
C#
C Sharp

What is C#?

• C# is one of the programming languages
supported by the .NET Framework's Common
Language Runtime.

What is .NET Framework ?

• The .NET Framework is a platform created by
Microsoft for developing applications -
Windows applications, Web applications, Web
services, …

• The .NET languages: These include Visual Basic, C#, JScript .NET (a server-
side version of JavaScript), J# (a Java clone), and C++.

• The Common Language Runtime (CLR): This is the engine that executes all
.NET programs and provides automatic services for these applications, such
as security checking, memory management, and optimization.

• The .NET Framework class library: The class library collects thousands of
pieces of prebuilt functionality that you can “snap in” to your applications.
These features are sometimes organized into technology sets, such as
ADO.NET (the technology for creating database applications) and Windows
Forms (the technology for creating desktop user interfaces).

• ASP.NET: This is the engine that hosts the web applications you create with
.NET, and supports almost any feature from the .NET class library. ASP.NET
also includes a set of web-specific services, like secure authentication and
data storage.

• Visual Studio: This optional development tool contains a rich set of
productivity and debugging features. The Visual Studio setup DVD includes
the complete .NET Framework, so you won’t need to download it separately.

The.NET Framework include the following:

What is CIL?

• Before the code is executed, all the .NET
languages are compiled into another lower-
level language - Common Intermediate
Language (CIL).

• CIL code isn’t specific to any operating system.

What is JIT?

• Just-in-Time (JIT) compiler compiles CIL into
native code that is specific to the OS and
machine architecture being targeted. Only at
this point can the OS execute the application.
The just-in-time part of the name reflects the
fact that CIL code is only compiled as, and
when, it is needed.

Beginning C#

1. On the File menu, point to New, and then
click Project.

The New Project dialog box opens. This dialog
box lists the templates that you can use as a
starting point for building an application. The
dialog box categorizes templates according to
the programming language you are using and
the type of application.

2. In the Project types pane, click Visual C#. In
the Templates pane, click the Console
Application icon.

3. In the Location field specify the location of
your project files.

4. In the Name field, type ConsoleHello.

5. Ensure that the Create directory for solution
check box is selected, and then click OK.

Solution explorer

• Solution ‘ConsoleHello’ This is the top-level
solution file, of which there is one per
application. If you use Windows Explorer to
look at the location of your project files folder,
you’ll see that the actual name of this file is
ConsoleHello.sln. Each solution file contains
references to one or more project files.

• ConsoleHello is the C# project file. Each
project file references one or more files
containing the source code and other items
for the project. All the source code in a single
project must be written in the same
programming language.

• In Windows Explorer, this file is actually called
ConsoleHello.csproj.

• Properties is a folder in the ConsoleHello
project. It contains a file called
AssemblyInfo.cs that you can use to add
attributes to a program, such as the name of
the author, the date the program was written,
...

• References is a folder that contains references
to compiled code that your application can
use.

• When code is compiled, it is converted into an
assembly and given a unique name.

• Developers use assemblies to package useful
bits of code they have written so they can
distribute it to other developers who might
want to use the code in their applications.

• Program.cs is a C# source file and is the one
currently displayed in the Code and Text Editor
window when the project is first created.

• You will write your code for the console
application in this file.

• The Program.cs file defines a class called
Program that contains a method called Main.
All methods must be defined inside a class.

• The Main method is special—it designates the
program’s entry point. It must be a static
method.

• Console is a built-in class that contains the
methods for displaying messages on the
screen and getting input from the keyboard.

Namespaces
• Named container for other identifiers, such as

classes.

• Two classes with the same name will not be
confused with each other if they live in different
namespaces.

• Visual Studio 2008 environment is using the name
of your project as the top-level namespace.

• A using statement brings a namespace into scope.

namespace LevelOne

{

using LevelTwo;

namespace LevelTwo

{

// name “NameTwo” defined

}

}

Code in the LevelOne namespace can now refer
to LevelTwo.NameTwo by simply using NameTwo.

Variables

• You can think of variables in computer
memory as boxes sitting on a shelf. You can
put things (data) in boxes (variables) and take
them out again.

Variable Naming

• The first character of a variable name must be
either a letter, an underscore character (_), or
the at symbol (@).

• Subsequent characters may be letters,
underscore characters, or numbers.

• For example, the following variable names are fine:

myBigVar

VAR1

_test

• These are not, however:

99BottlesOfBeer

namespace

It’s-All-Over

Naming Conventions

• Currently, two naming conventions are used in the
.NET Framework namespaces:

• PascalCase
• camelCase .

• The case used in the names indicates their usage. They
both apply to names that are made up of multiple
words and they both specify that each word in a name
should be in lowercase except for its first letter, which
should be uppercase. For camelCase terms, there is an
additional rule: The first word should start with a
lowercase letter.

The following are camelCase variable names:

• age

• firstName

• timeOfDeath

These are PascalCase:

• Age

• LastName

• WinterOfDiscontent

Types

• Variables come in different types.

• The reasoning behind this type system is that
different types of data may require different
methods of manipulation, and by restricting
variables to individual types you can avoid
mixing them up.

Variable Declaration and Assignment

• To use variables, you have to declare them.
This means that you have to assign them a
name and a type. Once you have declared
variables, you can use them as storage units
for the type of data that you declared them to
hold.

• C# syntax for declaring variables

< type > < name > ;

• Declared variables must be initialized before
you use them.

• Declaration: int age;

• Initialization: age = 22;

OR

• Declaration and initialization:

int age = 22;

Mathematical Operators

Exception:

• The binary + operator does make sense when
used with string type variables.

• None of the other mathematical operators,
however, work with strings.

Assignment Operators

Operator Precedence

Primer

Explanation

• For user input use Console.ReadLine() .
This command prompts the user for input,
which is stored in a string variable.

userName = Console.ReadLine();

• Use the command Convert.ToDouble() on a
string obtained by Console.ReadLine() to
convert the string into a double type.

firstNumber = Convert.ToDouble(Console.ReadLine());

• The integers start at 0 and are incremented by 1, and the
total number of placeholders should match the number of
variables specified in the comma - separated list following
the string. When the text is output to the console, each
placeholder is replaced by the corresponding value for
each variable. In the preceding example, the {0} is
replaced with the actual value of the first variable,
firstNumber , {1} is replaced with the contents of
secondNumber , and {2} with result of operation
firstNumber + secondNumber

Console.WriteLine(“The sum of {0} and {1} is {2}.”, firstNumber,
secondNumber, firstNumber + secondNumber);

