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KONTSEVICH GRAPHONS

ALI SHOJAEI-FARD1

Abstract. The article applies graph functions to extend the Kontsevich differential
graded Lie algebraic formalism (in Deformation Quantization) to infinite Kontsevich
graphs on the basis of the Connes-Kreimer Hopf algebraic renormalization and the
theory of noncommutative differential geometry.

1. Introduction

The motivation of this work has been inspired from the recent progresses about
the mathematical foundations of the Connes-Kreimer renormalization theory of gauge
field theories under two different settings. The one setting concerns finding a new
interpretation of the BPHZ Hopf algebraic perturbative renormalization in the context
of the Kontsevich Deformation Quantization theory. In this direction, the Hopf-
Birkhoff factorization of Feynman rules characters has been described in terms of
the Baker-Campbell-Hausdorff formula and the Kontsevich’s bi-differential symplectic
operator for quantum deformations [5, 12, 16]. The other setting concerns finding
some new applications of the theory of graphons in dealing with large Feynman
diagrams (namely, infinite Feynman graphs) as sparse graphs generated by sequences
of expansions of Feynman diagrams. In this direction, solutions of combinatorial
Dyson-Schwinger equations in Quantum Field Theory have been described in terms of
graph limits of sequences of random graphs derived from graphon models [17–19]. In
addition, in arXiv:1811.05333: A mathematical perspective on the phenomenology of
non-perturbative Quantum Field Theory, 2020, The MPIM Preprint Series 2018 (65),

Key words and phrases. Graphons, Kontsevich’s admissible graphs, renormalization Hopf algebra,
noncommutative differential calculus, Maurer-Cartan equations.

2010 Mathematics Subject Classification. Primary: 53D55, 05C63. Secondary: 81R60, 16T05,
81Q70, 53Z05.

DOI
Received: January 08, 2020.
Accepted: August 09, 2020.

213



214 A. SHOJAEI-FARD

the author has addressed some recent applications of graphon models in Quantum
Field Theory.

Thanks to the combination of these topics, in this work we aim to show the existence
of a new class of infinite Kontsevich graphs generated by sequences of finite Kont-
sevich’s admissible graphs. These infinite graphs allow us to extend the Hochschild-
Kontsevich products to a non-perturbative setting. One immediate consequence of
this investigation is the formulation of a new class of non-commutative differential
calculi which can encode some geometric information (such as quantized motion in-
tegral equations) about the evolution of sequences of Kontsevich’s admissible graphs.
Our main task in this work is to formulate a new non-perturbative modification of
the Kontsevich deformation theory via infinite combinatorial tools and the Connes-
Kreimer renormalization Hopf algebra. We first apply the theory of graphons for
sparse graphs [1–3,9,14,15] to determine a new compact Hausdorff sub-space of graph
functions namely, the space of Kontsevich graphons equipped with the cut-distance
topology. This topological space can encode the convergent limits of sequences of finite
Kontsevich’s admissible graphs. Thanks to the Kreimer’s renormalization coproduct
and Kontsevich graphons, we explain the structure of a new topological Hopf algebra
Hcut

Kont on Kontsevich’s admissible graphs which is closely related to the structure of
a new topological Hopf algebra SKont

graphon on Kontsevich graphons. Then we apply this
Hopf algebraic setting together with the BPHZ perturbative renormalization to build
a new noncommutative differential calculus machinery on Kontsevich’s admissible
graphs on the basis of the Nijenhuis property of the minimal subtraction map as the
renormalization scheme. This study enables us to formulate a new class of quantized
motion integrals associated to Kontsevich’s admissible graphs. This formalism can be
modified for Kontsevich graphons which leads us to obtain a new non-perturbative
version of Kontsevich ?-products. Finally, we lift the Maurer-Cartan equations onto
the level of Kontsevich graphons and their corresponding infinite Kontsevich graphs.

The Connes-Kreimer renormalization Hopf algebra of Feynman diagrams in Quan-
tum Field Theory is derived from the Bogoliubov-Zimmermann forest formula in per-
turbative renormalization [4,10,11]. This Hopf algebra has been applied by Ionescu in
arXiv:hep-th/0307062: Perturbative Quantum Field Theory and configuration space
integrals, 2003 and [8] to build a differential graded Hopf algebra of the Kontsevich’s
graph complex. In this work, we determine a new class of graphon models for Kont-
sevich’s admissible graphs namely, Kontsevich graphons and then we apply these
graphon representations to build a new topological Hopf algebra on the space of Kont-
sevich’s admissible graphs. We equip also the space of Kontsevich graphons with a new
compact Hausdorff topological Hopf algebra structure where objects in the boundary
region enable us to determine a new collection of infinite Kontsevich graphs. These
infinite graphs can be studied in terms of graphon models. The resulting topological
Hopf algebra might be useful to search for a completion of the differential graded Hopf
algebra of the Kontsevich’s graph complex with respect to the cut-distance topology.
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Deformation Quantization focuses on the construction of a mathematical model
for the description of quantum systems under Dirac’s correspondence principle. The
model is actually based on quantizing the space of observables on a Poisson manifold
in terms of defining a new associative multiplication as a deformation of pointwise
multiplication in the direction of the Poisson bracket. The Kontsevich approach has
provided a universal deformation quantization for any open domain in Rd via a graph-
ical representation for bi-differential operators [12,13]. In this work we apply our new
topological Hopf algebraic setting to formulate a new non-perturbative generalization
for Deformation Quantization. For this purpose we explain the construction of a
new class of noncommutative differential calculi on Kontsevich’s admissible graphs
originated from the Connes-Kreimer renormalization theory of gauge field theories
[4, 21] and the theory of noncommutative differential geometry [6]. We show that the
Connes-Kreimer Renormalization Group can provide a new class of quantized inte-
grable systems which can encode the evolution of sequences of Kontsevich’s admissible
graphs. We then extend this study to the level of Kontsevich graphons which enable
us to formulate a new non-perturbative generalization for the Kontsevich ?-products
in Deformation Quantization. These quantized star type of products are actually the
results of the quantization of Poisson structures which are generated by the minimal
subtraction map in the BPHZ renormalization theory. Furthermore, we formulate a
new version of the Maurer-Cartan equations on infinite Kontsevich graphs in terms
of their graphon models.

2. Graphons

We can study a dense or sparse graph in terms of the ratio between the number
of its edges and the maximal number of possible edges. Passing from discrete graphs
to dense graphs requires to apply sequences of edge weighted graphs such that their
vertex sets tend to a continuum set of vertices. The notion of convergence for an
arbitrary sequence of graphs with the growing number of vertices can be formulated
via graph functions or graphons. At first, the theory of graphons has been initiated
in infinite combinatorics for the study of dense graphs derived from sequences of
finite weighted graphs with growing density values. The basic idea was to build a
convergent limit for any sequence of this type in terms of the behavior of subgraph
densities. Homomorphism densities play the fundamental rules for the construction
of graph limits in this setting. However this theory has been developed immediately
for the study of graph limits of sequences of finite sparse graphs in the context of
random graphs and measure theoretic tools. The basic idea in this setting was to
generate non-zero graph limits from sequences of graphs with almost zero densities.
[1–3,9, 14, 15]

The convergence of a sequence of pixel pictures can provide the most fundamental
example for graphons. It is possible to generate different pixel picture presentations
(as labeled graphons) for a graph in terms of the rescaling of the ground measure
space or relabeling procedures. However we can encapsulate all these pixel picture



216 A. SHOJAEI-FARD

presentations into a suitable isomorphic class to achieve the notion of uniqueness for
this class of graph limits. Graphons, as analytic objects in infinite combinatorics, can
be redefined in terms of a class of graph functions.

Definition 2.1. For a given measure space or a probability space (J, µJ), a graphon
is a symmetric bounded measurable function such as W : J × J → [a, b] ⊂ R. It is
called a bigraphon if we remove the symmetric property.

In the standard graphon models, we can work on the closed interval J = [0, 1]
equipped with the Lebesgue measure as the ground measure space to build graphons.
In this setting, invertible Lebesgue measure preserving transformations on [0, 1] such
as ρ can generate relabeled versions of a given graphon. In other words, a relabeled
graphon W ρ is defined by W ρ(x, y) := W (ρ(x), ρ(y)).

In general, graphons W1, W2 are called weakly isomorphic (or weakly equivalent), if
there exist µJ -measure preserving transformations σ1, σ2 on J such thatW σ1

1 andW σ2
2

are the same almost everywhere. We can define an equivalence class [W ], known as
unlabeled graphon class, which contains all relabeled graphons and weakly isomorphic
versions with respect to a fixed graphon W .

We can define the cut-norm (as a semi-norm) on the space of labeled graphons. It
is given by

(2.1) ‖W ρ‖cut := supA,B(J

∣∣∣∣∫
A×B

W ρ(x, y)dµJ(x)dµJ(y)
∣∣∣∣ .

This semi-norm is the key tool to define graph limits where we need to work on the
space of unlabeled graphon classes to define the notion of unique convergence for the
space of finite graphs. The cut-norm (2.1) gives us a metric structure on the space of
unlabeled graphon classes. It is defined by
(2.2) dcut([W1], [W2]) := infρ1,ρ2 ‖W

ρ1
1 −W

ρ2
2 ‖cut,

such that the resulting topological space is compact and Hausdorff [9, 14].

Lemma 2.1. Each finite simple weighted graph can determine a unique unlabeled
graphon class.

Proof. We consider labeled graphons on the closed interval [0, 1] equipped with the
Lebesgue measure. Each finite simple weighted graph G = (V,E) can determine a
class of labeled graph functions generated via its corresponding adjacency matrix AG.
They are pixel picture presentations. The set of vertices V can be seen as a finite
probability space with the uniform measure and the set of edges E as the indicator of
adjacency. Then we define the labeled graph function W σ

G by fixing a partition σ on
the closed interval such as dividing [0, 1] into |V | equal sub-intervals Iis. Now define
W σ
G(x, y) := aij ∈ AG for x ∈ Ii and y ∈ Ij. Up to the weakly isomorphic relation,

now we can associate an unlabeled graphon class [W σ
G] to the graph G which contains

all possible labeled graph functions W σ
G which are equivalent in terms of relabeling

via invertible measure preserving transformations or they are weakly isomorphic. �
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The metric (2.2) is the key tool for the study of the behavior of extremely large
graphs or complex networks whenever the vertex set of these graphs goes to infinity.
In this setting, we can check that two graphons are weakly isomorphic if they have zero
cut-distance from each other. Graphons generated by relabeling are weakly isomorphic.
The graphon corresponding to the empty graph (i.e., 0-graphon) is identified by the
class [W σ

I ] of graph functions such that
∫

[0,1]×[0,1]W
σ
I (x, y)dxdy = 0. Graph limits can

be interpreted as objects of the boundary region of the topological space of all finite
graphs with respect to the cut-distance topology [9, 14,15].

The theory of graphons has also been developed for the study of sparse graphs where
we need to renormalize graph functions or rescale the base measure of the ground
measure space to build non-zero graphons via the convergent limits of sequences of
sparse graphs with weak densities [1–3,15]. We recently applied this class of graphon
models to formulate an analytic generalization for Feynman diagrams in Quantum
Field Theory. These graphon models have led us to find some new combinatorial
tools in dealing with Dyson-Schwinger equations as fixed point equations of Green’s
functions. It is then shown that non-perturbative solutions of quantum motions
in gauge field theories can be described in terms of cut-distance convergent limits
of sequences of random graphs generated by graphon representations of Feynman
diagrams and their formal expansions [17–19].

3. Topological Hopf Algebra Structures on Kontsevich’s Admissible
Graphs and their Graphon Models

In this part, we study the fundamental elements of Deformation Quantization
namely, Kontsevich’s admissible graphs, Hochschild-Kontsevich products and their
connection to the Connes-Kreimer insertion operator on Feynman diagrams. We then
define Kontsevich graphons which are useful to study graph limits of Kontsevich’s
admissible graphs. We then equip the space of finite Kontsevich’s admissible graphs
and the space of their corresponding graphon models with the cut-distance topology
together with some new Hopf algebra structures derived from the Connes-Kreimer
renormalization Hopf algebra of Feynman diagrams. The Hopf algebra of Kontsevich’s
admissible graphs is topologically completed via the topology of graphons which can
lead us to formulate the concept of convergence for sequences of these graphs. Our
study provides a new class of infinite Kontsevich graphs which can be described
in terms of convergent limits of sequences of random graphs derived from graphon
models.

Definition 3.1. A Kontsevich’s admissible graph is a simple oriented graph which
contains two classes of totally ordered disjoint sets of vertices called internal and
boundary vertices. Boundary vertices are leaves while there are no multiple edges or
self-loops in the graph. There is also a total order on the set of all edges.
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Remark 3.1. A Kontsevich’s admissible graph can be presented via a disk such that
internal vertices live inside the disk and boundary vertices live on the boundary region
of the disk.

Definition 3.2. Let Gp,q be the set of isomorphism classes of all Kontsevich’s admis-
sible graphs such as K with q internal vertices such that v(K)− e(K)− 1 = p. Set
g•,• as the bigraded vector space generated by ⋃∞p,q=0 G

p,q.

A subgraph G of K is called a normal subgraph if the quotient graph H = K/G as
the result of collapsing the subgraph G to a vertex vG is itself a graph in g•,•. Each
normal subgraph G should be a full subgraph which means that every edge of K
connecting two vertices of G is an edge of G [7, 12].

Remark 3.2. We can describe K as an extension of H by G in terms of inserting
the graph G into a vertex of H. This process can be summarized by the notation
G ↪→ K � H such that the extension is called internal or boundary with respect to
the type of that vertex which G is inserted into.

Definition 3.3. We can define two different Hochschild-Kontsevich products on g•,•

in terms of types of vertices. They are given by

(3.1) H •G :=
∑

G↪→K�H, internal
±K, H ◦G :=

∑
G↪→L�H, boundary

±L

such that • is a (0,−1) degree product and ◦ is a bigraded product.

Feynman diagrams in Quantum Field Theory are finite oriented labeled graphs
which contains two classes of edges namely, internal and external edges. Each internal
edge has begining and ending points while each external edge has only begining
or ending point. Decorations in each Feynman diagram can encode fundamental
data of physical systems such as conservation of momenta while vertices encode
interactions among elementary particles (i.e., edges). Each Feynman diagram is a
simplified model for a complicated iterated ill-defined integral which exists in the
Green’s functions of the physical theory. In Connes-Kreimer theory, we can describe
the perturbative renormalization machinery in terms of a factorization algorithm
on Feynman diagrams originated from the insertion operator. Rebuilding Feynman
diagrams from the components of this factorization might not be unique in gauge field
theories where we need to apply some new shuffle type products on Feynman diagrams
or some identities among Feynman diagrams to generate a uniqueness [10, 11,20].

Lemma 3.1. The Hochschild-Kontsevich products • and ◦ can determine a pre-Lie
operator on the set of Feynman diagrams.

Proof. In terms of types of vertices and types of edges, we can glue Feynman diagrams
to obtain a new diagram or decompose a complicated Feynman diagram into its
primitive components. For any given Feynman diagrams Γ1, Γ2, suppose there exists
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a vertex vi ∈ Γ1 such that fvi ∼ Γ[1],ext
2 . Then we can define the insertion of Γ2 inside

Γ1 via vi in terms of the formula
(3.2) Γ1 ∗vi Γ2 := Γ1/{vi} ∪ Γ2/Γ[1],ext

2 ,

which is a new graph such that for each edge ej ∈ fi, {vej} contains only one vertex
of Γ2. The sum over all possible vertices which have equivalent type with Γ[1],ext

2 gives
us the insertion of Γ2 inside Γ1. We have
(3.3) Γ1 ∗ins Γ2 :=

∑
v∈Γ1,fv∼Γ[1],ext

2

Γ1 ∗v Γ2,

which is known as the Connes-Kreimer insertion operator and it provides a pre-Lie
algebra structure on Feynman diagrams. The commutator with respect to the insertion
operator defines a Lie algebra structure on Feynman diagrams which leads us to build
the Connes-Kreimer renormalization Hopf algebra [4, 10,21]. The insertion operator
∗ins is a non-homogeneous product which can be described as a combination of the
Hochschild-Kontsevich products • and ◦ (3.1). �

We can formulate an analytic generalization for Kontsevich’s admissible graphs in
the context of the theory of graphons.
Lemma 3.2. Any Kontsevich’s admissible graph K can determine a unique unlabeled
(bi)graphon class [WK ].
Proof. We need to update Lemma 2.1. We choose the closed interval [0, 1] equipped
with the Lebesgue measure as the ground measure space. Thanks to Definition 3.1,
we can build the adjacency matrix AK corresponding to the graph K. This matrix
can be presented by a pixel picture PK presentation built by the scaling of [0, 1]2
where 1’s in AK turn into black squares and 0’s in AK turn into white squares. This
class of presentations can be encoded by choosing partitions σ on [0, 1] together with
symmetric bounded Lebesgue measurable maps W σ

K defined on [0, 1]2.
We call [WK ] the unlabeled Kontsevich graphon class corresponding to the graph

K. This class contains all relabeled Kontsevich graphons corresponding to K and all
other Kontsevich graphons which are weakly isomorphic to WK . �

Definition 3.4. A sequence {Kn}n≥0 of finite Kontsevich’s admissible graphs is
called convergent when n tends to infinity, if the corresponding sequence {[WKn ]}n≥0
of unlabeled Kontsevich graphon classes converges to a non-zero unlabeled Kontsevich
graphon class [W∞] with respect to the cut-distance topology.

The non-zero graph limit W∞ can be built by rescaling methods explained in
[1–3,15] which enable us to renormalize the canonical graphons.
Definition 3.5. The Kontsevich’s admissible graph generated by the information of
the Kontsevich graphon W∞ is an infinite graph KW∞ . It contains infinite number of
internal or boundary vertices or (infinite) number of edges. We call KW∞ an infinite
Kontsevich graph.
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Kontsevich graphons are useful to study the asymptotic behavior of growing se-
quences of Kontsevich normal subgraphs with respect to the cut distance topology.

Proposition 3.1. We can lift products ◦ and • onto the level of Kontsevich graphons.

Proof. Let {Kn}n≥0 be a sequence of Kontsevich’s admissible graphs which is cut-
distance convergent to the unlabeled Kontsevich graphon class [WK∞ ] with the corre-
sponding infinite Kontsevich graph K∞. Let {Gn}n≥0 be another sequence of Kont-
sevich’s admissible graphs such that for each n, Gn is a normal subgraph of Kn. Let
the sequence {Gn}n≥0 is cut-distance convergent to the unlabeled Kontsevich graphon
class [WG∞ ] with the corresponding infinite Kontsevich graph G∞.

We can build a new sequence {Hn}n≥0 := {Kn/Gn}n≥0 of quotient graphs which
is cut-distance convergent to the infinite Kontsevich graph H∞. Thanks to Kontse-
vich graphon representations WK∞ , WG∞ and WK∞/G∞ , we can show that WH∞ ∈
[WK∞/G∞ ]. Therefore, H∞ = K∞/G∞. Now for each n, we can define

(3.4) Hn •Gn =
∑

Gn↪→Kn�Hn, internal
±Kn, Hn ◦Gn =

∑
Gn↪→Kn�Hn, boundary

±Kn.

As the result, we can define H∞•G∞ as the infinite Kontsevich graph corresponding
to the cut-distance convergent limit of the sequence {Hn •Gn}n≥0 and define H∞ ◦G∞
as the infinite Kontsevich graph corresponding to the cut-distance convergent limit
of the sequence {Hn ◦Gn}n≥0. �

Definition 3.6. The bigraded vector space g•,• (i.e., Definition 3.2) together with the
cut-distance topology give us a topological vector space. We present this new space
with g•,•cut such that its objects have graphon representations determined by Lemma
3.2, Definition 3.4 and Definition 3.5.

Remark 3.3. H∞ • G∞ or H∞ ◦ G∞ could have infinite terms in their series. The
compactness of the topology of graphons enables us to describe these infinite series
in terms of objects in the boundary of the space g•,•cut.

Ionescu in arXiv:hep-th/0307062: Perturbative Quantum Field Theory and con-
figuration space integrals, 2003 and [8] has applied the Kreimer’s renormalization
coproduct to build a differential graded Hopf algebra structure on Kontsevich’s graph
complex. Thanks to our explained graphon models, now we can formulate a new
topological Hopf algebra structure on Kontsevich’s admissible graphs which can be
completed in terms of the cut-distance topology.

Proposition 3.2. The completion map with respect to normal subgraphs together
with the graphon representations of Kontsevich’s admissible graphs can determine a
topological Hopf algebra structure on g•,•cut.

Proof. Thanks to the Connes-Kreimer renormalization Hopf algebra of Feynman dia-
grams, the structure of a differential graded Hopf algebra on Kontsevich’s admissible
graphs has been explained in [8]. We work on the free commutative algebra generated
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by Kontsevich’s admissible graphs over the field Q or R such that the empty graph is
its unit. For any given Kontsevich’s admissible graph K, define

(3.5) ∆(K) = I⊗K +K ⊗ I +
∑
G

G⊗K/G,

as a coproduct such that the sum is over all non-trivial normal subgraphs of K and
I is the empty graph. Terms in this expansion are in an one to one correspondence
with all possible internal or boundary extensions of normal subgraphs of the original
graph.

The counit is defined by ε(I) = 1 and ε(K) = 0 for K 6= I. If we apply the
graduation parameter on Kontsevich’s admissible graphs given by Definition 3.1 and
Definition 3.2, then we can define an antipode recursively. This completes the con-
struction of the renormalization Hopf algebra of Kontsevich’s admissible graphs.

Now we plan to topologically complete this Hopf algebra in terms of graphon
representations of Kontsevich’s admissible graphs (i.e., Lemma 3.2 and Definition 3.4).
It is enough to show the continuity of the coproduct and antipode with respect to the
topology of graphons.

We work on the free commutative algebra generated by unlabeled Kontsevich
graphon classes over the field Q or R such that [WI] corresponding to the empty graph
is its unit. Thanks to the coproduct (3.5), for any unlabeled Kontsevich graphon class
[WK ] corresponding to a finite graph K, its coproduct is given by

(3.6) ∆([WK ]) = [WI]⊗ [WK ] + [WK ]⊗ [WI] +
∑

[WG]⊗ [WK/G],

such that the sum is controlled by Kontsevich graphons associated to non-trivial
normal subgraphs of K. This coproduct is a bounded and linear map which makes it
a continuous map with respect to the cut-distance topology.

In addition, let K∞ be an infinite Kontsevich graph as the graph limit of the
sequence {Kn}n≥0 of finite Kontsevich’s admissible graphs. Let [W∞] be the unique
unlabeled Kontsevich graphon class corresponding to K∞. This means that the
sequence {[WKn ]}n≥1 is cut-distance convergent to [W∞]. Thanks to the continuity of
the coproduct (3.6), ∆([W∞]) can be defined as the cut-distance convergent limit of
the sequence {∆([Kn])}n≥0.

The counit is defined by ε([WI]) = 1 and ε([WK ]) = 0, for K 6= I. We can also
define the antipode map on unlabeled Kontsevich graphon classes recursively in terms
of the cut-distance convergent limit of a sequence of antipodes of finite Kontsevich
graphs. The compactness of the cut-distance topology is enough to observe that the
defined coproduct and antipode are bounded. The linearity and boundary condition
guarantee the continuity of the coproduct and antipode.

We use the notation SKont
graphon for the resulting topological Hopf algebra of unlabeled

Kontsevich graphon classes. We also use the notation Hcut
Kont for the resulting topolog-

ical Hopf algebra of Kontsevich’s admissible graphs which is generated by g•,•cut as a
vector space.
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Any linear combination α1K1 + · · ·+ αnKn of Kontsevich’s admissible graphs can
generate a Kontsevich graphon class in SKont

graphon. The corresponding labeled Kontsevich
graphon Wα1K1+···+αnKn can be determined in terms of the normalizing or rescaling
methods used on each WαiKi . In other words, for each 1 ≤ i ≤ n, we first project
the labeled Kontsevich graphon WαiKi into the subinterval Ii of [0, 1] where {Ii}i is a
partition for [0, 1]. We present the resulting labeled graphons with Wα̃iK̃i

. Then we
can define

(3.7) Wα̃1K̃1+···+α̃nK̃n :=
Wα̃1K̃1

+ · · ·+Wα̃nK̃n

‖Wα̃1K̃1
+ · · ·+Wα̃nK̃n

‖cut
.

Thanks to the correspondences K 7→ [WK ] and {Kn}n≥0 7→ K[W∞], we can com-
plete the Hopf algebra of Kontsevich’s admissible graphs and formulate a surjective
topological Hopf algebra homomorphism

�(3.8) ΨKont : SKont
graphon → Hcut

Kont.

Thanks to this study, now it is possible to define the notion of distance between
Kontsevich’s admissible graphs via their graphon representations.

Definition 3.7. The distance between Kontsevich’s admissible graphs K1 and K2 is
defined in terms of the cut-distance between their corresponding unlabeled Kontsevich
graphon classes. In other words, thanks to the metric (2.2), we have

(3.9) d(K1, K2) := dcut([WK1 ], [WK2 ]).

Corollary 3.1. A sequence of Kontsevich’s admissible graphs is convergent if and
only if it is a cut-distance Cauchy sequence.

Corollary 3.2. For a given Kontsevich graphon W∞, there exists a sequence of finite
random graphs which is cut-distance convergent to W∞.

Proof. For each n, we can define a finite random graph G(W∞, n) which contains n
points x1, . . . , xn from the Kontsevich graphon W∞ such that the existence of an edge
between xi and xj is determined by the probability W∞(xi, xj). Thanks to [9, 19], we
can show that the sequence {G(W∞, n)}n≥0 is cut-distance convergent to W∞. �

Infinite polydifferential operators can be described in terms of multiplication of
functions and infinite vector fields which act as polyderivations on infinite functions.
We can define these operators as the cut-distance convergent limit of sequences of finite
operators. In this setting, the multiplication of infinite functions is represented by the
Kontsevich graphon b0,∞ with no internal vertices and infinite (countable) boundary
vertices. The resulting Kontsevich graphon is actually the cut-distance convergent
limit of Kontsevich’s admissible graphs which belong to Gm−1,0 when m tends to
infinity. In addition, ∞-vector field with infinite polyderivations is represented by the
Kontsevich graphon b1,∞ with one internal vertex and infinite countable boundary
vertices with infinite countable edges.
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4. Noncommutative Differential Calculi on Kontsevich’s Admissible
Graphs and their Graphon Models via the Renormalization Map

In [12] it is shown that the Hopf-Birkhoff factorization of Feynman rules characters
in the Connes-Kreimer perturbative renormalization process can be interpreted as a
deformation of the pointwise multiplication of some exponential functions under the
Kontsevich product. In this part we plan to work on the space of linear functionals on
the topological Hopf algebra of Kontsevich’s admissible graphs or Kontsevich graphons
with values in the algebra Adr of Laurent series with finite pole parts equipped with
the minimal subtraction map to build a new class of differential graded Lie algebras
and Poisson structures with respect to deformed versions of the convolution product.

The Rota-Baxter algebra (Adr, Rms) determines a class of deformed convolution
products on the space L(Hcut

Kont, Adr) of linear maps given by

(4.1) φ1 ◦λ φ2 := Rλ(φ1) ∗ φ2 + φ1 ∗ Rλ(φ2)− Rλ(φ1 ∗ φ2),

such that Rλ := R− λ(Id−R), where R is the extension of Rms on L(Hcut
Kont, Adr) and

λ is a real number.
The convolution product ∗ is defined in terms of the coproduct (3.5) on Kontsevich’s

admissible graphs. In other words, for any φ1, φ2 ∈ L(Hcut
Kont, Adr) and any Kontsevich’s

admissible graph K, we have

(4.2) φ1 ∗ φ2(K) := φ1(I)φ2(K) + φ1(K)φ2(I) +
∑
G

φ1(G)φ2(K/G),

such that G are non-trivial normal subgraphs of K.
Let an infinite Kontsevich graph K∞ is the result of the cut-distance convergent

limit of a sequence {Kn}n≥1 of finite Kontsevich’s admissible graphs. Thanks to
the continuity of the coproduct (3.5) with respect to the cut-distance topology and
Proposition 3.1, we can show that the sequence {∑Gn φ1(Gn)φ2(Kn/Gn)}n≥1 is cut-
distance convergent to ∑G∞ φ1(G∞)φ2(K∞/G∞). This means that we can extend the
convolution product ∗ on infinite Kontsevich graphs where φ1 ∗φ2(K∞) can be defined
as the convergent limit of the sequence {φ1 ∗ φ2(Kn)}n≥1.

The associative products ◦λ on L(Hcut
Kont, Adr) are actually the direct consequence

of the Nijenhuis property of the map Rλ. The non-cocommutativity of Hcut
Kont ensures

that each product ◦λ is noncommutative. Therefore we can define a new Lie bracket
[·, ·]λ via the commutator with respect to ◦λ.

Proposition 4.1. There exists a noncommutative differential calculus on H∧λKont :=
(L(Hcut

Kont, Adr), ◦λ).

Proof. Set Z(H∧λKont) as the center of the algebra and DerλKont as the space of all linear
maps θ : H∧λKont → H∧λKont which obey the Leibniz rule. The Lie bracket [·, ·]λ, which
satisfies the Jacobi identity, can determine the corresponding Poisson bracket {·, ·}λ.
For each φ ∈ H∧λKont, define ψ 7→ {φ, ψ}λ as the corresponding Hamiltonian derivation.
Set Hamλ

Kont as the Z(H∧λKont)-module generated by all Hamiltonian derivations.
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Thanks to the theory of noncommutative differential geometry on the basis of
the space of derivations [6], for n ≥ 1, define Ωn

Kont,λ as the space of all Z(H∧λKont)-
multilinear anti-symmetric maps from Hamλ

Kont × · · ·n × Hamλ
Kont to H

∧λ
Kont. We have

the differential graded algebra (Ω•Kont,λ, dλ) such that the degree one anti-derivative
differential operator dλ is given by

dλω(θ0, . . . , θn) :=
n∑
k=0

(−1)kθkω(θ0, . . . , θ̂k, . . . , θn)

+
∑

0≤r<s≤n
(−1)r+sω([θr, θs]λ, θ0, . . . , θ̂r, . . . , θ̂s, . . . , θn). �

Corollary 4.1. There exists a new class of integrable systems which can geometrically
evaluate Kontsevich’s admissible graphs.

Proof. We apply the renormalization map Rms : Adr → Adr and work on the noncom-
mutative deRham complex derived from Proposition 4.1. We have

(4.3) DR•Kont,λ :=
Ω•Kont,λ

[Ω•Kont,λ,Ω•Kont,λ]λ
.

The deformed Lie bracket [·, ·]λ allows us to define a class of Z(H∧λKont)-bilinear anti-
symmetric non-degenerate closed 2-forms for the presentation of the Poisson bracket
{·, ·}λ. For any derivations θ1 = ∑

ui ◦λ ham(fi), θ2 = ∑
vj ◦λ ham(hj), define the

symplectic form
(4.4) ωλ(θ1, θ2) =

∑
i,j

ui ◦λ vj ◦λ [fi, hj]λ,

such that {f1, . . . , fn, h1, . . . , hm} ( H∧λKont, {u1, . . . , un, v1, . . . , vm} ( Z(H∧λKont).
If θλf is the symplectic vector field associated to the symplectic form ωλ, then we

have
(4.5) {f, g}λ = ωλ(θλf , θλg ),
as the quantization of the Poisson structure on Kontsevich’s admissible graphs and
Kontsevich graphons in the direction of the minimal subtraction scheme.

Thanks to [4, 21], we can build the Connes-Kreimer Renormalization Group {Ft}t
of the topological Hopf algebra Hcut

Kont of Kontsevich’s admissible graphs. This is a
1-parameter subgroup of the Lie group Hom(Hcut

Kont, Adr) of characters. Then we can
check that {Ft, Fs}0 = 0. �

Remark 4.1. Thanks to the surjective homomorphism ΨKont (3.8), Proposition 4.1 and
Corollary 4.1, we can build a noncommutative differential calculus on S

Kont,∧λ
graphon and

then we can show that the Connes-Kreimer Renormalization Group of SKont
graphon can

determine a new class of integrable systems.

Corollary 4.2. The Kontsevich’s Deformation Quantization [7,12] can be lifted onto
the level of Kontsevich graphons.
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Proof. For the algebra

(4.6) S∧λKont := (L(SKont
graphon, Adr), ◦λ),

we work on the Lie algebra derλKont of all derivations ρ : SKont
graphon → Adr. This space is

generated by infinitesimal characters such as ρ[W ] corresponding to each Kontsevich
graphon [W ]. Let Ad as the space of functions with the domain derλKont×· · ·d×derλKont
and with the images in SKont

graphon.
For any Kontsevich graphon [WK ] corresponding to the graph K ∈ Hcut

Kont, we can
define the bi-differential operator B[WK ],λ : Ad×Ad −→ Ad in terms of the differential
operator dλ (determined by the Poisson structure {·, ·}λ) and derivations ρK .

Set Gn, n ≥ 0, as the collection of all Kontsevich graphs with n + 2 vertices
{1, . . . , n} ∪ {X, Y } and 2n edges such that for each vertex k, there exist two edges
staring at k. We can now define a new ?-product on Ad as the Kontsevich’s quantiza-
tion of ◦λ. For any functions F,G ∈ Ad, F ?λ G is defined as the convergent limit of
the sequence

(4.7)


n∑
j=0

εj
∑
L∈Gj

ωK(L)B[WK ],λ(F,G)


n≥0

,

with respect to the cut-distance topology defined on Kontsevich graphons when n
tends to infinity. �

The quantization F ?λ G can contain an infinite formal expansion of growing Kont-
sevich’s admissible graphs which can not be handled by the perturbative setting.
Therefore we name it a non-perturbative generalization of the standard Kontsevich’s
Deformation Quantization. Thanks to the compactness of the topology of graphons
[9, 14], we can search for cut-distance graph limits for these infinite expansions.

5. Maurer-Cartan Equations on Kontsevich Graphons

In this section, we aim to formulate a new generalization of the Maurer-Cartan
equations for infinite Kontsevich graphs (i.e., Definition 3.5) generated as the graph
limits of sequences of finite Kontsevich’s admissible graphs.

The commutator with respect to the operation ◦ gives a Lie algebraic structure
on g•,•cut. This Lie bracket is actually obtained as an extension of the Hochschild-
Kontsevich Lie bracket with respect to the cut-distance topology. It determines
the differential operator d1 of degree (1, 0). In addition, we can also extend the
Kontsevich’s vertical differential operator on g•,•cut to define the differential operator d2
on infinite Kontsevich’s admissible graphs. For a given infinte Kontsevich graph K[U∞]
corresponding to the unlabeled Kontsevich graphon class [U∞], d2(K[U∞]) is the result
of the cut-distance convergent limit of the sequence {d2(Kn)}n≥0, where for each n

(5.1) d2(Kn) :=
∑

e↪→G�Kn, internal
±G = Kn • e,
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which is expanding the internal vertices of Kn by the insertion of an additional edge.
d2 is a differential operator of degree (0, 1).

Proposition 5.1. There exists a Hochschild-Kontsevich differential graded Lie algebra
on Kontsevich graphons.

Proof. Set gncut := ⊕p+q=ngp,q as the graded vector space equipped with the cut-
distance topology. We can show that differential operators d1, d2 commute on the
total complex g•cut and therefore d := d1 ± d2 is a total differential operator which is
compatible with the graded Lie bracket [·, ·]◦ induced by ◦. �

Now we can formulate the Maurer-Cartan equations on an infinite generalization
of Kontsevich’s admissible graphs.

Corollary 5.1. There exists a modified version of the Maurer-Cartan equation on
infinite Kontsevich graphs.

Proof. The topological Hopf algebra Hcut
Kont of Kontsevich’s admissible graphs (built

by Proposition 3.2) and the noncommutative differential calculus (i.e., Proposition
4.1) can be applied to associate the 1-form

(5.2) αMC(K) =
∑
G

S(G)dλθK/G,

such that S is the antipode of Hcut
Kont, the sum is taken over all normal subgraphs G

of K and θK/G is the infinitesimal characters with respect to Kontsevich’s admissible
quotient graphs K/G. We can check that

(5.3) αMC(KL) = αMC(K)ε(L) + ε(K)αMC(L).

Therefore, a general presentation of the Maurer-Cartan equation has the form

(5.4) dλαMC(K) = −
∑
G

αMC(G)αMC(K/G).

Now suppose {Kn}n≥0 be a sequence of finite Kontsevich’s admissible graphs which
satisfy the equation (5.4) for each n ≥ 0 and the sequence is cut-distance convergent
to the Kontsevich graphon W∞. Then it can be seen that the infinite Kontsevich
graph K[W∞] is also a solution for (5.4). �

It is possible to define a new morphism Ū of differential graded Lie algebras (as a
generalization of the map U given in [7]) between g•,•cut and the Chevalley-Eilenberg
complex CE•,•cut(T •poly, D

•
poly) equipped with the cut-distance topology. This enables us

to formulate the Maurer-Cartan equations on the complex of Kontsevich graphons in
the language of morphisms between T •poly and D•poly.
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6. Conclusion

The main achievement of this work is to provide some new mathematical tools
for the study of the Kontsevich Deformation Quantization under a non-perturbative
setting. We applied graphon models for the study of the space of Kontsevich’s ad-
missible graphs to formulate some new topological Hopf algebra structures Hcut

Kont on
these graphs and SKont

graphon on their corresponding graphon models. Then we worked
on the basis of this Hopf algebraic setting to build a new class of noncommutative
differential calculi on Kontsevich’s admissible graphs originated from the BPHZ pertur-
bative renormalization. This study has led us to determine a new class of quantized
integrable systems which can geometrically describe the evolution of sequences of
Kontsevich’s admissible graphs. In addition, thanks to the topologically completion of
our Hopf algebra model, we formulated the Kontsevich’s Deformation Quatization for
Kontsevich graphons which has led us to obtain a non-perturbative generalization for
deformation quantization procedure. Furthermore, we have obtained a new modified
version of the Maurer-Cartan equations on infinite Kontsevich graphs.

As the final note, the topological Hopf algebras Hcut
Kont and SKont

graphon are also useful to
work on combinatorial Dyson-Schwinger equations on Kontsevich’s admissible graphs
in the context of Hochschild type of equations. Solutions of these equations can be de-
scribed in terms of random graphs generated by Kontsevich graphons. This study can
be useful to find some new interconnections between combinatorial Dyson-Schwinger
equations and the non-perturbative generalization of the Kontsevich Deformation
Quantization.
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