the memory.c file and are called genalloc and genfree. The call to malloc and
free in these functions could be replaced to improve performance on a specific
machine.

Some machines have very inefficient memory management services. When running
on the such machines, CLIPS can be made to request very large chunks of memory
and internally allocate smaller chunks of memory from the larger chunks. This
technique bypasses numerous calls to malloc thus improving performance. This
behavior can be enabled by setting the BLOCK_MEMORY compiler option in the
setup.h header file to 1 (see section 2.2). In general, this option should not be
enabled unless memory allocation routines are very slow since the CLIPS block
memory routines tend to trade increased overhead for memory requests for faster
speed.

Extensive effort has gone into making CLIPS garbage free. Theoretically, if an
application can fit into the available memory on a machine, CLIPS should be able to
run it forever. Of course, user-defined functions that use dynamic memory may affect
this.

8.2 STANDARD MEMORY FUNCTIONS

CLIPS currently provides a few functions that can be used to monitor and control
memory usage. Prototypes for these functions can be included by using the clips.h
header file or the clipsmem.h header file.

GetConserveMemory

i nt Get ConserveMenory();

Purpose: Returns the current value of the conserve memory behavior.
Arguments: None.
Returns: An integer; CLIPS_FALSE (0) if the behavior is disabled and

CLIPS_TRUE (1) if the behavior is enabled.

MemRequests

long int MenRequests();

172 Section 8 - Memory Management

Purpose:

Arguments:

Returns:

Other:

JSC-25012

The function MemRequests will return the number of times
CLIPS has requested memory from the operating system
(the C equivalent of the CLIPS mem-requests command).

None.

A long integer representing the number of requests CLIPS
has made.

When used in conjunction with MemoryUsed, the user can
estimate the number of bytes CLIPS requests per call to
malloc.

MemUsed

long int Memdsed();

Purpose:

Arguments:
Returns:

Other:

The function MemUsed will return the number of bytes
CLIPS has currently in use or has held for later use (the C
equivalent of the CLIPS mem-used command).

None.
A long integer representing the number of bytes requested.

The number of bytes used does not include any overhead for
memory management or data creation. It does include all
free memory being held by CLIPS for later use; therefore, it
Is not a completely accurate measure of the amount of mem-
ory actually used to store or process information. It is used
primarily as a minimum indication.

ReleaseMem

| ong i nt Rel easeMenm(howMuch, print Message);

| ong int howMich;
i nt printMessage;

Purpose:

The function ReleaseMem will cause all free memory, or a
specified amount, being held by CLIPS to be returned to the
operating system (the C equivalent of the CLIPS release-
mem command).

CLIPS Advanced Programming Guide 173

CLIPS Reference Manual (Beta Version—Not For Distribution)

Arguments:

Returns:

Other:

1) The number of bytes to be released. If this argument is -1,
all memory will be released; otherwise, the specified
number of bytes will be released.

2) A non-zero value causes a memory deallocation
message to be printed when this function is called.

A long integer representing the actual amount of memory
freed to the operating system.

This function can be useful if a user-defined function re-
quires memory but cannot get any from a malloc call.
However, it should be used carefully. Excessive calls to
ReleaseMemory will cause CLIPS to call malloc more
often, which can reduce the performance of CLIPS.

SetConserveMemory

i nt Set Conser veMenor y(val ue) ;

i nt val ue;

Purpose:

Arguments:

Returns:

Other:

The function SetConserveMemory allows a user to turn
on or off the saving of pretty print information. Normally, this
information is saved. If constructs are never going to be
pretty printed or saved, a significant amount of memory can
be saved by not keeping the pretty print representation.

A boolean value: CLIPS TRUE (1) to keep pretty print
information for newly loaded constructs and CLIPS_FALSE
(0) to not keep this information for newly loaded constructs.

Returns the old value for the behavior.

This function can save considerable memory space. It
should be turned on before loading any constructs. It can be
turned on or off as many times as desired. Constructs loaded
while this is turned off can be displayed only by reloading
the construct, even if the option is turned on subsequently.

SetOutOfMemoryFunction

i nt (*Set Qut O Menor yFuncti on(out & Menor yFunction)) ();
int (*outO MenoryFunction)();

i nt out O MenoryFuncti on(si ze);

174

Section 8 - Memory Management

int size;

Purpose:

Arguments:

Returns:

Other:

JSC-25012

Allows the user to specify a function to be called when
CLIPS cannot satisfy a memory request.

A pointer to the function to be called when CLIPS cannot
satisfy a memory request. This function is passed the size of
the memory request which could not be satisfied. It should
return a non-zero value if CLIPS should not attempt to
allocate the memory again (and exit because of lack of
available memory) or a zero value if CLIPS should attempt to
allocate memory again.

Returns a pointer to the previously called out of memory
function.

Because the out of memory function can be called
repeatedly for a single memory request, any user-defined
out of memory function should return zero only if it has
released memory.

CLIPS Advanced Programming Guide 175

JSC-25012

Appendix A - Language Integration Listings

This appendix includes listings for various language interface packages described in
section 6. The portability of these routines varies. Most of the code listed in the
interface packages defined in sections A.1 and A.2 should be fairly portable. However,
the string conversion routine in section A.3 is not as portable. For example, the Ada
function Convert_to_C_String is probably portable to any Ada machine, yet the C
function MakeStringDsc listed here is very specific to the DEC VMS. These
functions should be typed in exactly as shown below.

A.1 ADA INTERFACE PACKAGE FOR CLIPS

The following listings are an Ada package specification and body for some of the
CLIPS functions used in embedded CLIPS systems. The code is specific to the DEC
Ada compiler because of the PRAGMA IMPORT_PROCEDURE. Other Ada compilers
may provide a similar capability, and this package specification could be modified.

CLIPS Package Specification

package CLIPS is

-- Initializes the CLIPS environnent upon program startup.

procedure xlnitializeCLIPS;

-- Resets the CLIPS environnent.

procedure XxReset;

-- Loads a set of constructs into the CLIPS database. |If there
are syntactic

-- error in the constructs, xLoadConstructs will still attenpt to
read the

-- entire file, and error notices will be sent to werror.
-- Returns: an integer, zero if an error occurs.

function xLoad (File_Nane : in string) return integer;

-- Allows Run_Limt rules to fire (execute).
-- -1 allows rules to fire until the agenda is enpty.
-- Returns: Nunber of rules that were fired.

function xRun (Run_Limt : in integer := -1) return integer;

-- Lists the facts in the fact-1ist.

procedure xFacts (Logical Nane : in string;
Modul e_Ptr : in integer;

CLIPS Advanced Programming Guide 177

CLIPS Reference Manual (Beta Version—Not For Distribution)

First : in integer;
Last : in integer;
Max : in integer);

-- Turns the watch facilities of CLIPS on.

function xWatch (Watch Item: in string) return integer;

-- Turns the watch facilities of CLIPS off.

function xUnwatch (Watch Item: in string) return integer;
-- Asserts a fact into the CLIPS fact-list. The function version
-- returns the Fact _Pointer required by xRetractFact.

function xAssertString (Pattern : in string) return integer;
-- Causes a fact asserted by the ASSERT FACT function to be
retracted.
-- Returns: false if fact has already been retracted, else true.
-- Input of any value not returned by ASSERT FACT wi ||
-- cause CLIPS to abort.

function xRetract (Fact_Pointer : in integer) return integer;
-- Queries all active routers until it finds a router that
-- recogni zes the | ogical nanme associated with this 1/0O request
-- to print a string. It then calls the print function associ ated

-- with that router.

function xPrintCLIPS (Log Nane : in string ;
Str - in string) return integer;
-- Renoves a rule from CLI PS.
-- Returns: false if rule not found, else true.

function xUndefrule (Rule_Nane : in string) return integer;

private

pragma | NTERFACE (C, xInitializeCLIPS);
pragma | MPORT_PROCEDURE (I NTERNAL => xlnitializeCLIPS,
EXTERNAL => InitializeCLIPS);

pragma | NTERFACE (C, xReset);
pragma | MPORT_PROCEDURE (| NTERNAL => xReset,
EXTERNAL => Reset);

function cLoad (File Nane : in string) return integer;
pragma | NTERFACE (C, cLoad);
pragma | MPORT_FUNCTI ON (I NTERNAL => cLoad,

EXTERNAL => Load,

178 Appendix A - Language Integration Listings

JSC-25012

MECHANI SM => REFERENCE) ;

pragma | NTERFACE (C, xRun);

pragma | MPORT_FUNCTI ON (I NTERNAL => xRun,
EXTERNAL => Run,
MECHANI SM => VALUE) ;

procedure cFacts(Logical Nane : in string;
Modul e Ptr : in integer;
First : in integer;
Last in integer;
Max : in integer);
pragma | NTERFACE (C, cFacts);
pragma | MPORT_PROCEDURE (| NTERNAL => cFact s,
EXTERNAL => Fact s,
MECHANI SM => (REFERENCE, VALUE,
VALUE, VALUE, VALUE));

function cWatch (Item: in string) return integer;
pragma | NTERFACE (C, cWatch);
pragma | MPORT_FUNCTI ON (| NTERNAL => cWat ch,
EXTERNAL => Wt ch,
MECHANI SM => REFERENCE) ;

function cUnwatch (lItem: in string) return integer;
pragma | NTERFACE (C, cUnwatch);
pragma | MPORT_FUNCTI ON (| NTERNAL => cUnwat ch,
EXTERNAL => Unwat ch,
MECHANI SM => REFERENCE) ;

function cAssertString (Pattern : in string) return integer;
pragma | NTERFACE (C, cAssertString);
pragma | MPORT_FUNCTI ON (I NTERNAL => cAssert String,

EXTERNAL => Assert String,

MECHANI SM => REFERENCE) ;

function cRetract (Fact_Pointer : in integer) return integer;
pragma | NTERFACE (C, cRetract);
pragma | MPORT_FUNCTI ON (I NTERNAL => cRetract,

EXTERNAL => Retract,

MECHANI SM => VALUE) ;

function cPrintCLIPS (Log Nane : in string ;
Str : in string) return integer;
pragma | NTERFACE (C, cPrintCLIPS);
pragma | MPORT_FUNCTI ON (I NTERNAL => cPri nt CLI PS,
EXTERNAL => Pri nt CLI PS,
MECHANI SM => REFERENCE) ;

function cUndefrule (Rule Nane : in string) return integer;
pragma | NTERFACE (C, cUndefrul e);
pragma | MPORT_FUNCTI ON (I NTERNAL => cUndefrul e,

EXTERNAL => Undefrul e,

MECHANI SM => REFERENCE) ;

CLIPS Advanced Programming Guide 179

CLIPS Reference Manual (Beta Version—Not For Distribution)

end CLI PS;
CLI PS Package Body

package body CLIPS is

function ADA TO C STRING (Input_String : in string)
return string is

Qut _String : string (1..Input_String' LAST+1);

begi n
for I in Input_String RANGE | oop
if (Input_String (v

n ~ or

) i .
Input_String (1) = ASC1.C or
Input_String (1) = ASCII. Lf) then
Qut_String (1) :=Input_String (1);
el se
Qut_String (1) := ASC I. Nul;
end if;
end | oop;

Qut _String (Qut_String LAST) := ASC I. Nul ;
return Qut_String;
end ADA TO C STRI NG

function xLoad (File Nane : in string) return integer is
begi n
return cLoad (ADA TO C STRING (Fil e_Nane));
end xLoad;
procedure xFacts (Logical Name : in string;
Modul e Ptr : in integer;
First : in integer;
Last : in integer;
Max : in integer) is
begi n

cFacts (ADA TO C STRI NG
(Logi cal _Nane), Modul e _Ptr, First, Last, Max) ;

end xFacts;

function xWatch (Watch Item: in string) return integer is

180 Appendix A - Language Integration Listings

JSC-25012
begi n
return cWatch (ADA TO C STRING (Watch_ Iten));
end xWat ch;
function xUnwatch (Watch Item: in string) return integer is

begi n
return cUnwat ch (ADA TO C STRING (Watch_Item);

end xUnwat ch;

function xAssertString (Pattern : in string) return integer is

begi n
return cAssertString (ADA TO C STRING (Pattern));
end xAssertString;

function xRetract (Fact_Pointer : in integer) return integer is

begi n
return cRetract (Fact _Pointer);
end xRetract;

function xPrintCLIPS (Log Nane : in string ;

Str : in string) return integer is
begi n
return cPrintCLIPS (ADA TO C STRI NG (Log_Nane),
ADA TO C STRING (Str));
end xPrintCLIPS;
function xUndefrule (Rule Nane : in string) return integer is

begi n
return cUndefrule (ADA TO C STRING (Rul e_Nane)) ;
end xUndefrul e;

end CLI PS;

CLIPS Advanced Programming Guide 181

CLIPS Reference Manual (Beta Version—Not For Distribution)

A.2 FORTRAN INTERFACE PACKAGE FOR VAX VMS

The following pages are listings of the FORTRAN interface functions for the VAX VMS
plus the internal functions used to convert FORTRAN character strings to C character
strings and vice versa. Many of these functions may work with minor modifications on
other machines; note, however, the use of the VMS argument passing modifier, %VAL,
in some functions.

C
@
C

SUBRCQUTI NE xI nitializeCLIPS

CALL InitializeCLIPS

RETURN

END
C
@
C

SUBRCQUTI NE xReset

CALL Reset

RETURN

END
C
@
C

| NTEGER FUNCTI ON xLoad (FI LE_NAME)

CHARACTER * (*) FILE _NAME

CHARACTER *80 C_FI LE_NAME

| NTEGER C FI LE_NAME PO NTER, Load

EQUI VALENCE (C FI LE_NAME, C FI LE NAMVE PO NTER)

CALL CONVERT_TO C STRI NG (FI LE_NAME, C FI LE _NAME)

xLoad = Load (C _FI LE_NAME PO NTER)

RETURN

END
C
@
C

| NTEGER FUNCTI ON xRun (RUN_LIM T)

I NTEGER RUN LIM T, Run

XRun = Run (WAL (RUN.LIMT))

RETURN

END
C
@
C

SUBROUTI NE xFacts (LOG CAL_NAME, MODULE, BEG N, END, MNAX)

182 Appendix A - Language Integration Listings

JSC-25012

CHARACTER * (*) LOG CAL_NAME

| NTEGER MODULE, BEG N, END, MAX

CHARACTER *80 C_LOG CAL_NAME

I NTEGER C_LOG CAL_NAVE PO NTER

EQU VALENCE (C_LOG CAL_NAME, C LOG CAL_NAME POl NTER)

CALL CONVERT TO C_STRING (LOG CAL_NAME, C LOG CAL_

_CALL Fact's(C LOG CAL_NAVE_PO NTER %/AL (MODULE),
WAL (BEG N), %/AL (END), WAL (MAX))

RETURN

END

Cr = = m = m ot e e e e e e e e e e e e e e e e e eemeeee
C
| NTEGER FUNCTI ON xVét ch (\WATCH_ | TEM)

CHARACTER * (*) WATCH | TEM

CHARACTER *80 C WATCH_| TEM

I NTEGER C WATCH_ | TEM POl NTER, Wt ch

EQU VALENCE (C WATCH ITEM C WATCH | TEM PO NTER)

CALL CONVERT_TO C _STRING (WATCH | TEM C _WATCH_ | TEM
xWat ch = Watch (C_WATCH | TEM PO NTER)

RETURN

END

Cr = = m = m ot e e e e e e e e e e e e e e e e e eemeeee
C
| NTEGER FUNCTI ON xUnwat ch (WATCH | TEM

CHARACTER * (*) WATCH | TEM

CHARACTER *80 C WATCH_| TEM

I NTEGER C WATCH | TEM PO NTER, Unwat ch

EQU VALENCE (C WATCH ITEM C WATCH | TEM PO NTER)

CALL CONVERT_TO C _STRING (WATCH | TEM C _WATCH_ | TEM
xUnwat ch = Unwat ch (C_WATCH | TEM PO NTER)

RETURN

END

@S
| NTECER FUNCTI ON xAssert String (PATTERN)

CHARACTER * (*) PATTERN

CHARACTER *80 C_PATTERN

I NTEGER C_PATTERN PO NTER AssertString
EQU VALENCE (C_PATTERN, C_PATTERN PO NTER)

CALL CONVERT_TO C STRI NG (PATTERN, C_PATTERN)
xAssertString = AssertString (C _PATTERN PO NTER)
RETURN

END

CLIPS Advanced Programming Guide 183

CLIPS Reference Manual (Beta Version—Not For Distribution)

184

| NTEGER FUNCTI ON xRetract (FACT_ADDRESS)
| NTEGER FACT_ADDRESS, Retract
XxRetract = Retract (%WAL (FACT_ADDRESS))

RETURN
END

C_PRI NT_LI NE

NT_LI NE_PO NTER, C_LOG NAME_PO NTER
C PRINT_LINE, C PRI NT_LTNE_PO NTER),
C_LOG NAME , C_LOG NAME PO NTER)

CALL CONVERT TO C_STRING (PRI NT_LINE, C PRI NT_LI NE)
CALL CONVERT_TO C_STRI NG (LOG NAME, C_LOG NAME)
xPrint CLIPS = PrintCLI PS (C_LOG NAVE_PO NTER
* C_PRI NT_LI NE_PO NTER)
RETURN

END

| NTEGER FUNCTI ON xFi ndDefrul e (RULE_NAME)

CHARACTER * (*) RULE_NAME

CHARACTER *80 C_RULE_NAME

INTEGER C_RULE_NAME_PO NTER, Undefrul e

EQU VALENCE (C RULE_NAME, C RULE_NAME PO NTER)

CALL CONVERT_TO C STRING (RULE_NAME, C RULE_NAME)
xFi ndDef rul e = Fi ndDefrul e (C_RULE_NAME PO NTER)
RETURN

END

| NTEGER FUNCTI ON xUndef rul e (RULE_NAVE)

CHARACTER * (*) RULE_NAME

CHARACTER *80 C_RULE_NAME

INTEGER C_RULE_NAME_PO NTER, Undefrul e

EQU VALENCE (C RULE_NAME, C RULE_NAME PO NTER)

CALL CONVERT TO C_STRI NG (RULE_NAME, C_RULE_NAVE)

Appendix A - Language Integration Listings

JSC-25012

xUndefrul e = Undefrul e (C RULE_NAME PO NTER)
RETURN
END

Cr = = m = m ot e e e e e e e e e e e e e e e e e eemeeee
C
SUBROUTI NE CONVERT_TO C_STRING (F_STRING, C _STRI NG
CHARACTER * (*) F_STRING C _STRI NG

K = LENGTH (F_STRI NG

DO 100 | = 1,K

C STRING (1:1)
100 CONTI NUE

K=K+ 1

C_STRING (K: K) = CHAR (0)

RETURN

END

= F.STRING (1:1)

@S
C

| NTEGER FUNCTI ON LENGTH (STRI NG

CHARACTER * (*) STRING

K = LEN (STRI NG
DO 100 | =K, 1, - 1
IF(STRING(1:1) .NE. ' ') GO TO 150

100 CONTI NUE

150 CONTI NUE
LENGTH = |
RETURN
END

A.3 FUNCTION TO CONVERT C STRINGS FOR VMS ADA OR FORTRAN

This function converts a C string to an Ada string. The MakeStringDsc function
normally is stored in the same file together with the UserFunctions definition and
any C interface subroutines. The function is not portable and is specific to the VAX
VMS environment. The definition of Ada string descriptors is implementation
dependent, and access to those definitions from C also is implementation dependent.
However, a very similar function could be written for any environment that supports
Ada and C.

C Function: MakeStringDsc
(Note:This function definition is VAX VMS specific)

CLIPS Advanced Programming Guide 185

CLIPS Reference Manual (Beta Version—Not For Distribution)
#i ncl ude <ssdef. h>
#i ncl ude <descri p. h>

struct dsc$descriptor_s *MakeStringDsc(c_str)
char *c_str;

struct dsc$descriptor_s *desc;

desc = (struct dsc$descriptor_s *) malloc
(sizeof (struct dsc$descriptor_s));

/* Define String Descriptor */

strlen(c_str);
c_str;

DSC$K_CLASS _S;
DSC$K_DTYPE _T;

desc->dsc$w_| engt h
desc->dsc$a_poi nt er
desc- >dsc$b_cl ass
desc->dsc$b_dt ype

return(desc);

186 Appendix A - Language Integration Listings

JSC-25012

Appendix B - /O Router Examples

The following examples demonstrate the use of the I/O router system. These examples
show the necessary C code for implementing the basic capabilities described.

B.1 DRIBBLE SYSTEM

Write the necessary functions that will divert all tracing information to the trace file
named "trace.txt".

/~k

First of all, we need a file pointer to the dribble file which
wll contain the tracing information.

*/

#i ncl ude <stdio. h>
#i ncl ude "clips. h"

static FILE *TraceFP = NULL;

/~k
W want to recognize any output that is sent to the |ogical name
"W race" because all tracing information is sent to this |ogical

nanme. The recogni zer function for our router is defined bel ow
*/

Fi ndTrace(| ogi cal Nane)
char *| ogi cal Nane;

I f (strcnp(logical Name, "wtrace") == 0) return(CLI PS_TRUE);

return(CLI PS_FALSE);
}

/~k

VW now need to define a function which will print the tracing in-
formation to our trace file. The print function for our router is
defi ned bel ow.

*/

Print Trace(l ogi cal Nane, str)
char *| ogi cal Nane, *str;

fprintf(TraceFP, "%", str);
/*
Wen we exit CLIPS the trace file needs to be closed. The exit

function for our router is defined bel ow
*/

CLIPS Advanced Programming Guide 187

CLIPS Reference Manual (Beta Version—Not For Distribution)

Exi t Trace(exi t Code)
i nt exitCode; /* unused */

fcl ose(TraceFP);

/*
There is no need to define a get character or ungetc character
function since this router does not handl e input.

A function to turn the trace node on needs to be defined. This
function will check if the trace file has already been opened. |If
the file is already open, then nothing will happen. Qherwi se,
the trace file will be opened and the trace router will be creat-
ed. This newrouter will intercept tracing information intended
for the user interface and send it to the trace file. The trace
on function is defined bel ow
*

/

int TraceOn()
if (TraceFP == NULL)

TraceFP = fopen("trace.txt","w');
if (TraceFP == NULL) return(CLI PS FALSE);

el se
{ return(CLIPS FALSE); }

AddRout er ("trace", /* Router nane */
20, /* Priority */
Fi ndTr ace, /* Query function */
PrintTrace, /* Print function */
NULL, /* Getc function */
NULL, /* Ungetc function */
Exi t Trace); /* Exit function */
return(CLI PS_TRUE);
}
/*
A function to turn the trace node off needs to be defined. This
function will check if the trace file is already closed. |If the
file is already closed, then nothing will happen. Qherw se, the
trace router will be deleted and the trace file will be closed.
The trace off function is defined bel ow.
*/

int TraceOf ()
if (TraceFP != NULL)

Del et eRouter("trace");

188 Appendix C - Performance Considerations

JSC-25012

if (fclose(TraceFP) == 0)

TraceFP = NULL,;
return(CLI PS_TRUE);
}
}

TraceFP = NULL,;
return(CLI PS_FALSE);

}

/*
Now add the definitions for these functions to the User Functi ons

function in file "main.c".
*

extern int TraceOn(), TraceOf();

Def i neFunction("tron",'b', TraceOn, "TraceOn");
Defi neFunction("troff","b', TraceOf, "TraceOf");

/*
Conpile and link the appropriate files. The trace functions
shoul d now be accessible wthin CLIPS as external functions. For
Exanpl e

CLI PS>(tron)

CLI PS>(troff)
*/

B.2 BETTER DRIBBLE SYSTEM

Modify example 1 so the tracing information is sent to the terminal as well as to the
trace dribble file.

/~k

This exanple requires a nodification of the PrintTrace function.
After the trace string is printed to the file, the trace router
nust be deactivated. The trace string can then be sent through
the PrintCLIPS function so that the next router in line can handle

the output. After this is done, then the trace router can be
reactivat ed.
*/

Print Trace(l ogi cal Nane, str)
char *| ogi cal Nane, *str;

{
fprintf(TraceFP, "%", str);
Deacti vateRouter("trace");
Print CLI PS(| ogi cal Nane, str);

CLIPS Advanced Programming Guide 189

CLIPS Reference Manual (Beta Version—Not For Distribution)

ActivateRouter("trace");

}

/*
The TraceOn function nust also be nodified. The priority of the
router should be 40 instead of 20 since the router passes the

out put along to other routers.
*/

int TraceOn()
if (TraceFP == NULL)

TraceFP = fopen("trace.txt","w');
if (TraceFP == NULL) return(CLI PS_FALSE)

el se
{ return(CLIPS FALSE); }

AddRout er ("trace", /* Router nane */
40, /* Priority */
Fi ndTr ace, /* Query function */
PrintTrace, /* Print function */
NULL, /* Getc function */
NULL, /* Ungetc function */
Exi t Trace); /* Exit function */

return(CLI PS_TRUE);
}

B.3 BATCH SYSTEM

Write the necessary functions that will allow batch input from the file "batch.txt" to the
CLIPS top-level interface.

/~k

First of all, we need a file pointer to the batch file which wll
contain the batch command i nfornati on

* [

#i ncl ude <stdio. h>
#i ncl ude "clips. h"

static FILE *Bat chFP = NULL

/~k

W want to recogni ze any input requested fromthe |ogical nane
"stdin" because all user input is received fromthis |ogical nane.
The recogni zer function for our router is defined bel ow

*/

Fi ndMybat ch(| ogi cal Nane)

190 Appendix C - Performance Considerations

JSC-25012

char *| ogi cal Nane;
i f (strcnp(logical Name, "stdin") == 0) return(CLI PS_TRUE)

return(CLI PS_FALSE)
}

/*
W now need to define a function which will get and unget charac-
ters fromour batch file. The get and ungetc character functions

for our router are defined bel ow
*

static char BatchBuffer[80];
static int BatchLocation = O;

CGet cMybat ch(| ogi cal Nane)
char *| ogi cal Nane;

int rv;
rv = getc(Bat chFP);
if (rv == EOF)
Del et eRout er (" nmybat ch") ;

fcl ose(Bat chFP);
return(GetcCLI PS(I ogi cal Nane)) ;

}

Bat chBuf f er [Bat chLocation] = (char) rv;
Bat chLocat i on++;
Bat chBuf f er [Bat chLocati on] = ECS;

i ((rvo==) (] (v ==)

Print CLI PS("wcl i ps", Bat chBuffer);
Bat chLocati on = 0O;

}

return(rv);

Unget cMybat ch(ch, | ogi cal Namne)
int ch;
char *| ogi cal Nane; /* unused */

i f (BatchLocation > 0) BatchLocation--;
Bat chBuf f er [Bat chLocati on] = ECS;
return(ungetc(ch, Bat chFP));

/*

CLIPS Advanced Programming Guide 191

CLIPS Reference Manual (Beta Version—Not For Distribution)

Wen we exit CLIPS the batch file needs to be closed. The exit
function for our router is defined bel ow
*

Exi t Mybat ch(exi t Code)
i nt exitCode; /* unused */

{
fcl ose(Bat chFP);
}

/*
There is no need to define a print function since this router does
not handl e out put except for echoing the comand |i ne.

Now we define a function that turns the batch node on.
*

int MybatchOn()
Bat chFP = fopen("batch.txt","r");
i f (BatchFP == NULL) return(CLIPS FALSE);

AddRout er (" nmybat ch", /* Router nane */
20, [* Priority */
Fi ndMybat ch, /* Query function */
NULL, [* Print function */
Get cMybat ch, /* Getc function */
Unget cMybat ch, /* Ungetc function */
Exi t Mybat ch) ; /* Exit function */
return(CLI PS_TRUE);
}
/*

Now add the definition for this function to the UserFunctions
function in file "main.c".

*/

extern int MybatchOn();

Def i neFuncti on("nybatch",'b', Mybat chOn, "MbatchO");

/*

Conpile and link the appropriate files. The batch function should

now be accessible within CLIPS as external function. For Exanple
CLI PS> (nybat ch)
*/

B.4 SIMPLE WINDOW SYSTEM

Write the necessary functions using CURSES (a screen management function
available in UNIX) that will allow a top/bottom split screen interface. Output sent to the

192 Appendix C - Performance Considerations

JSC-25012

logical name top will be printed in the upper window. All other screen 1/0 should go to
the lower window. (NOTE: Use of CURSES may require linking with special libraries.)

/*

First of all, we need sonme pointers to the windows and a flag to
i ndicate that the wi ndows have been initialized.

*/

#i ncl ude <stdio. h>
#i ncl ude <curses>
#i ncl ude "clips. h"

W NDOW * Lower W ndow, *Upper W ndow;,
int Wndownitialized = CLI PS_FALSE

/*
W want to intercept any I/O requests that the standard interface
woul d handle. 1In addition, we also need to handl e requests for

the | ogical nanme top. The recognizer function for our router is
defi ned bel ow.
*/

Fi ndScr een(| ogi cal Nane)
char *| ogi cal Nane;

{
if ((strcnp(l ogi cal Nane, "stdout™) == 0) |
(strcnp(l ogi cal Name, "stdin") == 0) ||
(strcnp(l ogi cal Name, "wel i ps”) == 0) |
(strcnp(l ogi cal Name, "wdi spl ay") == 0)

|
(strcnp(l ogi cal Name, "wdi al og") == 0) ||
(strcnp(l ogi cal Name, "werror™) == 0) ||
(strcnp(l ogi cal Name, "wwar ni ng") == 0) |

(strcnp(l ogi cal Narre, "wtrace”) == 0) ||
(strcnp(l ogi cal Nane, "top") ==
{ return(CLIPS_TRUE); }

return(CLI PS_FALSE)
}

/*
VW now need to define a function which will print strings to the
two wi ndows. The print function for our router is defined bel ow
*/

Print Screen(l ogi cal Nane, str)
char *| ogi cal Nane, *str;

i f (strcnp(logical Nane, "top") == 0)

wpr i nt w(Upper W ndow, " 98", str);
wr ef r esh(Upper W ndow) ;

el se

CLIPS Advanced Programming Guide 193

CLIPS Reference Manual (Beta Version—Not For Distribution)

wpr i nt w(Lower W ndow, " %", str);
wr ef r esh(Lower W ndow) ;

}
}

/*

W now need to define a function which will get and unget
characters fromthe | ower wi ndow CURSES uses unbuffered input so
we will simulate buffered input for CLIPS. The get and ungetc

character functions for our router are defined bel ow.
*

static int UseSave = CLIPS _FALSE;
static int SaveChar;
static int SendReturn = CLI PS TRUE;

static char StrBuff[80] = {'\0"};
static int CharlLocation = 0;

CGet cScreen(| ogi cal Nane)
char *| ogi cal Nane;

int rv;
if (UseSave == CLI PS_TRUE)

UseSave = CLI PS_FALSE;
return(SaveChar) ;

}
if (StrBuff[CharLocation] == "\0")
if (SendReturn == CLI PS_FALSE)

{
SendReturn = CLI PS_TRUE;
return('\n');

wget st r (Lower W ndow, St r Buf f [80]);
Char Location = O;

}

rv = StrBuff[CharLocation];
if (rv ="\0") return('\n");
Char Locat i on++;

SendReturn = CLI PS_FALSE;
return(rv);

}

Unget cScreen(ch, | ogi cal Nane)
char ch, *| ogi cal Nane;

UseSave = CLI PS_TRUE;

194 Appendix C - Performance Considerations

JSC-25012

SaveChar = ch;
return(ch);

/*

Wen we exit CLIPS CURSES needs to be deactivated. The exit
function for our router is defined bel ow

*

Exi t Screen(num
int num /* unused */

endw n();
/*
Now define a function that turns the screen node on.
*
int ScreenOn()
int hal fLines, i;
/* Has initialization already occurred? */

if (Wndow nitialized == CLIPS TRUE) return(CLI PS FALSE);
el se Wndowl nitialized = CLI PS_TRUE;

/* Reroute I/Oand initialize CURSES. */

initscr();

echo();

AddRout er (" screen”, /* Router nane */
10, /* Priority */
Fi ndScr een, /* Query function */
Pri nt Scr een, /* Print function */
CGet cScr een, /* Getc function */
Unget cScr een, /* Ungetc function */
Exi t Screen) ; /* Exit function */

/* Create the two wi ndows. */

hal fLines = LINES / 2;
Upper W ndow = neww n(hal f Li nes, COLS, 0, 0);
Lower Wndow = neww n(hal fLines - 1,COLS, hal fLines + 1,0);

/* Both wi ndows shoul d be scrollable. */

scrol | ok(Upper W ndow, CLI PS_TRUE) ;
scrol | ok(Lower W ndow, CLI PS_TRUE) ;

/* Separate the two windows with a line. */

CLIPS Advanced Programming Guide 195

CLIPS Reference Manual (Beta Version—Not For Distribution)

for (i =0 ; i <COOLS; i++)
{ nmvaddch(hal fLines,i,"'-"); }
refresh();

wel ear (Upper W ndow) ;
wcl ear (Lower W ndow) ;
wnove(Lower W ndow, O, 0);

return(CLI PS_TRUE);
}

i\;)w define a function that turns the screen node off.
int Screentf ()
/* I's CURSES al ready deactivated? */
if (Wndow nitialized == CLIPS FALSE) return(CLI PS FALSE);
Wndow nitialized = CLI PS_FALSE;
/* Remove I/O rerouting and deacti vate CURSES. */

Del et eRout er ("screen");
endwi n() ;

return(CLI PS_TRUE);
}

/*
Now add the definitions for these functions to the User Functi ons

function in file "main.c".
*

extern int ScreenOn(), ScreenOf();

Def i neFuncti on("screen-on","'b', ScreenOnh, "ScreenO");
Def i neFuncti on("screen-off","'b', ScreenOf, "ScreenOf");

/*
Conpile and link the appropriate files. The screen functions
shoul d now be accessible wthin CLIPS as external functions. For
Exanpl e

CLI PS> (screen-on)

CLI PS> (screen-off)
*/

196 Appendix C - Performance Considerations

JSC-25012

Appendix C - Differences Between Versions 5.1 and 6.0

Numerous changes and additions to CLIPS were made between version 5.1 and the
version 6.0. They are:

Additional Files - Several files have been added to provide the new capabilities
for this release. The operation of CLIPS should not be affected for the user except
in its installation. For details, see section 2.

New Compiler Directives - The setup.h header file contains several new
compiler directive flags and several compiler directive flags have been removed.
The STUDENT flag has been removed and the LOGICAL_DEPENDENCIES,
CONFLICT_RESOLUTION_STRATEGIES, DYNAMIC_SALIENCE,
INCREMENTAL_RESET, DEFMODULE_CONSTRUCT, IMPERATIVE_METHODS,
DEFINSTANCES_CONSTRUCT, IMPERATIVE_MESSAGE_HANDLERS,
AUXILIARY_MESSAGE_HANDLERS, INSTANCE_SET_QUERIES,
INSTANCE_PATTERN_MATCHING, BLOAD_INSTANCES and
BSAVE_INSTANCES flags have been added. For details, see section 2.

User Defined Functions - Several new return types have been added for
DefineFunction. The DefineFunction2 function (see section 3.1) provides
additional support for argument type checking.

External Function Interface - Several new functions have been added
including:

AssignFactSlotDefaults (see section 4.4.3)
ClassReactiveP (see section 4.12.3)
ClearFocusStack (see section 4.7.3)
FindDefmodule (see section 4.16.1)

Focus (see section 4.7.5)

GetCurrentModule (see section 4.16.2)
GetDefclassList (see section 4.12.10)
GetDefclassWatchlnstances see section 4.12.13)
GetDefclassWatchSlots (see section 4.12.14)
GetDeffactsList (see section 4.5.3)
GetDeffunctionList (see section 4.9.3)
GetDeffunctionWatch (see section 4.9.6)
GetDefgenericList (see section 4.10.3)
GetDefgenericWatch (see section 4.10.6)
GetDefglobalList (see section 4.8.3)
GetDefglobalWatch (see section 4.8.8)
GetDefinstancesList (see section 4.15.3)

CLIPS Advanced Programming Guide 197

CLIPS Reference Manual (Beta Version—Not For Distribution)

GetDefmessageHandlerList (see section 4.14.2)
GetDefmessageHandlerWatch (see section 4.14.6)
GetDefmethodList (see section 4.11.2)
GetDefmethodWatch (see section 4.11.4)
GetDefmoduleList (see section 4.16.3)
GetDefmoduleName (see section 4.16.4)
GetDefmodulePPForm (see section 4.16.5)
GetDefruleList (see section 4.6.4)
GetDefruleWatchActivations (see section 4.6.7)
GetDefruleWatchFirings (see section 4.6.8)
GetDeftemplatelList (see section 4.3.3)
GetDeftemplateWatch (see section 4.3.6)
GetDynamicConstraintChecking (see section 4.1.9)
GetFactSlot (see section 4.4.11)

GetFocus (see section 4.7.10)

GetFocusStack (see section 4.7.11)
GetMethodRestrictions (see section 4.11.5)
GetNextDefmodule (see section 4.16.6)
GetSequenceOperatorRecognition (see section 4.1.10)
GetStaticConstraintChecking (see section 4.1.11)
IsDefglobalDeletable (see section 4.8.12)
ListDefmodules (see section 4.16.7)
ListFocusStack (see section 4.7.15)

PopFocus (see section 4.7.16)

PutFactSlot (see section 4.4.15)

Restorelnstances (see section 4.13.19)

SaveFacts (see section 4.4.17)

SetCurrentModule (see section 4.16.8)
SetDefclassWatchlnstances (see section 4.12.18)
SetDefclassWatchSlots (see section 4.12.19)
SetDeffunctionWatch (see section 4.9.10)
SetDefgenericWatch (see section 4.10.10)
SetDefglobalWatch (see section 4.8.15)
SetDefmessageHandlerWatch (see section 4.14.11)
SetDefmethodWatch (see section 4.11.9)
SetDefruleWatchActivations (see section 4.6.17)
SetDefruleWatchFirings (see section 4.6.18)
SetDynamicConstraintChecking (see section 4.1.20)
SetSequenceOperatorRecognition (see section 4.1.21)
SetStaticConstraintChecking (see section 4.1.22)
ShowDefglobals (see section 4.8.18)
SlotAllowedValues (see section 4.12.20)
SlotCardinality (see section 4.12.21)

198 Appendix B - I/0O Router Examples

JSC-25012

SlotDirectAccessP (see section 4.12.22)
SlotExistp (see section 4.12.23)
Slotinitablep (see section 4.12.25)
SlotPublicP (see section 4.12.26)
SlotRange (see section 4.12.27)
SlotTypes (see section 4.12.29)
SlotWritablep (see section 4.12.30)
SubclassP (see section 4.12.31)
SuperclassP (see section 4.12.32)
Undefglobal (see section 4.8.19)
Unwatch (see section 4.2.5)

Watch (see section 4.2.6)

 External Function Interface Changes - Several old functions have been
modified including:

Agenda (see section 4.7.2)
CLIPSPutSlot (see section 4.13.7)
CreateFact (see section 4.4.4)

Facts (see section 4.4.7)

FindInstance (see section 4.13.8)
GetDefglobalPPForm (see section 4.8.5)
ListDefclasses (see section 4.12.17)
ListDeffacts (see section 4.5.8)
ListDeffunctions (see section 4.9.9)
ListDefgenerics (see section 4.10.9)
ListDefglobals (see section 4.8.13)
ListDefinstances (see section 4.15.8)
ListDefmessageHandlers (see section 4.14.9)
ListDefmethods (see section 4.11.8)
ListDefrules (see section 4.6.12)
ListDeftemplates (see section 4.3.9)
RefreshAgenda (see section 4.7.17)
ReorderAgenda (see section 4.7.19)
Savelnstances (see section 4.13.20)
ShowBreaks (see section 4.6.20)

* Obsolete External Function Interface Changes - The following functions
are no longer supported or should be replaced with the specified functions. The
header file cmptblty.h provides macros for mapping many of these functions to
their new names.

AddBreakpoint (use SetBreak instead)

CLIPS Advanced Programming Guide 199

CLIPS Reference Manual (Beta Version—Not For Distribution)

AddFact (use Assert instead)
AddWatchltem
BrowseClass (use BrowseClasses instead)
ClearCLIPS (use Clear instead)
CLIPSDeletelnstance (use Deletelnstance instead)
CLIPSGetSlot (use DirectGetSlot instead)
CLIPSMakelnstance (use Makelnstance instead)
CLIPSPutSlot (use DirectPutSlot instead)
CLIPSSendMessage (use Send instead)
CLIPSTestSlot
CLIPSUnmakelnstance (use Unmakelnstance instead)
CloseCRSVTrace
CloseDribble (use DribbleOff instead)
CRSVTraceActive
DeleteDefclass (use Undefclass instead)
DeleteDeffacts (use Undeffacts instead)
DeleteDeffunction (use Undeffunction instead)
DeleteDefgeneric (use Undefgeneric instead)
DeleteDefinstances (use Undefinstances instead)
DeleteDefmessageHandler (use UndefmessageHandler instead)
DeleteDefmethod (use Undefmethod instead)
DeleteDefrule (use Undefrule instead)
DeleteDeftemplate (use Undeftemplate instead)
GetClassMessageHandlers (use GetDefmessageHandlerList instead)
GetClassSlots (use ClassSlots instead)
GetClassSubclasses (use ClassSubclasses instead)
GetClassSuperclasses (use ClassSuperclasses instead)
GetDynamicDeftemplateChecking (use
GetDynamicConstraintChecking instead)
GetFactindex (use Factindex instead)
GetSlotFacets (use SlotFacets instead)
GetSlotSources (use SlotSources instead)
IsClassAbstract (use ClassAbstractP instead)
ListBreakpoints (use ShowBreaks instead)
ListAgenda (use Agenda instead)
ListFacts (use Facts instead)
Listinstances (use Instances instead)
ListMatches (use Matches instead)
LoadConstructs (use Load instead)
MemoryRequests (use MemRequests instead)
MemoryUsed (use MemUsed instead)
OpenCRSVTrace
OpenDribble (use DribbleOn instead)

200 Appendix B - I/0O Router Examples

JSC-25012

PreviewMessage (use PreviewSend instead)

RefreshDefrule (use Refresh instead)

ReleaseMemory (use ReleaseMem instead)

RemoveBreakpoint (use RemoveBreak instead)

ResetCLIPS (use Reset instead)

RetractFact (use Retract instead)

RunCLIPS (use Run instead)

SaveConstructs (use Save instead)

SetDynamicDeftemplateChecking (use
SetDynamicConstraintChecking instead)

SetWatchltem (use Watch and Unwatch instead)

WildDeleteHandler (use UndefmessageHandler instead)

CLIPS Advanced Programming Guide 201

JSC-25012

Index

ActivateRouter 168
Ada x, 149
AddBreakpoint 199
AddClearFunction 43
AddDouble 34
AddFact 59, 200
AddLong 34
AddPeriodicFunction 44
AddResetFunction 44
AddRouter 168
AddRunFunction 78
AddSymbol 29, 34
AddWatchltem 200
Advanced Programming Guide Xii
agenda 14, 79, 199, 200
ANSI 2, 9, 15
ANSI_COMPILER 2,9
any-instancep 12
ArgCountCheck 21
ArgRangeCheck 21
ArgTypeCheck 24,26
ART ix
Artificial Intelligence Section ix
Assert57, 67, 200
assert-string 58
AssertString 58, 67, 150, 151
AssignFactSlotDefaults 59, 197
AUXILIARY_MESSAGE_HANDLERS 11
Basic Programming Guide x, xi, xii, 1, 19
BASIC_IO 14
BinaryLoadInstances 116
BinarySavelnstances 116
bload 13, 45
bload-instances 12, 116
BLOAD_AND_BSAVE 13
BLOAD_INSTANCES 12
BLOAD_ONLY 13, 14
BLOCK_MEMORY 14, 172
boolean 31

CLIPS_FALSE 31

CLIPS_TRUE 31

CLIPS Advanced Programming Guide

browse-classes 105
BrowseClass 200
BrowseClasses 105, 200
bsave 13, 45
bsave-instances 12
bsave-instances 117
BSAVE_INSTANCES 12
build 14

Cix, 149
call-next-handler 11
call-next-method 11
call-specific-method 11
class-abstractp 105
class-reactivep 106
class-slots 106
class-subclasses 106
class-superclasses 107
ClassAbstractP 105, 200
ClassReactiveP 106, 197
ClassSlots 106, 200
ClassSubclasses 106, 200
ClassSuperclasses 107, 200
clear 43, 46, 200
clear-focus-stack 80
ClearCLIPS 200
ClearFocusStack 79, 197
CLIPS ix
CLIPSDeletelnstance 200
CLIPSFunctionCall 46
CLIPSGetSlot 200
CLIPSMakelnstance 200
CLIPSPutSlot 199, 200
CLIPSSendMessage 200
CLIPSTestSlot 200
CLIPSUnmakelnstance 200
close 14, 163
CloseCRSVTrace 200
CloseDribble 200
CLP_EDIT 7,13
CLP_HELP 13

Common Lisp Object System x

203

CLIPS Reference Manual (Beta Version—Not For Distribution)

compiler directives 8
conditional element
exists xi
forall xi
not xi

CONFLICT_RESOLUTION_STRATEGIE

S9
conserve-mem 172, 174
constructs-to-c 143
constructs-to-c 9
CONSTRUCT_COMPILER 13, 144
COOL x
COSMIC x
create$ 14
CreateFact 57,59, 65, 199
CreateMultifield 36
CreateRawlnstance 117
CRSV x
CRSVTraceActive 200
DeactivateRouter 169
DEBUGGING_FUNCTIONS 14
DecrementFactCount 62, 67
DecrementinstanceCount 117
defclass-module 107
DefclassModule 107
deffacts-module 68
DeffactsModule 68
DEFFACTS _CONSTRUCT 10
deffunction-module 93
DeffunctionModule 93
deffunctions

calling from C 46
DEFFUNCTION_CONSTRUCT 10
defgeneric-module 97
DefgenericModule 97
DEFGENERIC_CONSTRUCT 10
defglobal-module 87
DefglobalModule 87
DEFGLOBAL_CONSTRUCT 10
DefineFunction 17, 29, 31, 33, 36, 197
DefineFunction2 19, 197
definstances-module 131
DefinstancesModule 131

204

DEFINSTANCES_CONSTRUCT 11

DEFMODULE_CONSTRUCT 12
defrule-module 72
DefruleHasBreakpoint 71
DefruleModule 72
DEFRULE_CONSTRUCT 9
deftemplate-module 54
DeftemplateModule 54
deftemplates xi
DEFTEMPLATE_CONSTRUCT 10
delayed-do-for-all-instances 12
delete$ 14
DeleteActivation 80
DeleteDefclass 200
DeleteDeffacts 200
DeleteDeffunction 200
DeleteDefgeneric 200
DeleteDefinstances 200
DeleteDefmessageHandler 200
DeleteDefmethod 200
DeleteDefrule 200
DeleteDeftemplate 200
Deletelnstance 118, 200
DeleteRouter 170
dependencies 10
dependents 10
describe-class 108
DescribeClass 107
DirectGetSlot 118, 200
DirectPutSlot 118, 200
do-for-all-instances 12
do-for-instance 12
DOPToDouble 24
DOPToFloat 24
DOPTolnteger 24
DOPToLong 24
DOPToPointer 24
DOPToString 24
DOToDouble 24
DOToFloat 24
DOTolnteger 24
DOToLong 24
DOToPointer 24

Index

DOToString 24
dribble-off 52
dribble-on 52
DribbleActive 52
DribbleOff 52, 200
DribbleOn 52, 200
dynamic-get 118
dynamic-put 118
DYNAMIC_SALIENCE 9
embedded application 43
eval 14
exists conditional element xi
ExitCLIPS 165
explode$ 14
external address 33
EXT 1014
EX MATH 7
fact-index 62
Factindex 62, 200
facts 14,62, 150, 199, 200
fetch 13
files
header
clips.h 2, 17, 24, 43, 165, 167, 172
clipsmem.h 172
cmptblty.h 2
router.h 165, 167
setup.h 2, 6,7, 8, 13, 144, 172
source
main.c 17, 41, 43, 139, 141, 144,
157, 158
memory.c 172
sysdep.c 8
find-all-instances 12
find-instance 12
FindDefclass 108
FindDeffacts 69
FindDeffunction 94
FindDefgeneric 97
FindDefglobal 87
FindDefinstances 132
FindDefmessageHandler 127
FindDefmodule 134, 197

CLIPS Advanced Programming Guide

JSC-25012

FindDefrule 72, 150
FindDeftemplate 54
Findinstance 119, 199
first$ 14
float 22
Focus 80, 197
forall conditional element xi
format 14, 163
FORTRAN 149
function prototypes 2
functions
argument access 21, 153
calling from C 46
external 17, 21, 22, 23
library
exit 166
free 172
getc 166
malloc 171, 173, 174
printf 167
sprintf 59
string conversion
Convert_to_C_String 177
MakeStringDsc 154, 177, 185
user-defined 17
genalloc 172
GENERIC 8
generic functions
calling from C 46
genfree 172
get-defmessage-handler-list 127
get-defmethod-list 101
get-dynamic-constraint-checking 47
get-method-restrictions 102, 103
get-reset-globals 90
get-static-constraint-checking 47
get-auto-float-dividend 46
get-current-module 135
get-defclass-list 108
get-deffacts-list 69
get-deffunction-list 94
get-defgeneric-list 98
get-defglobal-list 88

205

CLIPS Reference Manual (Beta Version—Not For Distribution)

get-definstances-list 132
get-defmodule-list 135
get-defrule-list 72
get-deftemplate-list 54
get-fact-duplication 63
get-focus 82

get-focus-stack 82
get-incremental-reset 10, 74
get-salience-evaluation 9, 83
get-sequence-operator-recognition 47
get-strategy 9, 83
GetActivationName 80
GetActivationPPForm 81
GetActivationSalience 81
GetAgendaChanged 81
GetAutoFloatDividend 46
GetcCLIPS 166, 167
GetClassMessageHandlers 200
GetClassSlots 200
GetClassSubclasses 200
GetClassSuperclasses 200
GetConserveMemory 172
GetCurrentModule 135, 197
GetDefclassList 108, 197
GetDefclassName 109
GetDefclassPPForm 109
GetDefclassWatchinstances 109, 197
GetDefclassWatchSlots 109, 197
GetDeffactsList 69, 197
GetDeffactsName 69
GetDeffactsPPForm 70
GetDeffunctionList 94, 197
GetDeffunctionName 94
GetDeffunctionPPForm 95
GetDeffunctionWatch 95, 197
GetDefgenericList 98, 197
GetDefgenericName 98
GetDefgenericPPForm 98
GetDefgenericWatch 99, 197
GetDefglobalList 87, 197
GetDefglobalName 88
GetDefglobalPPForm 88, 199
GetDefglobalvalue 88

206

GetDefglobalValueForm 89
GetDefglobalWwatch 89, 197
GetDefinstancesList 132, 197
GetDefinstancesName 132
GetDefinstancesPPForm 133
GetDefmessageHandlerList 127, 198,
200

GetDefmessageHandlerName 128
GetDefmessageHandlerPPForm 128
GetDefmessageHandlerType 128
GetDefmessageHandlerWatch 129, 198
GetDefmethodDescription 101
GetDefmethodList 101, 198
GetDefmethodPPForm 102
GetDefmethodWatch 102, 198
GetDefmoduleList 135, 198
GetDefmoduleName 135, 198
GetDefmodulePPForm 136, 198
GetDefruleList 72, 198
GetDefruleName 73
GetDefrulePPForm 73
GetDefruleWatchActivations 73, 198
GetDefruleWatchFirings 74, 198
GetDeftemplateList 54, 198
GetDeftemplateName 55
GetDeftemplatePPForm 55
GetDeftemplateWatch 55, 198
GetDOBegin 27

GetDOENd 27

GetDOLength 27
GetDynamicConstraintChecking 47, 198,
200
GetDynamicDeftemplateChecking 200
GetFactDuplication 63

GetFactindex 200
GetFactListChanged 63
GetFactPPForm 64

GetFactSlot 64, 198

GetFocus 82, 198

GetFocusStack 82, 198
GetGlobalsChanged 90
GetincrementalReset 74
GetInstanceClass 119

Index

GetlnstanceName 119
GetlnstancePPForm 120
GetlnstancesChanged 120
GetMethodRestrictions 102, 198
GetMFType 27, 65
GetMFValue 27, 65
GetNextActivation 82
GetNextDefclass 110
GetNextDeffacts 70
GetNextDeffunction 95
GetNextDefgeneric 99
GetNextDefglobal 90
GetNextDefinstances 133
GetNextDefmessageHandler 129
GetNextDefmethod 103
GetNextDefmodule 136, 198
GetNextDefrule 74
GetNextDeftemplate 56
GetNextFact 65
GetNextinstance 121
GetNextinstancelnClass 121
GetpDOBegin 27
GetpDOENd 27
GetpDOLength 27
GetpType 24
GetpValue 27, 34
GetResetGlobals 90
GetSalienceEvaluation 83
GetSequenceOperatorRecognition 47,
198
GetSlotFacets 200
GetSlotSources 200
GetStaticConstraintChecking 47, 198
GetStrategy 83
GetType 24
GetValue 27, 34
GetWatchltem 52
HELP_FILE 13
I/O router 161, 187

priority 164
IMPERATIVE_MESSAGE_HANDLERS
11
IMPERATIVE_METHODS 10

CLIPS Advanced Programming Guide

JSC-25012

implode$ 14
INCREMENTAL_RESET 9
IncrementFactCount 58, 65, 67
IncrementinstanceCount 121
Inference Corporation ix
InitCImage 144

InitializeCLIPS 43, 48, 144, 150
insert$ 14

installation of CLIPS 3

instance address 33

Instance manipulation from C 116
instances x, 123, 200
INSTANCE_PATTERN_MATCHING 12
INSTANCE_SET_QUERIES 12
integer 22

integration 1

Interfaces Guide xii
IsClassAbstract 200
IsDefclassDeletable 110
IsDeffactsDeletable 70
IsDeffunctionDeletable 96
IsDefgenericDeletable 99
IsDefglobalDeletable 91, 198
IsDefinstancesDeletable 133
IsDefmessageHandlerDeletable 129
IsDefmethodDeletable 103
IsDefruleDeletable 75
IsDeftemplateDeletable 56
LISP ix

list-defclasses 110

list-deffacts 71

list-deffunctions 96
list-defgenerics 100
list-defglobals 91
list-definstances 134
list-defmessage-handlers 130
list-defmethods 104
list-defmodules 136
list-defrules 75
list-deftemplates 56
list-focus-stack 83

ListAgenda 200
ListBreakpoints 200

207

CLIPS Reference Manual (Beta Version—Not For Distribution)

ListDefclasses 110, 199
ListDeffacts 71, 199
ListDeffunctions 96, 199
ListDefgenerics 100, 199
ListDefglobals 91, 199
ListDefinstances 134, 199

ListDefmessageHandlers 130, 199

ListDefmethods 104, 199
ListDefmodules 136, 198
ListDefrules 75, 199
ListDeftemplates 56, 199
ListFacts 200
ListFocusStack 83, 198
Listinstances 200
ListMatches 200
load 13, 48, 150, 200
load-facts 66
load-instances 123
LoadConstructs 138, 141, 200
LoadFacts 66
Loadlnstances 123
logical names 161

stdin 163

stdout 163

t163

wclips 163

wdialog 163, 171

wdisplay 62, 130, 163

werror 48, 163

wtrace 163

wwarning 163
LOGICAL _DEPENDENCIES 10
lowcase 14
main 137, 139
make-instance 124
Makelnstance 124, 200
Matches 75, 200
mem-requests 173
mem-used 173
member$ 14
memory management 171
MemoryRequests 200
MemoryUsed 173, 200

208

MemRequests 173, 200
MemUsed 173, 200

Message-passing from C 125
MULTIFIELD_FUNCTIONS 11, 14

NASA ix

next-handlerp 11
next-methodp 11

not conditional element xi
nth$ 14
OBJECT_SYSTEM 11
open 14, 163
OpenCRSVTrace 200
OpenDribble 200
override-next-handler 11
override-next-method 11
parameter 23

pop-focus 84

PopFocus 83, 198
portability 1

ppdeffacts 14

ppdefrule 14
preview-send 130
PreviewMessage 201
PreviewSend 130, 201
print-region 13
PrintCLIPS 150, 164, 166
printout 14, 163

progn$ 14

PutFactSlot 59, 66, 198
read 14, 163

readline 14, 163
Reference Manual xii, xiii
Refresh 76, 201
refresh-agenda 9, 84
RefreshAgenda 84, 199
RefreshDefrule 201
release-mem 173
ReleaseMem 173, 201
ReleaseMemory 201
remove-break 76
RemoveBreak 76, 201
RemoveBreakpoint 201
RemoveClearFunction 48

Index

RemovePeriodicFunction 49
RemoveResetFunction 49
RemoveRunFunction 84
ReorderAgenda 84, 199
replace$ 14

reset 45, 49, 92, 150, 201
ResetCLIPS 201

rest$ 14

restore-instances 124
Restorelnstances 124, 198
Retract 67, 150, 151, 201
RetractFact 201
RtnArgCount 21

RtnDouble 22

RtnLexeme 22

RtnLong 22

RtnUnknown 23,26
rules-to-c 147

Run 85, 150, 201

run-time module 143
RunCLIPS 201

RUN_TIME 9, 14, 144

Save 50, 201

save-facts 67
save-instances 125
SaveConstructs 201
SaveFacts 67, 198
Savelnstances 124, 199
Send 125, 200
set-dynamic-constraint-checking 50
set-fact-duplication 68
set-reset-globals 92
set-static-constraint-checking 51
set-auto-float-dividend 50
set-break 76
set-current-module 137
set-dynamic-constraint-checking 143
set-incremental-reset 10, 77
set-salience-evaluation 86
set-sequence-operator-recognition 51
set-strategy 9, 86
SetActivationSalience 85
SetAgendaChanged 86

CLIPS Advanced Programming Guide

JSC-25012

SetAutoFloatDividend 50

SetBreak 76, 199
SetConserveMemory 174
SetCurrentModule 136, 198
SetDefclassWatch 111
SetDefclassWatchinstances 198
SetDefclassWatchSlots 198
SetDeffunctionWatch 96, 198
SetDefgenericWatch 100, 198
SetDefglobalVvalue 91
SetDefglobalWatch 92, 198
SetDefmessageHandlerWatch 130, 198
SetDefmethodWatch 104, 198
SetDefruleWatchActivations 76, 198
SetDefruleWatchFirings 77, 198
SetDeftemplateWatch 57
SetDOBegin 37

SetDOENd 37
SetDynamicConstraintChecking 50, 198,
201
SetDynamicDeftemplateChecking 201
SetFactDuplication 68
SetFactListChanged 68
SetGlobalsChanged 92
SetincrementalReset 77
SetinstancesChanged 126
SetMFType 36

SetMFValue 36
SetMultifieldErrorValue 37
SetOutOfMemoryFunction 174
SetpDOBegin 37

SetpDOENd 37

SetpType 34

SetpValue 34

SetResetGlobals 92
SetSalienceEvaluation 86
SetSequenceOperatorRecognition 51,
198

SetStaticConstraintChecking 51, 198
SetStrategy 86

SetType 34,37

setup flags 8

SetValue 34,37

209

CLIPS Reference Manual (Beta Version—Not For Distribution)

SetWatchltem 201
SHORT_LINK_NAMES 15
show-defglobals 93
show-breaks 77
ShowBreaks 77, 199, 200
ShowDefglobals 93, 198
slot-allowed-values 111
slot-range 114
slot-cardinality 112
slot-facets 113
slot-sources 114
slot-types 115
SlotAllowedValues 111, 198
SlotCardinality 112, 198
SlotDirectAccessP 112, 199
SlotExistP 112, 199
SlotFacets 113, 200
SlotlnitableP 113, 199
SlotPublicP 113, 199
SlotRange 114, 199
SlotSources 114, 200
SlotTypes 114, 199
SlotWritableP 115, 199
Smalltalk x
Software Technology Branch ix
str-compare 14
str-index 14
str-length 14
str-cat 14
STRING_FUNCTIONS 14
sub-string 14
SubclassP 115, 199
subseq$ 14
subsetp 14
SuperclassP 115, 199
sym-cat 14
symbol 22, 29
CLIPSFalseSymbol 31
CLIPSTrueSymbol 31
toss 13
Undefclass 116, 200
Undeffacts 71, 200
Undeffunction 97, 200

210

Undefgeneric 100, 200
Undefglobal 93, 199
Undefinstances 134, 200
undefmessage-handler 131

UndefmessageHandler 131, 200, 201

Undefmethod 104, 200
Undefrule 78, 150, 200
Undeftemplate 57, 200
UngetcCLIPS 167
Unmakelnstance 126, 200
Unwatch 53, 199, 201
upcase 14

User’s Guide xii, xiii

UserFunctions 17, 23, 43, 137, 144, 152,

154, 157, 158, 185
ValidlnstanceAddress 126
ValueToDouble 27, 34
ValueTolnteger 27, 34
ValueTolLong 27, 34
ValueToString 27, 34
Watch 53, 150, 199, 201
WildDeleteHandler 201
WINDOW _INTERFACE 15

Index

