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ON LAPLACIAN ESTRADA INDEX OF UNION AND CARTESIAN
PRODUCT OF GRAPHS

HARISHCHANDRA S. RAMANE1, GOURAMMA A. GUDODAGI1,
AND ABDOLLAH ALHEVAZ2

Abstract. The Estrada index EE of a graph G of order n is defined as the sum
of the terms eλi , i = 1, 2, . . . , n, where λ1, λ2, . . . , λn are its adjacency eigenvalues.
The Laplacian Estrada index LEE of a graph G is defined as the sum of the terms
eµi , i = 1, 2, . . . , n, where µ1, µ2, . . . , µn are the Laplacian eigenvalues of G. In this
paper we have obtained the upper bounds for the Laplacian Estrada index of union
of graphs and computed Laplacian Estrada index of Cartesian product of some
graphs.

1. Introduction

Throughout this paper we are concerned with simple graphs, that is, the graphs
having no loops or multiple edges or directed edges. Let G be such a graph with n
vertices v1, v2, . . . , vn and m edges. In what follows we say that G is an (n,m)-graph.

Let D(G) be the diagonal matrix of order n whose (i, i)-th entry is the degree of a
vertex vi. The adjacency matrix of a graph G, denoted by A(G), is the square matrix
of order n whose (i, j)-th entry is equal to the number of edges between the vertices
vi and vj. The eigenvalues of A(G) denoted by λ1, λ2, . . . , λn are called the adjacency
eigenvalues of G [4]. The matrix C(G) = D(G)−A(G) is called the Laplacian matrix
of G. The eigenvalues of C(G) denoted by µi = µi(G), i = 1, 2, . . . , n, are called the
Laplacian eigenvalues of G and their collection is called the Laplacian spectrum of
G [21].
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The Laplacian energy of a graph was introduced by Gutman and Zhou [18] and is
defined as

LE(G) =
n∑
i=1

∣∣∣∣µi − 2m
n

∣∣∣∣ .
The Estrada index of a graph G is defined as

EE(G) =
n∑
i=1

eλi .

This graph invariant appeared for the first time in year 2000, in a paper by Ernesto
Estrada, dealing with the folding of protein molecules [6–8]. A large number of
recent works devoted to the study of its mathematical properties can be found in
[5, 10–17,23,25]. The Laplacian Estrada index of G was defined in [9] as

LEE(G) =
n∑
i=1

eµi .

Independent of [9], another varient of the Laplacian Estrada index was put forward
in [20], as

LEELSC(G) =
n∑
i=1

eµi−(2m/n).

Evidently, LEELSC(G) = e−2m/nLEE(G), and therefore results obtained for LEE
can be immediately re-stated for LEELSC and vice-versa.

Some basic properties of LEE were determined in the papers [3, 9, 20, 26, 27]. At
the outset we note that

LEE(G) =
∑
k≥0

1
k!

n∑
i=1

µki ,

where the standard notational convention that 00 = 1 is used.
Let Kn be the complete graph on n vertices and Kn be its complement. In [9] the

following bound for LEE(G) was obtained.

LEE(G) ≤ e2m/n(n− 1 + eLE(G)),

with equality if and only if G ∼= Kn.
In [27], the authors have obtained the bound for LEE(G) as

LEE(G) ≤ e2m/n(n− 1− LE(G) + eLE(G)),

with equality if and only if G ∼= Kn.
In this paper we obtain the upper bounds for the Laplacian Estrada index of union

of graphs. Further we obtain the Laplacian Estrada index of Cartesian product of
some graphs.
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2. Laplacian Estrada Index of Union of Graphs

Let G1 be a graph with vertex set V1 and edge set E1 and G2 be another graph
with vertex set V2 and edge set E2. The union of G1 and G2 is a graph G1 ∪G2 with
vertex set V1 ∪ V2 and the edge set E1 ∪ E2. If G1 is an (n1,m1)-graph and G2 is an
(n2,m2)-graph then G1 ∪G2 has n1 + n2 vertices and m1 +m2 edges. The Laplacian
spectrum of G1 ∪G2 is the union of the Laplacian spectra of G1 and G2.

Theorem 2.1. Let G1 be an (n1,m1)-graph and G2 be an (n2,m2)-graph where m1
n1
>

m2
n2

. Then

(2.1) LEE(G1 ∪G2) ≤ eY
{
(n1 + n2) + eX

[
eLE(G1) + eLE(G2)

]
− 2

}
,

where Y = 2(m1+m2)
n1+n2

and X = 2(m1n2−m2n1)
n1+n2

.
Equality holds when G1 = G2 = Kn.

Proof. Let G = G1 ∪G2. The number of vertices of G1 ∪G2 is n = n1 + n2 and the
number of edges of G1 ∪G2 is m = m1 +m2. By the definition of Laplacian Estrada
index, we get

LE(G1 ∪G2) = e2(m1+m2)/(n1+n2)
n1+n2∑
i=1

eµi(G)−2(m1+m2)/(n1+n2)

= eY
n1+n2∑
i=1

eµi(G)−Y

= eY

(n1 + n2) +
n1+n2∑
i=1

∑
k≥1

1
k! (µi(G)− Y )k


≤ eY

(n1 + n2) +
n1+n2∑
i=1

∑
k≥1

1
k! |µi(G)− Y |k


= eY

(n1 + n2) +
∑
k≥1

1
k!

 n1∑
i=1
|µi(G)− Y |k +

n1+n2∑
i=n1+1

|µi(G)− Y |k


= eY

(n1 + n2) +
∑
k≥1

1
k!

[
n1∑
i=1
|µi(G1)− Y |k +

n2∑
i=1
|µi(G2)− Y |k

]
≤ eY

(n1 + n2) +
∑
k≥1

1
k!

[ n1∑
i=1
|µi(G1)− Y |

]k
+
[
n2∑
i=1
|µi(G2)− Y |

]k
= eY

(n1 + n2) +
∑
k≥1

1
k!

( n1∑
i=1

∣∣∣∣µi(G1)−
2m1

n1
+ 2m1

n1
− Y

∣∣∣∣
)k

+
(
n2∑
i=1

∣∣∣∣µi(G2)−
2m2

n2
+ 2m2

n2
− Y

∣∣∣∣
)k
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≤ eY

(n1 + n2) +
∑
k≥1

1
k!

( n1∑
i=1

∣∣∣∣µi(G1)−
2m1

n1

∣∣∣∣+ n1

∣∣∣∣2m1

n1
− Y

∣∣∣∣
)k

+
(
n2∑
i=1

∣∣∣∣µi(G2)−
2m2

n2

∣∣∣∣+ n2

∣∣∣∣2m2

n2
− Y

∣∣∣∣
)k .(2.2)

Since m1
n1
> m2

n2
, the Eq. (2.2) becomes

LEE(G1 ∪G2) ≤ eY

(n1 + n2) +
∑
k≥1

1
k!

[(
LE(G1) + n1

(2m1

n1
− Y

))k

+
(
LE(G2) + n2

(
Y − 2m2

n2

))k]}

= eY

(n1 + n2) +
∑
k≥1

1
k!
[
(LE(G1) +X)k + (LE(G2) +X)k

]
= eY

{
(n1 + n2) + eLE(G1)+X − 1 + eLE(G2)+X − 1

}
= eY

{
(n1 + n2) + eX

[
eLE(G1) + eLE(G2)

]
− 2

}
,

as desired. �

Corollary 2.1. Let G1 be an r1-regular graph on n1 vertices and G2 be an r2-regular
graph on n2 vertices where r1 > r2. Then

LEE(G1 ∪G2) ≤ eP
{
(n1 + n2) + eQ

[
eLE(G1) + eLE(G2)

]
− 2

}
,

where P = n1r1+n2r2
n1+n2

and Q = n1n2(r1−r2)
n1+n2

.

Proof. Result follows by putting m1 = n1r1/2 and m2 = n2r2/2 in the Theorem 2.1.
�

Corollary 2.2. Let G be an (n,m)-graph where m > n(n−1)
4 and G be the complement

of G. Then

LEE(G ∪G) ≤ e
n−1

2

{
2n+ e2m−(n

2)
[
eLE(G) + eLE(G)

]
− 2

}
.

Proof. If G is an (n,m)-graph, then its complement G has n vertices and n(n−1)
2 −m

edges. Substituting this in Eq. (2.1), the result follows. �

Corollary 2.3. Let G be an (n,m)-graph and G′ be the graph obtained from G by
removing k edges, 0 ≤ k ≤ m. Then

LEE(G ∪G′) ≤ e(2m−k)/n
{
2n+ ek

[
eLE(G) + eLE(G′)

]
− 2

}
.

Proof. The number of vertices and the number of edges of G′ is n and m− k, respec-
tively. Substituting this in Eq. (2.1), the result follows. �
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3. Laplacian Estrada Index of Some Cartesian Product

Let G be a graph with vertex set V (G) and H be a graph with vertex set V (H).
The Cartesian product of G and H, denoted by G × H is a graph with vertex set
V (G)× V (H) and two vertices (u1, v1) and (u2, v2) are adjacent in G×H if and only
if either u1 = u2 and v1 is adjacent to v2 in H or v1 = v2 and u1 is adjacent to u2 in
G [19].

Theorem 3.1. [22] If µ1, µ2, . . . , µn are the Laplacian eigenvalues of a graph G, then
the Laplacian eigenvalues of G×K2 are µ1, µ2, . . . , µn and µ1 + 2, µ2 + 2, . . . , µn + 2.

Theorem 3.2. The Laplacian Estrada index of G×K2 is

(3.1) LEE(G×K2) = (1 + e2)LEE(G).

Proof. By Theorem 3.1, we get

LEE(G×K2) =
n∑
i=1

eµi +
n∑
i=1

eµi+2

= (1 + e2)LEE(G). �

Theorem 3.3. [21] If λ1, λ2, . . . , λn are the adjacency eigenvalues of a regular graph
G of order n and of degree r, then its Laplacian eigenvalues are r−λi, i = 1, 2, . . . , n.

By Theorem 3.3, the Laplacian Estrada index of an r-regular graph of order n is [9]

(3.2) LEE(G) =
n∑
i=1

er−λi ,

where λi, i = 1, 2, . . . , n, are the adjacency eigenvalues of G.
The line graph of G, denoted by L(G), is the graph whose vertices corresponds to the

edges of G and two vertices in L(G) are adjacent if and only if the corresponding edges
are adjacent in G [19]. The k-th line graph of G is defined as Lk(G) = L(Lk−1(G))
where L0(G) ≡ G and L1(G) ≡ L(G). If G is a regular graph of order n0 and of degree
r0, then L(G) is a regular graph of order n1 = n0r0/2 and of degree r1 = 2r0 − 2.
Consequently, the order and degree of Lk(G) are [1, 2]

nk = 1
2nk−1rk−1 = n0

2k
k−1∏
i=0

ri = n0

2k
k−1∏
i=0

(2ir0 − 2i+1 + 2)

and rk = 2rk−1−2 = 2kr0−2k+1 + 2 respectively, where ni and ri stand for the order
and degree of Li(G), i = 0, 1, 2, . . ., respectively.

Theorem 3.4. [24] If λ1, λ2, . . . , λn are the adjacency eigenvalues of a regular graph
G of order n and of degree r, then the adjacency eigenvalues of L(G) are

λi + r − 2, i = 1, 2, . . . , n and

−2, n(r − 2)/2 times.
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Theorem 3.5. If G is an r-regular graph of order n and of degree r ≥ 3, then

LEE(L(G)×K2) = (1 + e2)
[
LEE(G) + n(r − 2)e2r

2

]
.

Proof. If G is an r-regular graph, then L(G) is a regular graph of degree 2r − 2.
Therefore by Theorems 3.3 and 3.4, the Laplacian eigenvalues of L(G) are

r − λi, i = 1, 2, . . . , n and

2r, n(r − 2)/2 times.
Therefore

(3.3) LEE(L(G)) =
n∑
i=1

er−λi + n(r − 2)e2r

2 = LEE(G) + n(r − 2)e2r

2 .

Therefore by Theorem 3.2 and Eq. (3.3)
LEE(L(G)×K2) = (1 + e2)LEE(L(G))

= (1 + e2)
[
LEE(G) + n(r − 2)e2r

2

]
. �

In [9], the following result was reported.

Theorem 3.6. [9] If G is an r-regular graph on n vertices, then for k = 0, 1, . . .

LEE(Lk+1(G)) = LEE(Lk(G)) + nk(rk − 2)e2rk

2 ,

where

rk = (r − 2)2k + 2 and nk = n

2k
k−1∏
i=0

(2ir − 2i−1 + 2).

Using Thereoms 3.2 and 3.6 we have following result.

Theorem 3.7. If G is an r-regular graph on n vertices, then for k = 0, 1, . . .

LEE(Lk+1(G)×K2) = (1 + e2)
[
LEE(Lk(G)) + nk(rk − 2)e2rk

2

]
,

where

rk = (r − 2)2k + 2 and nk = n

2k
k−1∏
i=0

(2ir − 2i−1 + 2).
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