Kontola signala

= UNIX guru W. Richard Stevens aptly describes signals as software
interrupts.

When a signal is sent to a process or thread, a signal handler
may be entered (depending on the current disposition of the
signal), which is similar to the system entering an interrupt
handler as the result of receiving an interrupt.

= An application program executes sequentially if every instruction

runs properly. In case of an error or any anomaly during the

execution of a program, the kernel can use signals to notify the
process.

Signals also have been used to communicate and synchronize
processes and to simplify interprocess communications (IPCs).



Kontola signala

= A ssignal is generated when an event occurs, and then the kernel
passes the event to a receiving process.

Sometimes a process can send a signal to other processes.
Besides process-to-process signaling, there are many situations
when the kernel originates a signal, such as when file size
exceeds limits, when an 1/0 device is ready, when
encountering an illegal instruction or when the user sends a
terminal interrupt like Ctrl-C or Ctrl-Z.

= Every signal has a name starting with SIG and is defined as a
positive unique integer number.
1 to 31 - standard signals
32 to 63 - a new class of signals designated as real-time signals

kill -1
display all signals with signal number and corresponding
signal name.
/usr/include/bits/signum.h - signal numbers
/usr/src/linux/kernel/signal.c - source file



Kontola signala

When a process receives a signal, one of three things could happen:
1. the process could ignore the signal.

2. 1t could catch the signal and execute a special function called a
signal handler.

3. it could execute the default action for that signal
There are four possible default dispositions:
= Exit: forces the process to exit.
= Core: forces the process to exit and create a core file.
= Stop: stops the process.
= |gnore: ignores the signal; no action taken.

» signal(7) - page for a reference list of signal names, numbers,
default actions and whether they can be caught.



Kontola signala

Name Number Default Action Description
SIGHUP 1 Exit Hangup (ref termio(71))

SIGINT 2 Exit Interrupt (ref termio(71))

SIGQUIT 3 Core Quit (ref termio(71))

SIGILL 4 Core [llegal Instruction

SIGFPE 8 Core Arithmetic exception

SIGKILL 9 Exit Kill

SIGBUS 10 Core Bus error--a misaligned address error
SIGSEGV 11 Core Segmentation fault, an address reference boundary error
SIGSYS 12 Core Bad system call

SIGCHLD 18 Ignore Child process status changed

SIGPWR 19 Ignore Power fail or restart

SIGSTOP 23 Stop Stop (cannot be caught or ignored)
SIGTSTP 24 Stop Stop (job control, e.g., CTRL-2))
SIGCONT 25 Ignore Continued

SIGTTIN 26 Stop Stopped--tty input (ref termio(71))
SIGTTOU 27 Stop Stopped--tty output (ref termio(71))
SIGXFSZ 31 Core File size limit exceeded (ref getrlimit(2))
SIGRTMIN 38 Exit Highest priority real-time signal

SIGRTMAX 45 Exit Lowest priority real-time signal



The POSIX standards provided a set of interfaces for using signals in
code, and today the Linux implementation of signals is fully POSIX-
compliant.

Reliable signals require the use of the newer sigaction interface, as
opposed to the traditional signal call.
Synopsis

#include <signal.h>

typedef void (*sighandler _t)(int);

sighandler_t signal(int signum, sighandler_t handler);

ili krace
void (*signal(int sig, void (*func)(int)))(int);

Description

The signal() system call installs a new signal handler for the signal
with number signum. The signal handler is set to sighandler which may
be a user specified function, or either SIG_IGN or SIG_DFL.



#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <signal.h>
int main(void)
{ void sigint_handler(int sig); /* prototype */
char s[200];
if (signal(SIGINT, sigint handler) == SIG_ERR) {
perror("signal");
exit(1);}
printf("Enter a string:\n");
if (gets(s) == NULL) perror("gets");

else
printf("You entered: \"%s\"\n", s);
return 0;

}

void sigint _handler(int sig) {
printf("Not this time!\n");

}



#include <signal.h>

int main(void) {
/* Part I: Catch SIGINT */
signal (SIGINT, my_handler);
printf ("Catching SIGINT\n");
sleep(3);
printf (" No SIGINT within 3 seconds\n");
/* Part II: Ignore SIGINT */
signal (SIGINT, SIG _IGN);
printf ("Ignoring SIGINT\n");
sleep(3);
printf ("No SIGINT within 3 seconds\n");
/* Part III: Default action for SIGINT */
signal (SIGINT, SIG DFL);
printf ("Default action for SIGINT\n");
sleep(3);
printf ("No SIGINT within 3 seconds\n");
return 0;
}
/* User-defined signal handler function */
void my handler (int sig) {
printf ("I got SIGINT, number %d\n", sig);
exit(9);

void my handler (int sig); /* function prototype */



SALJE SIGNAL

#include <signal.h>

main ( ) {
int process id;
printf ("Enter process_id which you want to send a signal : ");
scanf ("%d", &process id);

if (!(kill ( process_id, SIGINT)))
printf ("SIGINT sent to %d\n", process id);
else if (errno == EPERM) printf ("Operation not permitted.\n");

1o,

else printf ("%d doesn't exist\n", process _id);

PRIMA SIGNAL

/* Listing 4a. This program will run until it receives SIGINT */
#include <signal.h>

main ( ) {
printf (" This process id is %d.
"Waiting for SIGINT.\n", getpid());
for (55);

UBACITI KONTROLU SIGNALA SIGINT



	Kontola signala
	Kontola signala
	Kontola signala
	Kontola signala
	signal()
	Pr.1.
	Pr.2.
	Pr.3.

