Extremal Graphs for Exponential VDB Indices

Download PDF

Authors: R. CRUZ AND J. RADA

DOI: 10.46793/KgJMat2201.105C


We find the extremal graphs for the exponential of well known vertex-degree-based topological indices over ????n, the set of graphs with n non-isolated vertices.


Vertex-degree-based topological indices, exponential topological indices, extremal graphs.


[1]   R. Cruz, T. Pérez and J. Rada, Extremal values of vertex-degree-based topological indices over graphs, J. Appl. Math. Comput. 48 (2015), 395–406.

[2]   J. Devillers and A. T. Balaban, Topological Indices and Related Descriptors, in: QSAR and QSPR, Gordon & Breach, Amsterdam, 1999.

[3]   T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi and Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011), 613–626.

[4]   E. Estrada, L. Torres, L. Rodríguez and I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian Journal of Chemistry 37A (1998), 849–855.

[5]   B. Furtula, A. Graovac and D. Vukičević, Augmented Zagreb index, J. Math. Chem. 48 (2010), 370–380.

[6]   B. Furtula, I. Gutman and M. Dehmer, On structure-sensitivity of degree-based topological indices, Appl. Math. Comput. 219 (2013), 8973–8978.

[7]   I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chemical Physics Letters 17 (1972), 535–538.

[8]   I. Gutman and J. Tošović, Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices, Journal of the Serbian Chemical Society 78 (2013), 805–810.

[9]   I. Gutman, Degree-based topological indices, Croatica Chemica Acta 86 (2013), 351–361.

[10]   L. Kier and L. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.

[11]   L. Kier and L. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, New York, 1986.

[12]   J. Rada and R. Cruz, Vertex-degree-based topological indices over graphs, MATCH Commun. Math. Comput. Chem. 72 (2014), 603–616.

[13]   J. Rada and S. Bermudo, Is every graph the extremal value of a vertex-degree-based topological index?, MATCH Commun. Math. Comput. Chem. 81 (2019), 315–323.

[14]   J. Rada, Exponential vertex-degree-based topological indices and discrimination, MATCH Commun. Math. Comput. Chem. 82 (2019), 29–41.

[15]   M. Randić, On characterization of molecular branching, Journal of the American Chemical Society 97 (1975), 6609–6615.

[16]   R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.

[17]   R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.

[18]   D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009), 1369–1376.

[19]   L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012), 561–566.

[20]   B. Zhou and N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009), 1252–1270.