BPWIin

What is BPWin?

e AllFusion Process Modeler (BPWin) is a
comprehensive business-modeling environment
that helps you to visualize, analyze, and
improve business processes.

* Business process improvement includes
mapping and modeling the myriad of
interactions within an organization to better
understand and improve its operation.

Business Modeling

* Modeling is one of the most effective
techniques for understanding and
communicating business rules and processes.

e Graphics (mainly boxes and arrows) are used
to provide much of the structure.

BPWIin

 The BPwin model provides an integrated
picture of how organization gets things done,

from small departments to the entire
organization.

BPwin supports the following three modeling
methodologies:

* |[DEFO function modeling method

* |IDEF3 process description capture method

* DFD data flow diagramming

Business Process Modeling (IDEFO)

* Technique for analyzing the whole system as a
set of interrelated activities or functions.

* The activities (verbs) of the system are

analyzed independently of the object(s) that
perform them.

* |IDEFO models a system using only two graphic
symbols: boxes and arrows.

Context Activity

* The first step in creating a model is to create
the highest level, the context activity. The
context activity describes the system itself and
is drawn as a box and given a name. Activity
names generally consist of a single active verb
plus a common noun that clarifies the

objective of the activity from the viewpoint of
the modeler

Arrows

Control Arrow

Input Arrow o
4 > Activi ty Ciutput Arrow

>

Mechanismm Arrow

Type of Arrow

What the Arrow Represents

Input Something consumed or modified in the process
Control A constraint on the operation of the process

Output Something resulting from the process

Mechanism Something used to perform the process, but is not itself

consumed

® |[nputs represent material or information that is consumed or
transformed by the activity to produce outputs.

® Controls impose rules that regulate how, when, and if an activity is
performed and which outputs are produced. Controls are often in
the form of rules, regulations, policies, procedures, or standards.
They influence an activity without actually being transformed or
consumed. Controls can also be used to describe items that trigger
an activity to start or finish.

® Qutputs are the material or information produced by the activity. An
activity that does not produce a definable output should not be
modeled (or, at a minimum, should be a candidate for elimination).

® Mechanisms are physical resources that perform the activity.
Mechanisms could be the important people, machinery, and/or
equipment that provide and channel the energy needed to perform
the activity.

AO> s T PFrOAY
H & i [s

= Computer Associates BPwin - [[A-0) Process Order - order fulfillment]

<2k Fle Edit Wjew Diagram Dictionary Model ModelMart Tools ‘Window Help

~llad| v s s

BEEANFE [DATE[COMTEXT:

oaTe: 7.10 2000 [llwoRKING

F'RDJECT order fulfilment REY: 7102003 _[DEAFT TOF
RECOMMENDED
1 23486878310 PLEI ICATICIN

Custamer Crder Details

Awailable Stock

Process
Order

Delivered Goods,_

Order Entry System

MUKMBER:

TITLE:

Process Order

4

Decomposing a Model

 Decompositions are used in business process modeling
to break an activity into its constituent activities. Each
of these activities can in turn be decomposed into its
own constituent activities. Each time you decompose
an activity, you create a decomposition diagram.The
number of decomposition levels is entirely up to you,
and depends on the level of complexity you need to
model.Note the yellow bubble on the figure. When an
activity has not been decomposed, the “leaf” symbol
will appear in the upper left corner of the activity box
(called a "leaf-level"” activity). After decomposition the
leaf symbol is removed.

How to Decompose an Activity

* Click the diagram activity you want to decompose.
Then click the Child tool in the BPwin Toolbox.

Or

* |Inthe Model Explorer Activities tab, right-click the
activity you want to decompose. Then choose
Decompose on the shortcut menu. The Activity Box
Count dialog will be displayed. Here you can specify
the type and number of sub-activities needed. When
you click OK, the new decomposition diagram will be

displayed.

* The activities in the decomposition are not
connected or labeled.

* The decomposition diagram automatically
inherits the arrows from the parent activity.

e After naming the activities in a decomposition
diagram, the next step is to draw the
appropriate arrows that represent the inputs,
outputs, controls, and mechanisms that
describe the process.

UZED AT:

AUTHOR: James Sl DATE:T. 12350 .'.-'-.'IZIRI- ING

RE~DEF

DATE

CONTEXT:

PROJECT: EFwin kikida REV: 151223000 DREAFT

RECCITIENDED

MOTEZ: 1 2 2 4+ 567 898 10 FUEBLEKCATICON

A0

Custormer

COrder

D=t=il=

Arailable
Stock

CRDER . Custorer
= | Qrder
ks E: | Details

-
e

VERFY F

'
ALLOCATE

Stock Re-0Order

e

Cd

STOCK ;

i 2

o

Cd

Order Ertry
Swystem

=HIP

=

Delivered
Goods

PRODUCTS

0 3

) D

L e T S T T T

mn e e e T T e e T

MO DE:

TITLE:

FROCESS ORDER
Al

W UKEER:

Arrow Tunnels

When there is a break in the arrow hierarchy
in @ model, BPwin creates a square arrow
tunnel on the arrow stub to indicate that the
arrow is unresolved within the model
hierarchy. This means that there is no
representation of the arrow in any other
diagram in the model.

Resolve it to a border arrow
Resolve it with a round tunnel
Create an external reference
Create an off-page reference

Border Arrow

* An arrow that runs between an activity and
the diagram border. Border arrows are also

represented in the decomposition diagram or
parent diagram.

Round Tunnel

* A symbol that indicates your intention to leave
the arrow unresolved in the model hierarchy.
Round tunnels are usually temporary.

External Reference

* A symbol that represents a location, entity,
person, or department that is a source or
destination of data but is outside the scope of
a diagram. An external reference can be
internal to a company, such as “Accounts

Payable” or outside it, such as “Vendor” or
“Bank.”

Off-page Reference

* A symbol that represents a reference to
another diagram in the model. You can right-
click the Off-page reference and choose Go To
Reference to open the referenced diagram.

UZED AT: [AUTHOR: James Smlh DATE:T. 1223000 .'.-'-.tum NG FEADER DATE|CONTE=T:
FROJEZT: BEFwln kilodal REV: 15.1230050 ODFRAFT
F.ECCMMEND ED e
HOTES: 1 23 + 56T 89 10 FUELCATEN A0
Arailable
Custorner * Stock
Order p . Order Confirmation
Det=il= “YERIFY : £
—H CRDER o
§0 i
Cust - Stock Re-Order
Ustormer ALLOCATE 7 =
Crder - STOCH i -
Detail=s pr—
¥0 = Custorer Order
-'"-"-'"-’"-’"-’"-"-’"-’"-’l\i b"-’"-"'-'"-’"-"-’"-’"-’l\.n'.\.-"-'.\': D Et a i I 5
- Inwoice
Inwoice PROCESS ; i=-
= I OICE :
p—.
0 E
Daliverad
Customer Goods
Order -
Details =HIF :
- PRODUCTS A
0 &+
I:' r Ij E r E rlt r !.I. '-\."-\.::
wste
NOOE: TITLE: NUMEER:

Al

FROCESS ORDER

UZED AT:

AUTHOR: James Sl
FROJECT: BFwin kikordal

DATE:IS. 12
REW: 15,1230

MOTEZ: 1 2 2 4567 89 10

WO REEING RE~DEF DATHCONTEST:
DRAFT —

R ECOMMEN D ED =

FUBLICATIEN A0 —

CHECH.
AN AILABILITY

$0 i

A

L L L

Custorer Order Oetail=s

PLACE
I
BACHORDER

jo 3

A e

e e T e e e

l fosailable Stock

LA AL A A Y

Stock Re-0Order

A55IGEN
TO
QRDER

$0 3

Custarer Order W‘

PO AL A A

BT T P

LPDATE
AN AILABILITY

0

PO L L T L T

e e

TDrder Ertry Systen

MO DE:

TITLE:

A

ALLOCATE STOCK DI 8

USED AT: AUTHOR: James Smith DATE:E1.12.2EIDE.'LI1I‘DHKING READER DATE|CONTEXT:
FROJECT: BPwin tutorial REW: 22.12.2000 DRAFT
RECOMMENDELD TGF'
NOTES: 122486 7Y 88 10 FUBLICATION A0
FROCESS
ORDER o
$0 of

UERIFY b ALLOCATEL Y PROCESS LY sHiP s
orRDER] sTock E] inwoIcE PRODUCTSES

oy
CHECK FLACE o ASSIGH

o 2 UPDATE
ANAILABILIT { Backoroer [oroer [AVAILABILIT

IDEF3

* |IDEF3 is a process description capture method
whose primary goal is to provide a structured
method by which a domain expert can
describe a situation as an ordered sequence of
events, as well as describe any participating
objects.

ey Account
Balance &

Withdrawal

TOW Activity

o

==y

1'?
J2

Verify Check

Junction ‘\

1E-|

Count Cash

=
1.4i

J3

|ssue Cashier's Check

J4

Frint & lssue

1.5

Data flow diagrams (DFDs)

 DFDs model systems as a network of activities
connected to one another by pipelines of
objects.

e Data flow diagrams also model holding tanks
called data stores, and external entities which
represent interfaces with objects outside the
bounds of the system being modeled.

* |n contrast to IDEFO arrows, which represent
constraining relationships, arrows in DFDs show
how objects (including data) actually flow, or
move, from one activity to another.

* This flow representation, combined with data
stores and external entities, gives DFD models
more resemblance to some of the physical
characteristics of a system.

e Data flow diagramming is mostly associated with
the development of software applications
because it originated for that purpose.

Fulfilkment
Castomers
omder information
informaton
ordiers] 2
—..[e Ship Products
| Process Clrder__ CUShomEr Name, customer name;
customer address l customer address
1 billing information 2{ Customers
CUSLOMEr NAMme, product
| customer address
Invoices -
iMJoices, sta‘.errenmf
pEyMENtS, nes
balling information 2 n':u
Ciodlect Payment 1

Customers

UDP

* In BPwin, you can create UDPs to associate business-specific
information with a diagram object such as an activity or arrow.

* Bpwin supports various types of UDPs, including pull-down lists,
command UDPs, and text lists.

* The first step to creating User Defined Properties (UDPs) is to
apply UDP values to diagram objects such as activities and arrows.

For example, you can create a text UDP called EMPLOYEES to list
the names of employees who work in departments represented by
diagram activities. You can create UDPs that use different datatypes
such as text boxes, multi-select lists, and commands that run other
Windows applications.

User Defined Property Dictionary Editor

Uzer-Defined Property [UDP) to be added after selected property:

Quality Add
Uszer-Defined Properties: Update
Walue Add
Azzigned Hole 1
Reszponsible Role -
days scale
Down
Delete
Cloze
Datatype: [JEARE: [Single selection] j :
ecmal Flaces: E I e Long DateEarmma: Help |
Kepwords: st ertiers:
Actvity UDPs Excellent
Good
]34
Foar
Inacceptable
Mew Kevword: New Member:
Add Keyword Delete Keywords Sele) fil ZpieEs WEIEtE MEmbers

[pdate i ember HIaiEe

Activity Properties

Swim Lane Diagrams

* Swim Lane diagrams can provide your organization
with an efficient mechanism for visualizing and
optimizing processes.

* Swim Lane diagrams organize complex processes
across functional boundaries, and help you to
conveniently view processes, roles, and
responsibilities, and their flow.

 Swim Lane diagrams use Process Flow Network (IDEF3)
methodology, and display graphical horizontal lanes
that represent process dependencies called roles

USED AT AUTHOR: Homm Weold DATE; 6A1<42005 .WDHKING READER DATE
PROJECT: Resnginesrng Quill Computers, REW. GA<452005 OR&FT
L RECOMMENDED
MOTES: 1 2 3 4 56 78 9 10 PUBLICATION
[:lﬂ"_.ll'ls T
1 I 12 18 24 30 36 54 B0 BE 72 78 g4 90 95
by
i ginal =
Check ;
Credi ;
2.1 i
ﬁ'u NN H%
Credit
Clerk
o Credit |
List
Credit
co “ trn I I n r e T]
i B 12 18 24 30 36 42 43 54 B0 BA 72 78 g4 a0 a8
[;IE!I'IE | 1 5 | 1 1 | I 1 | I 1 | L 1 | 1 L | 1 1 1 L 1 [L y] M 1 M 1 2 M 1 y § | ¥ I ¥ M |
NODE TmE: Credit Verification NLIBER:
A1252 ——

Prerequisites for Adding a Swim Lane Diagram

* Create process roles in the role dictionary.

* Create process roles in the UDP dictionary by
adding list items to a text list UDP

How Process Roles are Created in the Role Dictionary

* Creating process roles involves working with
the following dictionaries:

— Role Group Dictionary
— Role Dictionary
— Resource Dictionary

Organization Charts

USED AT: |AUTHOR: Homm iiiold DATE: 6/1472005 [workinG READER DATE

PROJECT: Quil REV 8/142005] [pDRAFT

RECOMMENDED
NOTES: 1 234667 88 10 PUBLICATION
Accounting Customer Marketing Operations Sales
Support Director Manager Manager
Accountant Accountant Support Support Support Marketing Operations Secretary Sales
1 2 Tech 1 Tech 2 Tech 3 Support Clerk Assistant

NODE: TITLE: NUMBER:

Cuill Business

Prerequisites for Creating an Organization Chart

* You must have at least one role group defined
in the Role Dictionary.

* The necessary roles must exist in the Role
Dictionary and be associated with a role
group.

* Any required resources must be added to the
Resource Dictionary and associated with roles.

ERWIn

Data Modeling

Logical Models

There are three levels of logical models that are
used to capture business information
requirements:

— the Entity Relationship Diagram,

— the Key-Based Model,

— and the Fully Attributed model.

Entity Relationship Diagram (ERD)

* The Entity Relationship Diagram (ERD) is a
high-level data model that shows the major
entities and relationships, which support a
wide business area. This is primarily a
presentation or discussion model.

 An ERD is made up of three main building blocks:
entities, attributes, and relationships.

* The logical equivalent to a table is an entity. In an
ERD, an entity is represented by a box that
contains the name of the entity. Entity names are
always singular.

* A relationship is represented by a line drawn

between the entities.
MDWEI

MOWIE REMTAL COPY §

CUSTOMER §

Like tables have columns, entities have attributes.

James Bond London, UK 700-007
102 Clark Kent New York, USA 7873-1626

MO E
rovie id

maovie name
movie year
movie description
movie genre

CUSTOMER MOWIE RENTAL COPY

] ; P . :
custamer id rmovie copy id
® rrovie id

customer name g
customer address | general condition
custorner phone | number of rentals

In each entity in a data model, a horizontal line separates the
attributes into two groups, key areas and non-key areas.

The key area contains the primary key for the entity.

The primary key is a set of attributes used to identify unique
instances of an entity.

CUSTOMER
" :
: : t b Primary Ke
The primary key may be comprised |- M= g e
. name
of one or more primary key T
attributes, as long as the chosen phﬂdnf d Non-Keys
. . . . [EFER L Tl

attributes form a unique identifier | .4 card exg
for each instance in an entity. status code

e e

"\-\.r-"

Logical Relationships

* Relationships represent connections, links, or
associations between entities. They are the verbs
of a diagram that show how entities relate to each
other.

B A TEAM <has> many PLAYERs.

m A PLANE-FLIGHT <transports> many PASSENGER:s.

m A DOUBLES-TENNIS-MATCH <requires> exactly 4 PLAYERs.
m A HOUSE <is owned by> one or more OWNERs.

m A SALESPERSON <sells> many PRODUCTs.

Foreigh Key

* A foreign key is the set of attributes that define
the primary key in the parent entity and that
migrate through a relationship from the parent
to the child entity. In a data model, a foreign key
is designated by the symbol (FK) after the
attribute name.

* When you create a relationship between
entities, ERwin automatically migrates the
primary key attributes of the parent entity to
the child entity.

Rolenames

* When foreign keys migrate from the parent entity in a
relationship to the child entity, they are serving double-
duty in the model in terms of stated business rules. To
understand both roles, it is sometimes helpful to

rename the migrated key to show the role it plays in the

child entity.
TEAM FLAYER

.-‘- .
team-id player-id
& player-team-id.team-id (Fk)

"

SCORING PLAY

player-id (FK)
player-team-id (Fk)

CURRENCY
currency-code |
currency-name | - lmugrht y FOREIGN-EXCHANGE- TRADE

. |j frade-id
is solt by |
| — —&@ bought-currency-code currency-code (FK)

| bought-currency-amount
— — — — —@ sold-currency-code currency-code (FIK)
sold-currency-amount

Aftribute/Rolename Attribute Definition
currency-code The unique identifier of a CURRENCY.
bought-currency-code The identitier (“currency-code”) of the CURRENCY

bought by (purchased by) the FOREIGIN-
EXCHANGE-TEADE.

sold-currency-code The identifier (“currency-code”) of the CURRENCY
sold by the FOREIGN-EXCHANGE-TRADE.

Types of Entities

* Anindependent entity is an entity whose
instances can be uniquely identified without
determining its relationship to another entity.
It is represented as a box with square corners.

* A dependent entity is an entity whose
instances cannot be uniquely identified
without determining its relationship to
another entity or entities. It is represented as
a box with rounded corners.

TEAM FLAYER

player-id f‘
team-id (FI) |

Independent Dependent
Entity Entity

Types of Relationships

The type of relationship determines how a primary key of the
parent entity migrates to the child entity as a foreign key.
There are two basic types of relationships:

* An identifying relationship is represented by a solid line
and through it the primary key of the parent migrates to
the primary key area of the child entity and becomes part
of the primary key of the child entity.

* A non-identifying relationship is represented by a dashed
line and through it the primary key of the parent migrates
to the non-key area of the child entity and becomes a non-
key attribute in the child entity.

Cardinality IDEF1X MNotation |E Notation

Description Identifying Non-identifying Identifying Non-identifying

One to zero, one, or more ,

.. R
Tl

ry
o

One to one or more

P P
One to zero or one , ,
z iz) i
° ()] %Q
Zero or one to Zero, one, ‘:} ,
or more (non-identifying : 7
only) : !
: |
. X
Zero or one to Zero or one ‘:} ,
(non-identifying only) . o
; :
i\ 7 !
o s

The child is neither existence nor identification-
dependent with respect to that relationship

The attribute “passenger-id” is a
foreign key attribute of SEAT.
Because the “passenger-id” does
not identify the SEAT, it identifies
the PASSENGER occupying the
SEAT, the relationship is non-
identifying. The SEAT can exist
without any PASSENGER, so the
relationship is optional. When a
relationship is optional, the

diagram includes either a diamond
in IDEF1X or a circle in |IE notation.

PASSENGER

passenger-id

may occupy

PASSENGER

passenger-name |

passenger-id

| Ay occupy o

passenger-name |

SEAT

seat number

passengerid (FK) |

SEAT

seat number

passenger-id (FK)

The cardinality for the relationship, indicated here with a Z in IDEF1X and a single line
in IE, states that a PASSENGER <may occupy> zero or one of these SEATs on a flight.
Each SEAT can be occupied, in which case the PASSENGER occupying the seat is
identified by the “passenger-id,” or it can be unoccupied, in which case the
“passenger-id” attribute is empty (NULL).

EMPLOYEE PROJECT
employee-id project-id

5 assigned to has as project members

¢ o

PROJECT-EMPLOYEE

femplnyee-id (FK)
project-id (FK)

start-date

end-date
e, o

What would happen if you were to delete an
instance of PROJECT?

Referential Integrity

Cascade—Each time an instance in the parent entity is deleted, each related
instance in the child entity must also be deleted.

Restrict—Deletion of an instance in the parent entity is prohibited if there are one
or more related instances in the child entity, or deletion of an instance in the child
entity is prohibited if there is a related instance in the parent entity.

Set Null—Each time an instance in the parent entity is deleted, the foreign key
attributes in each related instance in the child entity are set to NULL.

Set Default—Each time an instance in the parent entity is deleted, the foreign key
attributes in each related instance in the child entity are set to the specified default
value.

<None>—No referential integrity action is required. Not every action must have a
referential integrity rule associated with it.

In each relationship there are six possible

actions for which referential integrity can be
defined:

* PARENT INSERT
* PARENT UPDATE
* PARENT DELETE
* CHILD INSERT
D UPDATE
 CHILD DELETE

o
®
|

Reading Referential Integrity Options

* The first letter in the referential integrity symbol
always refers to the database action:

I(Insert), U(Update), or D(Delete).

 The second letter refers to the referential integrity
option:

C(Cascade), R(Restrict), SN(Set Null),
and SD(Set Default).

EMPLOYEE FROJECT
employee-id project-id
D:C| IS assigned fo has as project members |D:C

U:C LR IR U:C

P

PROJECT-EMPLOYEE

rrarnpzlIl:rg,rera-itl (FK)
project-id (FK)

start-date
end-date

. oA

Additional Relationship Types

* Many-to-many relationships—A relationship where one
entity <owns> many instances of a second entity, and the
second entity also <owns> many instances of the first entity.

* N-ary relationships—A simple one-to-many relationship
between two entities is termed binary. When a one-to-many
relationship exists between two or more parents and a single
child entity, it is termed an n-ary relationship.

* Recursive relationships—Entities that have a relationship to
themselves take part in recursive relationships. This type of
relationship is used for bild-of-materials structures, to show
relationships between parts.

* Subtype relationships—Related entities are grouped
together so that all common attributes appear in a single
entity, but all attributes that are not in common appear in
separate, related entities.

Many-to-many

STUDENT COURSE
student-id course-1d "
student-name course-name |

COURSE-ROSTER
STUDENT COURSE student-id (FK)
student-id = course-id course-id (FK)

student-name § course-name ¢ course-time

N-ary Relationships

COMPANY PRODUCT CUSTOMER
company-id product-id customer-id
company-name product-name customer-name
15 purchgsed by
sells SIgNS
¢ o o
CONTRACT

P

company-id (FK)
product-id (FK)
customer-id (FK)

L9

contract-detall

Recursive Relationship

Independent Company Big Monster Company
] c1
Small Monster Company Other Small Company
c2 C3
Big Subsidiary ca Small Subsidiary €5
COMPANY
company-id
company-name *— —
parent-id company-id (FK)

Y

| parent of

Subtype Relationships

* A subtype relationship, also referred to as a
generalization category, generalization hierarchy,
or inheritance hierarchy, is a way to group a set
of entities that share common characteristics.

CHECHKING-ACCOUNT SR NGS-ACCOUNT | CAN-ACCOUNT
checking-account-number savings-account-number loan-number
checking-oper-date savings-npen-dats l0&En-npen-date
checking-reviem-date S avings-reviem-data |0 En-Tevien- 0 ste
checking-balance savings-halance originakloan-amount
gvalable-halance Interestrate lozn-interect-rate
paer-check-charge interest-eamed current-loan-Dalance

ACCOUNT

arcount-id

account-type
account-open-date
account-review-date

T 7L

CHECKING-ACCOUNT

()acmumt—wne

SAVINGES-ACCOUNT

|
LOAM-ACCOUNT

-~

accodnt-id (FE)

accountid (FK)

1 (‘aczountid (FK)

h

checking-halance
avallahle-halance
ner-check-charge

savings-halance
inferest-rate

-

interest-earned
Lo

original-loan-date
loan-interest-rate

current-lnar-balance
L.

Incomplete

EMPLCYEE
employes-number

emMmployee-name
emploves-gender
employee-hype

é amployee-ype

| |
COMSULTAMT FULL-TIME-EMPLOYEE

f’erﬂplwee—ﬂurﬂher{FHj ‘] (Emplnyee-numher (Fk) 1
Lhnurl*_,f—rate J qull—time—ernplwee—hape J

Complete

EMPLOYEE
ermployes-number

EMMployeE-NEME
employes-gender
employee-type

(_Jemployea-gendar

— 1

[|
lALE-EMPLOYEE FEMALE-EMPLOYEE
(E mployee-numosr (F) 1 (E mployee-number (FH) 1

|) [t

IDEF1X Subtype Notation

IE Subtype
Complete Incomplete Notation

Exclusive
Subtype

s % 7

Inclusive
Subtype

Key-based model

* The key-based model covers the same scope as
the Entity Relationship Diagram (ERD) but exposes
more of the detail, including the context in which
detailed implementation level models can be
constructed.

MO E

Keys——p -.f____rﬂuuie Id ™

E&_ movie Name
rmovie yoar
movie dascrption
movie ganre ;

CUSTOMER ¥ \ MOVIE RENTAL COPY
Lcustornerid E 2 ~A{movie copy id __"'\E)
customer namz —=Lmovie id —
cuslurmer addrzss
customer phone

M

qehRFAl conditinn
number of rentals

Selecting a Primary Key

Uniquely identify an instance.
Never include a NULL value.

Not change over time. An instance takes its identity
from the key. If the key changes, it is a different
Instance.

Be as short as possible, to facilitate indexing and
retrieval. If you need to use a key that is a
combination of keys from other entities, make sure
that each part of the key adheres to the other
rules.

Designating Alternate Key Attributes

Alternate keys are often used to identify the different
indexes, which are used to quickly access the data. In a
data model, an alternate key is designated by the symbol
(AKn), where n is a number that is placed after the
attributes that form the alternate key group.

EMFLOY EE
employee-number

Bl ee-name (A1
employeegender
employee-hire-data
emﬂ]ﬂ!_.tﬂﬂ-SEN— —
‘amplayee-bith- datgjh.hbil
employee-bonus-amount

Fully-attributed model

* A Fully-Attributed (FA) Model is a third normal
form data model that includes all entities,
attributes, and relationships needed by a
single project. The model includes entity
instance volumes, access paths and rates, and
expected transaction access patterns across
the data structure.

Physical model

* The objective of a physical model is to provide a
database administrator with sufficient information
to create an efficient physical database. The
physical model also provides a context for the
definition and recording in the data dictionary of
the data elements that form the database, and
assists the application team in choosing a physical
structure for the programs that will access the data.

Physical model

* You can create a physical model from an ERD,
key-based, or fully attributed model simply by
changing the view of the model from Logical
Model to Physical Model. Each option in the
logical model has a corresponding option in
the physical model. Therefore, each entity
becomes a relational table, attributes become
columns, and keys become indices.

e RN AR RN R RN R AR E RN N LT,

CUSTOMER Model example move

CURBDIME F UM DEr H Mo E-number
custome Fname BE1L ET mowe-n=mea [FE)
cugboma Faddme: (S o i=-raling
cushome reizbus-code CUSTOMER Mo E-ra ik =t
: ; v ; //_ Subject Area
MOVIE-RENTAL-RECORD is in stgck as

= nling-cuzdomer curtomer-numbesr FE g :

matizrnumbsr (FE) : P

iz caop o m b (F)

MOWIE-COPY

2 niskracord.dais

V| =ni=ldal= & rented ukder ma?nr-numl:ﬁr morik-numbst (FE] :

E dus-d=ts mowiz-oopy-number]

| = nizbetstus ge naraboondbon _.E:
parment-smount oy :
payment-dai=

i payrmenb-skstua
| overdus charge 7 subject
- ..._i. IIIIIII o o o A o e -

ha= irvolemerd of

OWVERDLUE-NOTICE
o i EMPLOYEE
| [rmowis-copy: num bar F E) i INVOLYEMENT -RECORD
i' mat=r-numbe= F K] emp Eyee-number M 2= Caopiy 1 U B (FH)
i | enizkecom-dake F <) amp tyes-rams [ET masse - num fer iF k)
wenting-cusizmer (FH) i% listed on | =me rymem-add iIs Imsnhsaid Uﬂtl'l.l renial ood-data (Fl)
|| oo e notice-d A t 7| hire-date e nling-cuziomer (K
il - HEEEL .- - invokemeanttma-elamo
;TeFrldu!'e-n;tﬁ-:Entglﬁ | | superecre mokuse- number (Fr | p emplovee-number [FR
2 TTETTETETTETERTEETETENY T ------------------------ I“mh‘mnnt_hpn
o~ | R R R e |
. | Supervises ;

