On Fuzzy Primary and Fuzzy Quasi-Primary Ideals in LASemigroups

Download PDF


DOI: 10.46793/KgJMat2204.617Y


The purpose of this paper is to introduce the notion of a weakly fuzzy quasi-primary ideals in LA-semigroups, we study fuzzy primary, fuzzy quasi-primary, fuzzy completely primary, weakly fuzzy primary and weakly fuzzy quasi-primary ideals in LA-semigroups. Some characterizations of weakly fuzzy primary and weakly fuzzy quasi-primary ideals are obtained. Moreover, we investigate relationships between fuzzy completely primary and weakly fuzzy quasi-primary ideals in LA-semigroups. Finally we show that a fuzzy left ideal f is a weakly fuzzy quasi-primary ideal of S2 if and only if S1 × f is a weakly fuzzy quasi-primary ideal of S1 × S2.


LA-semigroup, fuzzy primary ideal, weakly fuzzy quasi-primary ideal, fuzzy completely primary ideal, fuzzy quasi-primary ideal.


[1]   S. Abdullah, S. Aslam and N. U. Amin, LA-semigroups characterized by the properties of interval valued (α,β)-fuzzy ideals, J. Appl. Math. Inform. 32(3-4) (2014), 405–426.

[2]   S. Abdullah, M. Aslam, N. Amin and T. Khan, Direct product of finite fuzzy subsets of LA-semigroups, Ann. Fuzzy Math. Info. 3(2) (2012), 281–292.

[3]   S. Abdullah, M. Aslam, M. Imran and M. Ibrar, Direct product of intuitionistic fuzzy sets in LA-semigroups-II, Ann. Fuzzy Math. Info. 2(2) (2011), 151–160.

[4]   V. Amjad, F. Yousafzai and A. Iampan, On generalized fuzzy ideals of ordered LA-semigroups, Boletin de Matematicas 22(1) (2015), 1–19.

[5]   M. Aslam, S. Abdullah and S. Aslam, Characterization of regular LA-semigroups by interval-valued (^α,^β )-fuzzy ideals, Afr. Mat. 25 (2014), 501–518.

[6]   B. Davvaz, M. Khan, S. Anis and S. Haq, Generalized fuzzy quasi-ideals of an intraregular Abel-Grassmann’s groupoid, J. Appl. Math. 2012 (2012), Article ID 627075, 16 pages.

[7]   Faisal, N. Yaqoob and A. Ghareeb, Left regular AG-groupoids in terms of fuzzy interior ideals, Afr. Mat. 24 (2013), 577–587.

[8]   M. Khan, S. Anis and S. Lodhi, A study of fuzzy Abel-Grassmann’s groupoids, International Journal of the Physical Sciences 7(4) (2012), 584–592.

[9]   M. Khan, V. L. Fotea and S. Kokab, ( γ, γ qδ)-fuzzy right ideals of intra-regular Abel Grassmann’s-groupoids, Analele Stiintifice ale Universitatii Ovidius Constanta 22 (2014), 95–113.

[10]   M. Khan, Y. B. Jun and T. Mahmood, Generalized fuzzy interior ideals in Abel Grassmann’s groupoids, Int. J. Math. Math. Sci. 2010 (2010), Article ID 838392, 14 pages.

[11]   M. Khan, Y. B. Jun and F. Yousafzai, Fuzzy ideals in right regular LA-semigroups, Hacet. J. Math. Stat. 44(3) (2015), 569–586.

[12]   M. Khan and M. N. A. Khan, Fuzzy Abel-Grassmann’s groupoids, Advances in Fuzzy Mathematics 3 (2010), 349–360.

[13]   M. Khan and M. N. Khan, On fuzzy Abel Grassmann’s groupoids, Advances in Fuzzy Mathematics 5(3) (2010), 349–360.

[14]   A. Khan, N. H. Sarmin, F. M. Khan and B. Davvaz, Regular AG-groupoids characterized by fuzzy ideals, Iran. J. Sci. Technol. 36(2) (2012), 97–113.

[15]   A. Khan, M. Shabir, Y. B. Jun, Generalized fuzzy Abel Grassmann’s groupoids, Int. J. Fuzzy Syst. 12(4) (2010), 340–349

[16]   X. Ma, J. Zhan, M. Khan and T. Aziz, Some characterizations of intra-regular Abel Grassmann’s groupoids, Italian Journal of Pure and Applied Mathematics 32 (2014), 329–346.

[17]   K. Nasreen, Characterizations of non associative ordered semigroups by the properties of their fuzzy ideals with thresholds (α, β ], Prikl. Diskretn. Mat. 43 (2019), 37–59.

[18]   M. Palanivelrajan and S. Nandakumar, Intuitionistic fuzzy primary and semiprimary ideal, Indian Journal of Applied Research 1(5) (2012), 159–160.

[19]   N. Rehman, N. Shah, M. I. Ali and A. Ali, Generalised roughness in (,∈ ∨q)-fuzzy substructures of LA-semigroups, Journal of the National Science Foundation of Sri Lanka 46(3) (2018), 465–473.

[20]   T. Shah and N. Kausar, Characterizations of non-associative ordered semigroups by their fuzzy bi-ideals, Theoret. Comput. Sci. 529 (2014), 96–110.

[21]   N. Yaqoob, Interval valued intuitionistic fuzzy ideals of regular LA-semigroups, Thai J. Math. 11(3) (2013), 683–695.

[22]   N. Yaqoob, R. Chinram, A. Ghareeb and M. Aslam, Left almost semigroups characterized by their interval valued fuzzy ideals, Afr. Mat. 24 (2013), 231–245.

[23]   P. Yiarayong, On product of fuzzy semiprime ideals in Γ-LA-semigroups, Gazi University Journal of Science 29(2) (2016), 491–502.

[24]   F. Yousafzai, A. Khan, V. Amjad and A. Zeb, On fuzzy fully regular ordered AG-groupoids, Journal of Intelligent & Fuzzy Systems 26 (2014), 2973–2982.

[25]   F. Yousafzai, W. Khan, A. Khan and K. Hila, I-V fuzzy set theory applied on po-LA-semigroups, Afr. Mat. 27 (2016), 23–35.

[26]   F. Yousafzai, N. Yaqoob and A. Zeb, On generalized fuzzy ideals of ordered AG-groupoids, Int. J. Mach. Learn. & Cyber. 7 (2016), 995–1004.

[27]   L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1956), 338–353.

[28]   Y. Zhang, Prime L-fuzzy ideals and primary L-fuzzy ideals, Fuzzy Sets & Syst. 27(3) (1988), 345–350.