Streams, |/0

streams

Sequential input and output uses objects called streams.
Stream is an abstract representation of an input or
output device that is a source of, or destination for data.
There are two kinds of streams:
B character streams (text streams)

used for input from text files and human-readable output to text files,
printers, and so on, using 16-bit Unicode characters

a byte streams (binary streams)

used for compact and efficient input and output of primitive data (int,
double, ...) as well as objects and arrays, in machine-readable form

There are separate classes for handling character streams and byte streams:
m for character input and output - Readers and Writers
B byte input and output - InputStreams and OutputStreams.

| IMI | PMF | KG | OOP | @9 | AKM |

Streams make program code independent of the device involved. With character
streams, your program reads and writes Unicode characters, but the file will
contain characters in the equivalent character encoding used by the local
computer.

| IMI | PMF | KG | OOP | @9 | AKM |

streams

java.io Input Streams Output Streams
Character Reader Writer
Streams BufferedReader BufferedWriter
LineNumberReader FilterWriter
FilterReader OutputStreamWriter
PushBackReader FileWriter
InputStreamReader PipedWriter
FileReader PrintWriter
PipedReader CharArrayWriter
CharArrayReader StringWriter
StringReader
Byte InputStream OutputStream
F}lelnputStPeam FileOutputStream
FilterlnputStream 1
BufferedlnputStream FllterOutputStream
DataInputStr\eam BU'F'Fer‘edOu‘tputStr‘eam
PushBacklnputStream DataOutputStream
ObjectlnputStream PrintStream
PipedlnputStrean ObjectOutputStream
SequenceInputStream)
PipedOQutputStream

StringBufferInputStream

RandomAccessFile

java.io classes for Input and Output

Class (Package java.io) | Description

— File a pathname either to a file or to a

= o

> directory

Pl | OutputStream the base class for byte stream output
- operations

S InputStream the base class for byte stream input
© operations

N Writer the base class for character stream

z output operations

= Reader the base class for character stream

Input operations
RandomAccessFile support for random access to a file

Output Streams

| IMI | PMF | KG | OOP | @9 | AKM |

Defining a File - File class

File represents a pathname to a physical file or directory (not a
stream !)

File myDir=new File("F:/jdk1.3/src/java/io");

File myFile=new File("F:/jdk1.3/src/java/io/File.java");

File myDir=new File("F:/jdk1.3/src/java/io");

myFile=new File(myDir,"File.java");

myFile=new File("F:/jdk1.3/src/java/io","File.java");

Testing and checking File objects

All operations that involve accessing the files can throw a
SecurityException if access is not authorized and security manager exists
on local computer(in an applet for instance).

= Method Description
% exists() true if the file or directory referred to by the File object
o exists
; isDirectory() true if the File object refers to a directory
§ isFile() true if the File object refers to a file
% isHidden() true if the File object refers to a hidden file
§ isAbsolute() true if the File object refers to an absolut path name
% canRead() true if you are permitted to read the file
canWrite() true if you are permitted to write the file

equals() true for the same paths

| IMI | PMF | KG | OOP | @9 | AKM |

Method

getName()
getPath()
getAbsolutePath()
getParent()
list()

listFiles()

length()

getName()

lastModified()

toString()
hashCode()

Accessing File objects

Description

returns String object containing the last name in the path
returns String object containing path

returns String object containing absolute path

original path without the last name

returns String array containing the names of the members
of the directory (null if curent object is file)

returns an array of File objects coresponding to the files
and directories in that directory

returns long value the is the length in bytes for the file
represented by the current file object

returns String object containing the last name in the path
(file or directory name)

Returns a value of type long representing time of last file
or directory modification (number of miliseconds from
01.01.1970)

returns String representation of File object
Returns hash code value for the current File object

| IMI | PMF | KG | OOP | @9 | AKM |

public abstract class OutputStream

Byte Output Streams

Method

Description

write(int b)

(abstract) write the low order byte of the argument,
b, to the output stream

write(byte[] b)

write the array of bytes

write(byte[] b),int
offset, int length)

writes length bytes from the array b, starting with the
element b[offset]

flush()

forces any buffered output data to be written to the
output stream

close()

close the output stream

Byte Output Streams

public abstract class OutputStream

{ FileOutputStream I

—| ByteArrayOutputStream I
DataOutputStream I

— PipedOutputStream I
BufferedOutputStream I
— FilterOutputStream I— PrintStream I
— ObjectOutputStream I . I

|:. data sinks

OutputStream

| IMI | PMF | KG | OOP | @9 | AKM |

| IMI | PMF | KG | OOP | @9 | AKM |

o sluzi upisu podataka u fajl

public class FileOutputStream extends OutputStream

FileOutputStream class

o obratite paznju na kostruktore, ne postoji default-ni i svaki zahteva

fajl u nekom "obliku”

Constructor

Description

FileOutputStream(String
filename)

Creates an output stream, existing
contents will be overwritten,
|Oexception will be thrown if the file
cannot be opened for writing

FileOutputStream(String
filename,boolean append)

same, excepting data written to the
file will be appended if append is true

FileOutputStream(File file)

creates a file output stream for the file
represented by the object file,...

FileOutputStream(FileDescriptor
desc)

FileDescriptor object represents an
existing connection to file ,...

| IMI | PMF | KG | OOP | @9 | AKM |

FileOutputStream class

+ write,flush,close (inherited) and getFD()

FileDescriptor
o FileDescriptor class- represents current connection to the physical file

o can be used to create another byte input stream object (without
checking for the file existence)

o method getFD() returns an object of type FileDescriptor

o three public static members of FileDescriptor class: in, out, err
(standard system input, s.s. output, standard error stream)

Primer 1.
try {
FileOutputStream filel = new FileOutputStream("myFile.txt");
}
catch(IOException e){ =
System.out.println(aFile + " not found"); nije dobra praksa

}

FileOutputStream class

Primer 2.
String filename = "myFile.txt";
File aFile = new File(filename);
try
{
if(laFile.exists())
{
// open for overwriting
FileOutputStream filel = new FileOutputStream(aFile);
System.out.println("myFile.txt output stream created");
filel.write(65);
}
else
System.out.println("myFile.txt already exists.");

}
catch(IOException e)

{

System.out.println("File "+aFile + " not found");

}

| IMI | PMF | KG | OOP | @9 | AKM |

| IMI | PMF | KG | OOP | @9 | AKM |

FileOutputStream class

Primer 3.

String filename = "myFile.txt"
File aFile = new File(filename);
try

{

aFile.createNewFile(); //Create new file if aFile doesn't
//exist

// Open to append

FileOutputStream filel= new FileOutputStream(aFile,true);

}
catch()

{
System.out.println(e);

}

za ILIJU
http://www.comweb.nl/java/Console/Console.html
Iskali ste protumacite ;), ali sad

ByteArrayOutputStream class

Implements an output stream in which the data is written into a byte array.
The buffer automatically grows as data is written to it.

The data can be retrieved using toByteArray() and toString().

byte array operations are very fast

ByteArrayOutputStream baos = new ByteArrayOutputStream () ;
PrintStream ps = new PrintStream (baos) ;

// write some output
for (int i =0; i < 1000; i++) {
ps.println (i + " ABCDEFGHIJKLMNOPQRSTUVWXYZ") 5
}s
System.out.println(baos.toString());

| IMI | PMF | KG | OOP | @9 | AKM |

| IMI | PMF | KG | OOP | @9 | AKM |

Field Summary

ByteArrayOutputStream class

protected byte[] buf The buffer where data is stored.
protected int count The number of valid bytes in the buffer.

Constructor Summary
ByteArrayOutputStream()
ByteArrayOutputStream(int size)

Method Summary

void
void
int
byte[]
String
void
void
void

close() no effect

reset() Resets the count field to zero

size() Returns the current size of the buffer.
toByteArray()

toString()

write(byte[] b, int off, int len)

write(int b)

writeTo(OutputStream out)
Writes the complete contents of this byte array output
stream to the specified output stream argument, as if by
calling the output stream's write method using
out.write(buf, 0, count).

| IMI | PMF | KG | OOP | @9 | AKM |

Used in conjunction with a piped input stream that receives the data

PipedOutputStream class

written to the output stream
Two independent program threads can communicate with each other
by using piped streams

Constructor Summary
PipedOutputStream()
PipedOutputStream(PipedInputStream snk)

Method Summary

void
void
void
void
void

close()

connect(PipedInputStream snk)
flush()

write(byte[] b, int off, int 1len)
write(int b)

PipedOutputStream class

public class TestPipedStreams {

public static void main(String[] args) {

try {
PipedInputStream pins = new PipedInputStream();
PipedOutputStream pouts = new PipedOutputStream(pins);

byte[] outArray = {'H', 'E', 'L', 'L', '0'};
pouts.write(outArray, 0, 5);
System.out.println("Wrote "+new String(outArray)+" to pouts");

byte[] inArray = new byte[5];
pins.read(inArray, 0, 5);
System.out.println("Read "+new String(inArray)+" from pins\n");

}
catch (Exception e) { e.printStackTrace(); }

| IMI | PMF | KG | OOP | @9 | AKM |

| IMI | PMF | KG | OOP | @9 | AKM |

FilterOutputStream class

superclass of all classes that filter output streams
» These streams sit on top of an already existing output stream (the
underlying output stream) which it uses as its basic sink of data, but
possibly transforming the data along the way or providing additional
functionality.
= You must first create an object of type
= FileOutputStream,
= PipedOutputStream or
= ByteArrayStream (sinks!),
and then use this object in the constructor for the filter output stream
class.

Field Summary

protected OutputStream out
The underlying output stream to be filtered.

Constructor Summary

FilterOutputStream(OutputStream out)
Creates an output stream filter built on top of the specified
underlying output stream.

FilterOutputStream class

FilterOutputStream

DataOutputStream I PrintStream I BufferedOutputStream I

Use this class to Provides formatted Adds buffering to an
extend an output output to a stream output stream to improve
stream to write efficiency of write

(like the out member

primitive data types
of the System class)

to the stream (as
binary data)

operations to the stream

| IMI | PMF | KG | OOP | @9 | AKM |

java.util.| DeflaterOutputStream
ZipOutputStream I GZIPOutputStream I
Support writing Support writing
compressed files in compressed files in

the ZIP format the GZIP format

PrintStream class

Up to now we have made extensive use of println() method
from the PrintStream class in our examples

* PrintStream has largely been made obsolete by the PrinterWriter
class (Java 1.1)

= |t has problems with Unicode conversions

= You can still use System.out.println() for text output to screen
without any problems

| IMI | PMF | KG | OOP | @9 | AKM |

| IMI | PMF | KG | OOP | @9 | AKM |

DataOutputStream class

= Provides methods to write any of the basic types of data or a
String to a byte stream

Field Summary
protected int written The number of bytes written.
out inherited

Constructor Summary
DataOutputStream(OutputStream out)

Method Summary

void flush() void writeChars(String s)
int size() void writeDouble(double v)
void write(byte[] b,int off,int len) void writeFloat(float v)
void write(int b) void writeInt(int v)

void writeBoolean(boolean v) void writeLong(long v)
void writeByte(int v) void writeShort(int v)
void writeBytes(String s) void writeUTF(String str)

void writeChar(int v)

DataOutputStream class

import java.io.*;

public class TestDataStream

{
public static void main(String[] args){

String myStr = new String("Garbage in, garbage out");

= String dirName = "JunkData"; // Directory name
< try {
— File dir = new File(dirName); // File object for directory
S if(!dir.exists()) dir.mkdir();
— else if(!dir.isDirectory()) {
% System.err.println(dirName + " is not a directory");
_ return;
© }
_ File aFile = new File(dir, "data.txt");
= aFile.createNewFile(); // Now create a new file if necessary
e DataOutputStream myStream = new DataOutputStream(new
. FileOutputStream(aFile));
= myStream.writeChars(myStr); // Write the string to the file
— System.out.println(myStream.size());

}

catch(IOException e) {

System.out.println("IO exception thrown: " + e);}

| IMI | PMF | KG | OOP | @9 | AKM |

BufferedOutput class

= reduces number of actual output operations to the file

= written to the output when the buffer is full or with calling the
flush() method or when the stream is closed

= default buffer size is 512 bytes

Field Summary

protected byte[] buf The internal buffer where data is stored.
protected int count The number of valid bytes in the buffer.

out inherited from class java.io.FilterOutputStream

Constructor Summary
BufferedOutputStream(OutputStream out)
BufferedOutputStream(OutputStream out, int size)

Method Summary

void flush()

void write(byte[] b, int off, int len)
void write(int b)

BufferedOutput class

import java.io.*;
public class TryPrimesOutput {
public static void main(String[] args) {

try {
String dirName = "JunkData";
String fileName = "Primes.bin";

File myPrimeDir = new File(dirName);
if(!'myPrimeDir.exists()) myPrimeDir.mkdir();
else if(!myPrimeDir.isDirectory()) {

System.err.println(dirName+" is not a directory");
return;}

File primesFile = new File(myPrimeDir, fileName);

primesFile.createNewFile();

BufferedOutputStream b=new BufferedOutputStream(new

FileOutputStream(primesFile));

DataOutputStream primesStream = new DataOutputStream(b);

long[] primesl = new long[] {2,3,5,17,11,13};

for(int i=0; i < primesl.length; i++) primesStream.writelLong(primesl[i]);

// b.flush();

primesStream.close();

System.out.println("File size = " + primesStream.size());

| IMI | PMF | KG | OOP | @9 | AKM |

} n "

catch(IOException e) { System.out.println("IOException " + e + " occurred");}

}
}

| IMI | PMF | KG | OOP | @9 | AKM |

= This class implements an output stream filter for writing files in the
ZIP file format. Includes support for both compressed and

java.util.zip.ZipInputStream

uncompressed entries.
Fields buf, def, out inherited
Constructor Summary ZipOutputStream(OutputStream out)
Method Summary
void close() Closes the ZIP output stream and the stream being filtered.

void

void

void

void
void

void

void

closeEntry() Closes the current ZIP entry and positions the stream for
writing the next entry.
finish() Finishes writing the contents of the ZIP output stream
without closing the underlying stream.
putNextEntry(ZipEntry e) Begins writing a new ZIP file entry and
positions the stream to the start of the entry data.

setComment (String comment)

setLevel(int level) Sets the compression level for subsequent entries
which are DEFLATED.

setMethod(int method) Sets the default compression method for
subsequent entries.

write(byte[] b, int off, int len) Writes an array of bytes to the

current ZIP entry data.

java.util.zip.ZipInputStream

String[] filenames = new String[]{"filenamel", "filename2"};
byte[] buf = new byte[1024]; // Create a buffer for reading the files
try {
// Create the ZIP file
String outFilename = "outfile.zip";
ZipOutputStream out = new ZipOutputStream(new
FileOutputStream(outFilename));

// Compress the files
for (int i=0; i<filenames.length; i++) {
FileInputStream in = new FileInputStream(filenames[i]);

// Add ZIP entry to output stream.

out.putNextEntry(new ZipEntry(filenames[i]));

// Transfer bytes from the file to the ZIP file

int len;

while ((len = in.read(buf)) > @) { out.write(buf, 0, len); }

// Complete the entry
out.closeEntry();
in.close();

| IMI | PMF | KG | OOP | @9 | AKM |

}
// Complete the ZIP file

out.close();
} catch (IOException e) {

}

Character Output Streams

= Writing characters
= automatic conversion of Unicode characters to the character
coding used by the local computer (binary streams use two bytes
to write one character)
= write text to a file or string representation of your data values
= All the classes that provide character operations are derived from the
abstract class Writer

| IMI | PMF | KG | OOP | @9 | AKM |

Character Output Streams

OutputStreamiWriter
outputs to an
OutputStream(byte stream)

FileWriter

outputs to a File

StringWriter
outputs to a String buffer

Writer CharArrayWriter
outputs to a char array

(abstract)

PipedWriter
outputs to a PipeReader

BufferedWriter
buffers other writers

PrintWriter
String output to a Writer

| IMI | PMF | KG | OOP | @9 | AKM |

Data Sinks

FilterWriter

abstract base to Filters

| IMI | PMF | KG | OOP | @9 | AKM |

Writer

Abstract class for writing to character streams.

Field Summary
protected Object 1lock used to synchronize operations on this stream

Constructor Summary
protected Writer() Creates a new character-stream writer whose
critical sections will synchronize on the writer itself.
protected Writer(Object lock) Creates a new character-stream writer
whose critical sections will synchronize on the given object.

Method Summary

Writer append(char c)

Writer append(CharSequence csq)

Writer append(CharSequence csq, int start, int end)
abstract void close() Closes the stream, flushing it first.
abstract void flush() Flushes the stream.

void write(char[] cbuf) Writes an array of characters.
abstract void write(char[] cbuf, int off, int len)
void write(int c)

void write(String str)

void write(String str, int off, int len)

StringWriter

Class for writing to string buffer.

Constructor Summary

StringWriter() default initial string-buffer size
StringWriter(int initialSize)

Method Summary
. inherited
StringBuffer getBuffer()
String toString() Return the buffer's current value as a string.

StringWriter sw=new StringWriter();
sw.write(“It’s the end");

sw.write(" of the beginning of Java");
System.out.println(sw.toString());

| IMI | PMF | KG | OOP | @9 | AKM |

| IMI | PMF | KG | OOP | @9 | AKM |

CharArrayWriter

Class for writing to char array.

Constructor Summary

StringWriter() default initial string-buffer size
StringWriter(int initialSize)

Method
. inherited

writeTo(Writer out) Writes the contents of the buffer to another character
stream.

toCharArray() Returns the copy of the data in the buffer as type char(]

reset() Reset the current buffer in the stream object
size() returns the size of current buffer as type int
String toString() Return the buffer's current value as a string

CharArrayWriter sw=new CharArrayWriter();
sw.write('a');

sw.write("bcd",0,3);

char[] car={'e','f'};

sw.write(new char[] {'e','f'},0,2);
System.out.println(sw.toString());

| IMI | PMF | KG | OOP | @9 | AKM |

Connecting Character Stream to a Byte Stream

An OutputStreamiWriter is a bridge from character streams to any of

byte streams

= Characters written to it are translated into bytes according to a
specified character encoding. The encoding that it uses may be
specified by name, or the platform's default encoding may be
accepted.

Writer out = new BufferedWriter(new OutputStreamWriter(System.out));

Constructor Summary

OutputStreamWriter(OutputStream out)

OutputStreamWriter(OutputStream out, Charset cs)

OutputStreamWriter(OutputStream out, CharsetEncoder enc)

OutputStreamWriter(OutputStream out, String charsetName)

| IMI | PMF | KG | OOP | @9 | AKM |

Using a character stream to write a file

An OutputStreamWriter is a bridge from character streams to any of
byte streams

= Characters written to it are translated into bytes according to a
specified character encoding. The encoding that it uses may be
specified by name, or the platform's default encoding may be
accepted.

Writer out = new BufferedWriter(new OutputStreamWriter(System.out));

Field Summary

lock inherited from class java.io.Writer

Constructor Summary

FileWriter(File file)

FileWriter(File file, boolean append)

FileWriter(FileDescriptor fd)

FileWriter(String fileName)

FileWriter(String fileName, boolean append)

Using a character stream to write a file

import java.io.*;
class FileWrite
{
public static void main(String args[])
{

try{
// Create file

FileWriter fstream = new FileWriter("out.txt");
BufferedWriter out = new BufferedWriter(fstream);

out.write("Hello Java");

//Close the output stream

out.close();

}catch (Exception e){//Catch exception if any

" + e.getMessage());

| IMI | PMF | KG | OOP | @9 | AKM |

System.err.println("Error:

| IMI | PMF | KG | OOP | @9 | AKM |

PrintWriter

Prints formatted representations of objects to a text-output stream. This class
implements all of the print methods found in PrintStream. It does not contain
methods for writing raw bytes.

= if automatic flushing is enabled it will be done only when one of the printin,
printf, or format methods is invoked

Field Summary

protected Writer out

lock inherited from class java.io.Writer
Constructor Summary

PrintWriter(File file)

PrintWriter(File file, String csn)
PrintWriter(OutputStream out)

PrintWriter(OutputStream out, boolean autoFlush)
PrintWriter(String fileName)

PrintWriter(String fileName, String csn)
PrintWriter(Writer out) writer should be OutputStreamWriter object
PrintWriter(Writer out, boolean autoFlush)

PrintWriter

print() and println() methods
= overloaded to accept different argument types(char,int,...,Object)

= PrintWriter methods doesn't throw exceptions (use checkError()
method to check for output errors)

| IMI | PMF | KG | OOP | @9 | AKM |

Primeri

import java.io.*;
class WriteCharacters {
public static void main(String[] args) {

try {
String dirName = "JunkData";
String fileName = "Proverbs.txt";

File output = new File(dirName, fileName);
output.createNewFile();
if(loutput.isFile()) {
System.out.println("Creating " + output.getPath() + " failed.");
return;}
// only this FileWriter constructor allows data appending
BufferedWriter out = new BufferedWriter(
new FileWriter(output.getPath(), true));
String[] sayings={ "Only the mediocre are always at their best.",
"A little knowledge is a dangerous thing.",
"Who knows most says least.",};
for(int i = @; i < sayings.length; i++) {
out.write(sayings[i].length() + sayings[i]);}
out.close();
}
catch(IOException e) {
System.out.println("Error writing the file

| IMI | PMF | KG | OOP | @9 | AKM |

+ e);

Input Streams

Byte Input streams

Byte input streams are defined using sub-classes of the abstract class
InputStream

= Java supports markable streams (position can be marked calling a special
method

Input Stream class

Constructor Summary

InputStream()

Method Summary

int available()

void close()

void mark(int readlimit) Marks the current position in this input stream.

boolean markSupported() Tests if this input stream supports the mark and
reset methods.

abstract int read()

int read(byte[] b)

int read(byte[] b, int off, int len)
void reset()

long skip(long n)

| IMI | PMF | KG | OOP | @9 | AKM |

Byte Input streams

FileInputStream I Data
sources
— ByteArrayInputStream I

. . DataInputStream
InputStream I_ PipedinputStream I I I

BufferedInputStream I
— FilterInputStream I——

LineNumberInpuStream I
— SequencelInputStream I

PushBackInputStream I
— ObjectInputStream I

| IMI | PMF | KG | OOP | @9 | AKM |

| IMI | PMF | KG | OOP | @9 | AKM |

Byte Input streams

FileInputStream: low level facilities for reading data from file

PipedInputStream and ByteArrayInputStream: complement to
equivalent output classes

SequenceInputStream: allows concatenating several input streams
into a single stream

FilterInputStream: class designed to be a base for deriving a
number of filter stream classes to add more flexibility in the way data
input is handled(other classes allow only byte manipulation)

ObjectinputStream: reading objects

FileInputStream

Throws FileNotFoundException if the file doesn't exist

= Only available are read() methods for byte or byte array reading (use
filter input stream classes to add functionality)

= method getFD() returns FileDescriptor object

File myPrimes = new File("c:/JavaCourse/CourselunkData/Primes.bin");
FileInputStream myStream= new FileInputStream(myPrimes);

| IMI | PMF | KG | OOP | @9 | AKM |

SequenceInputStream

FileInputStream filel = new FileInputStream("c:/filenamel.bin");

filel ——_—i::::D

streams are
joined

FileInputStream file2 = new
FileInputStream("c:/filename2.bin");

y

file2

SequenceInputStream comb = new SequenceInputStream(filel,file2);

| IMI | PMF | KG | OOP | @9 | AKM |

= transition from one concatenated stream to the next is automatic

= when the end of one stream is reached, its close method will be
called, and data will then be read from the next stream

= no means of detecting when this occurs

	Java
	streams
	streams
	java.io classes for Input and Output
	Java
	Defining a File – File class
	Testing and checking File objects
	Accessing File objects
	Byte Output Streams
	Byte Output Streams
	FileOutputStream class
	FileOutputStream class
	FileOutputStream class
	FileOutputStream class
	ByteArrayOutputStream class
	ByteArrayOutputStream class
	PipedOutputStream class
	PipedOutputStream class
	FilterOutputStream class
	FilterOutputStream class
	PrintStream class
	DataOutputStream class
	DataOutputStream class
	BufferedOutput class
	BufferedOutput class
	java.util.zip.ZipInputStream
	java.util.zip.ZipInputStream
	Character Output Streams
	Character Output Streams
	Writer
	StringWriter
	CharArrayWriter
	Connecting Character Stream to a Byte Stream
	Using a character stream to write a file
	Using a character stream to write a file
	PrintWriter
	PrintWriter
	Primeri
	Java
	Byte input streams
	Byte input streams
	Byte input streams
	FileInputStream
	SequenceInputStream

