

HERMES SoftLab
usAa

ComTrade IT
Solutions and
Services

USA

HERMES SoftLab
HERMES SoftLab Croatia Serbia

Germany

HERMES SoftLab
Ireland

ComTrade IT Solutions
and Services
Belgrade, Serbia

CT Retail
Belgrade, Serbia

ComTrade IT Solutions
and Services
Kragujevac, Serbia

CT Computers
HERMES Softlab | |] Montenegro

France

HERMES SoftLab CT Retail
Ljubljana, Slovenia Sarajevo, BIH

ComTrade IT Solutions
HERMES SoftLab CT Computers

and Services
Maribor, Slovenia BIH

Montenegro

HERMES SoftLab HERMES SoftLab
Banja Luka, BIH Sarajevo, BIH

‘ComTrade Centri in pictures

i) 4»WHW&X}
p ! "ial.‘.l.;;a.

L J L J ® o0 @ [BN) L 1 J L] [] [J [1] L 2 L J
000 00 © © © 000 000 © 00 ®0 00 00 0000000 o

0000 000000 © 000000000 00 Y] ® :o.:o oooooo:::
o0 =

5

Comlrad
- Sicm” M

Partner

MV Integrated - Buses outons
ODCERTIED g Sofae St
Paer

® (11 ® & ° e o ® oo ® ® © 60 o ® ® o

000 00 o ® (1] 0000000 O 00 000 00 0000 ¢ 00 00 0000
9000 0000006 © ® 000000000 600 000 00 0000 o0 20® © 00 ¢ o
00000000 0000 O L] (1111 °0e® & o0 O 000000 00000000
00000 0000 0000000 0000 ® O 00000060 0000000 0000000000000 00000000

0000 0000000 00000 0000 a a_a ® 00 0000000000 00000 0000
o0 000 Business Rartneriil L e ® 00000000 00 000 000000 & 000
® 00 900000 SUIVVAIE e o0 o0 00®
88.°8508r 1 Tatstls 2, ; B B°s*2SAP, e, szttt
20 00 00000 {&,}E Adaptive Enginearing | e o e ® ®
0000 ® @] !;;n; L1 o® @

~ Overview
?’ Esgums.[!;gagcg

* Defining, Instantiating, and Starting Threads

* Transitioning Between Thread States

e Sleep, Yield, and Join

 Concurrent Access Problems and Synchronized Threads
* Deadlocked Threads

 Communicating with Objects by Waiting and Notifying

 Monitor — Signal and Continue

% ComTrade Introduction

In Java, "thread" means two different things:
An instance of class java.lang.Thread — object, lives and dies on the heap.

A thread of execution - "lightweight" process

One call stack per thread - main() is the first method on the
stack of main thread

Concurrently, in parallel?

JVM, operates like a mini-OS and schedules its own threads regardless of the
underlying operating system

When it comes to threads, very little is guaranteed

Once all user threads are complete, the JVM will shut down

== ComTrade Defining a Thread

IT Solutions and Services
The action happens in the run() method. Two ways to define and instantiate a thread

* Implement the Runnable interface

* Extend the java.lang.Thread class
class MyThread extends Thread { //extend Thread

public void run() { //override run()
System.out.printin("Important job running in MyThread');

s
public void run(String s) {

System.out.printIn(*'String In run 1s " + s);

by

+

Overload run() - normal method call

class MyRunnable implements Runnable { //implement Runnable
public void run({ //implement run()

System.out.printin("Important job running in MyRunnable™);

<% ComTrade Instantiating a Thread

Every thread of execution begins as an instance of class Thread

Thread is the "worker," and the Runnable is the "job" to be done
Thread MyThread tr = new MyThread();
MyRunnable r = new MyRunnable();

Thread t = new Thread(r); // Pass your Runnable to the Thread

Thread constructors:

e Thread()

e Thread(Runnable target)

e Thread(Runnable target, String name)
e Thread(String name)

When a thread has been instantiated, the thread is said to be in
new state

<% ComTrade Starting a Thread

How to start the Thread
t.start();

What happens after we call start?

* A new thread of execution starts (with a new call stack).
e The thread moves from the new state to the runnable state.

e When the thread gets a chance to execute, its target run() method will
run.

We call start() on a Thread instance, not on a Runnable instance
The following code does not start a new thread of execution, it
will just invoke method:

Runnable r = new Runnable();

r.run(); // Legal, but does not start a separate thread

== ComTrade Process of starting a thread
J IT Solutions and Services

Iy rami} begins
public statle vold malniscring [1 args)
I mmmg _'_‘_'__._'__._,—'—" Imain
e pmET seack A
S mome code —
Jf inm maini)
2) main() invokes method| (]
methodl (] p—
—
£¢ runnim i T
; [methodl
S more oods main
I stack A

void methodli)
Funnable r = new MyRunnahlai);

Thread L = neaw Threadi(r);

t.2tart(]; -

Eimeiia
e— rmethod |

Ff doe more stuff R un Inein

1 stack B stack A,

{thrcad o) {main dcad)

3} methodl () starts a new thread

== ComTrade Starting and Running Multiple
IT Solutions and Services Th rea d S

class NameRunnable implements Runnable {
public void run()

{ for (int x = 1; x <= 3; x++) { System.out.printIn("Run by “ + Thread.currentThread().getName() + ", xis " + x}}

}
Target Runnable instance doesn't have a reference to the Thread instance.

That is why we use static method Thread.currentThread() to get reference of currently
executing thread.

public class ManyNames {
public static void main(String [] args) {
// Make one Runnable

NameRunnable nr = new NameRunnable();

Thread one = new Thread(nr); Thread two = new Thread(nr); Thread three = new Thread(nr);
one.setName("Fred"); two.setName("Lucy"); three.setName("Ricky");

one.start(); two.start(); three.start();

== ComTrade Starting and Running Multiple
\’ IT Solutions and Services Threads

Behavior you see below is not guaranteed!
% java ManyNames
Run by Fred, xis 1
Run by Fred, xis 2
Run by Fred, x is 3
Run by Lucy, xis 1
Run by Lucy, x is 2
Run by Lucy, x is 3
Run-by Ricky, x is 1
Run by Ricky, x is 2
Run by Ricky, x is 3

e
v Esguml!;gagcg

400 iterations segment example:
Run by Fred, x is 345
Run by Lucy, x is 337
Run by Ricky, x is 310
Run by Lucy, x is 338
Run by Ricky, x is 311
Run by Lucy, x is 339
Run by Ricky, x is 312
Run by Lucy, x is 340
Run by Ricky, x is 313
Run by Lucy, x is 341
Run by Ricky, x is 314
Run by Lucy, x is 342
Run by Ricky, x is 315
Run by Fred, x is 346

Each thread will start, and each thread will run to completion.

% ComTrade Thread, scheduler

A thread is done being a thread when its target run() method
completes

Once a thread has been started, it can never be started again

The thread scheduler is the part of the JVM that decides which
thread should run at any given moment

The order in which runnable threads are chosen to run is not
guaranteed

You must be able to look at thread code and determine whether
the output is and is not guaranteed

== ComTrade 'nhread & thread manipulating
\’ IT Solutions and Services methods

Some of the methods that can help us influence thread
scheduling are as follows:

From the java.lang.Thread Class

public static void sleep(long millis) throws
InterruptedException

public static void yield()

public final void join() throws
InterruptedException

public final void setPriority(int newPriority)
From the java.lang.Object

public final void wait() throws
InterruptedException

public final void notifty()
public final void notifyAll()

== ComTrade 'nhread & thread manipulating
" IT Solutions and Services methods

~w ComTrade Thread States description

IT Solutions and Services

New

This is the state the thread is in after the Thread instance has been created - not
alive

Runnable

This is the state a thread is in when it's eligible to run, but the scheduler has not
selected it to be the running thread - alive.

Running

This is the state a thread is in when the thread scheduler selects it (from the
runnable pool) to be the currently executing process

Waiting/blocked/sleeping

The thread is still alive, but is currently not eligible to run. In other words, it is not
runnable, but it might return to a runnable state later if a particular event occurs
and the scheduler chooses a thread from the runnable pool
One thread does not tell another thread to block (at least not in a safe way)
suspend(), resume(), stop() - deprecated

Dead

A thread is considered dead when its run() method completes. It may still be a
viable Thread object, but it is no longer a separate thread of execution

<% ComTrade The jOln() Method

" IT Solutions and Services

The non-static join() method of class Thread lets one thread “join onto the end” of

another thread.

When one thread calls the join() method of another thread, the currently running

thread will wait until the thread it joins with has completed

EFEREFPOOOWOOOD WO WO O 0D e

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running

Thread b = new Thread(aRunnable);

b.start();

// Threads bounce back and forth

b.jeint); // A joins to the end
/f of B

//Thread B completes !!
// Thread A starts again !

doStuff()
StackA is
running
doStuff() | | doOther()
Stack A is Stack B is
running running
doOther()

Stack B
doSwiff()

StackA

Stack A joined

1o Stack R

~w ComTrade Race condition

IT Solutions and Services

10000%
Client#1 Client#2

Read account state->10000%
Read account state->10000%
Withdraw 9000%

Withdraw 1000%

Write account state->10009%

Write account state->9000%

9000%

== ComTrade Synchronizing Code

IT Solutions and Services

How does synchronization work? With locks. Every object in Java has a built-
in lock that only comes into play when the object has synchronized
method code

Key points about locking and synchronization:

e Only methods (or blocks) can be synchronized, not variables or
classes

e Each object has just one lock

e Not all methods in a class need to be synchronized. A class can have
both Synchronized and non-synchronized methods

e |ftwo threads are about to execute a synchronized method in a
class, and both threads are using the same instance of the class to
invoke the method, only one thread at a time will be able to execute
the method

== ComTrade Synchronizing Code

IT Solutions and Services

e |f a class has both synchronized and non-synchronized methods, multiple
threads can still access the class's non-synchronized methods!

e |f a thread goes to sleep, it holds any locks it has—it doesn't release them

e A thread can acquire more than one lock. For example, a thread can enter a
synchronized method, thus acquiring a lock, and then immediately invoke a
synchronized method on a different object, thus acquiring that lock as well

e Once thread acquires the lock, it can invoce any other synchronized method
on object it locked.

You can synchronize a block of code rather than a method.
public synchronized void doStuff() {
System.out.printIn('synchronized");

+
Is equivalent to this:
public void doStuff() {
synchronized(this) {
System.out.printIn('synchronized);

}
}

== ComTrade Static methods

IT Solutions and Services

Static methods can be synchronized

We only need one lock per class to synchronize static methods—a lock for the
whole class

java.lang.Class instance lock is used to protect the static methods of the class
(if they're synchronized)

public static synchronized int getCount() {
return count;

}

If the method is defined in a class called MyClass, the equivalent code is as
follows (block):

Compiler tells JVM to find instance of Class that represents the class
called MyClass

public static int getCount() {
synchronized(MyClass.class) { //MyClass.class — class literal
return count;

}

~ Blockin
?’ Esgums.[!;gagcg g

If a thread tries to enter a synchronized method and the lock is

already taken, the thread is said to be blocked on the object's
lock

When thinking about blocking, it's important to pay attention to
which objects are being used for locking

e Threads calling non-static synchronized methods in the same class will
only block each other if they're invoked using the same instance

e Threads calling static synchronized methods in the same class will
always block each other—they all lock on the same Class instance

e A static synchronized method and a non-static synchronized method
will not block each other, ever

e For synchronized blocks, you have to look at exactly what object has
been used for locking

~w ComTrade Methods and Lock Status

IT Solutions and Services

Class Defining

Give Up Locks Keep Locks the Method

wait () notify () (Although the thread will probably java.lang.Object
exit the synchronized code shortly after this call,
and thus give up its locks.)

join () java.lang.Thread

sleep() java.lang.Thread

yield() java.lang.Thread

== ComTrade Thread Deadlock

IT Solutions and Services

Example : Two threads are waiting for each other's locks to be
released; therefore, the locks will never be released!

The code is waiting for locks to be removed from objects

Deadlocking is baaad. Don’t do it.

public class DeadlockRisk {
private static class Resource {
public int value;
}

private Resource resourceA = new Resource();
private Resource resourceB = new Resource();
public int read() {
synchronized(resourceA) {
synchronized(resourceB) {return resourceB.value + resourceA.value;}
}

public void write(int a, int b) {
synchronized(resourceB) {
synchronized(resourceA) {resourceA.value = a;resourceB.value = b;}
}

% ComTrade Thread Interaction

The Object class has three methods, wait(), notify(), and
notifyAll() that help threads communicate about the status of
an event that the threads care about

The methods wait(), notify(), notifyAll() are instance methods of
Object

wait(), notify(), and notifyAll() must be called from within a
synchronized context! A thread can't invoke a wait or notify
method on an object unless it owns that object's lock

== ComTrade Monitor —Signal and Continue

" IT Solutions and Services

Condition ™
| \

Variable

queue/

—

/ ;,ntry ‘\I ;/ Executing\l
'\queue / :i The monitor /

Monitor Free

Queue NOT guaranteed!

~w ComTrade Operator-Machine

IT Solutions and Services

class Operator extends Thread {
public void run(){
while(true){
/I Get shape from user

synchronized(this{
/l Calculate new machine steps from shape
notify();

}

}
}
class Machine extends Thread {

Operator operator; // assume this gets initialized

public void run(){

while(true
synchronized(operator){
try {
operator.wait();

} catch(InterruptedException ie) {}
/l Send machine steps to hardware

== ComTrade MailBox

IT Solutions and Services

public class MailBox{
private Letter todaysLetter;
private boolean available = false;
public synchronized Letter get() {
while (available == false) {
try {
wait();
} catch (InterruptedException e) { }
}
available = false;
notifyAll();
return todaysLetter;
}
public synchronized void put(Letter letter) {
while (available == true) {
try {
wait();
} catch (InterruptedException e) { }
}
todaysLetter = letter;
available = true;
notifyAll();

ComTrade

IT Solutions and Services

...
..
..
...
...
..
..

..........
.............
..........

	ComTrade Global Map
	ComTrade Centri in pictures
	ComTrade IT Solutions and ServicesPartners
	Overview
	Introduction
	Defining a Thread
	Instantiating a Thread
	Starting a Thread
	Process of starting a thread
	Starting and Running Multiple Threads
	Starting and Running Multiple Threads
	
	Thread, scheduler
	Thread & thread manipulating methods
	Thread & thread manipulating methods
	Thread States description
	The join() Method
	Race condition
	Synchronizing Code
	Synchronizing Code
	Static methods
	Blocking
	Methods and Lock Status
	Thread Deadlock
	Thread Interaction
	Monitor – Signal and Continue
	Operator-Machine
	MailBox

