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EXISTENCE, UNIQUENESS AND CONTROLLABILITY RESULTS
FOR FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL
EQUATIONS WITH NON-INSTANTANEOUS IMPULSES AND
DELAY

K. MALAR! AND R. ILAVARASI!

ABSTRACT. In this paper, we prove the existence, uniqueness and controllability
results for fractional neutral integro-differential equation and non-instantaneous
impulses in Banach spaces. To obtain the existence and controllability results, we
have enforced the concepts of fractional calculus and fixed point theorems. Examples
are also given to illustrate the results.

1. INTRODUCTION

The theory of fractional differential and integral equations have been demonstrated
to be important apparatuses and successful within the modeling of numerous marvels
in different areas of building and logical disciplines such as material science, chemistry,
science, control theory, flag and picture preparing, blood stream wonders, optimal
design and so on. Fractional derivatives give an fabulous instrument for the portrayal
of memory and innate properties of different materials and processes. The investigation
of both qualitative and quantitative properties of solutions to fractional differential
equations is an active and ongoing area of research. For more information on the
theory of fractional calculus, one can refer to the monographs of Kilbas et al. [23],
Lakshmikanthan et al. [25], Miller and Rose [27] and Podlubny [34], Baleanu et al. [4],
as well as the papers by [6,7,9,18-21,38,39] along with the reference cited therein.
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Impulsive functional differential and integro-differential systems are particularly
advantageous in modeling processes and phenomena that undergo short-time distur-
bances at the time their evolution. Impulsive differential equations of integer order
have been broadly applications in reasonable scientific modeling for a wide extend
of commonsense circumstances, counting organic wonders with edges, bursting beat
models in medication and science, ideal control models in financial matters, and
recurrence tweaked frameworks. For a comprehensive understanding of impulsive
differential equations, including relevent developments, [26] and the references therein.
Ordinarily, the impulses within the advancement handle depicted by impulsive differ-
ential equations are expected to be unexpected and instantaneous. In other words,
the annoyances (impulses) begin suddenly and their term is irrelevant in compared to
the overall term of the method. However, Herndndez et al. [18] introduced the concept
of non-instantaneous impulses where the impulses start abruptly at the points ¢, and
their action continues over a finite time interval [ty, sx]. This speaks to a circumstance
impulsive action that begin suddenly and remains dynamic for a limited period of
time. Pierri et al. [35] examined the existence of solutions for a class of first order
semilinear abstract impulsive differential equations with non-instantaneous impulses
utilizing the hypothesis of analytic semigroup and fractional power of closed operators.
Gabeleh et al. [16] investigating a new survey of the theory of measure of noncom-
pactness and their applications. Wang et al. [42] studied the concept of a PC-mild
solution to a general new class of noninstantaneous impulsive fractional differential
inclusions involving the generalized Caputo derivative with the lower bound at zero
in infinite dimensional Banach spaces. One can refer to that references for further
details [1-3,5,40].

Neutral differential equations arise in many areas of applied mathematics and have
received significant attention in recent decades. Good references for ordinary neutral
functional differential equations include the books by Graef et al. [15], Benchohra et
al. [5], Lakshmikantham et al. [26] and the reference cited therein. Integro-differential
equations are imperative for examining issues emerging from common wonders and
have been examined from different points of view. In later a long time, this hypothesis
has been connected to a wide course of non-linear differential equations in Banach
spaces. For more data, see the references therein [11,12].

Meraj and Pandey [30] examined the existence of mild solutions for fractional
non-instantaneous impulsive integro-differential equations with nonlocal conditions
by utilizing noncompact semigroup hypothesis and fixed point theorem.

In recent years, fractional calculus has brought almost modern viewpoints within
the field of control theory. The primary challenges in control theory, such as post task,
stabilization, and ideal control, can be tended to by accepting that the framework is
controllable. The concept of controllability was first introduced by Kalmen in 1960
and has been extensively studied. Controllability could be a significant characteristic,
both in terms of quantity and quality, in control systems and plays a pivotal role
in various control problems, including those in finite and infinite-dimensional spaces.
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In recent times, the controllability of fractional dynamical systems has risen as a
profoundly dynamic range inside this field. The controllability of linear systems in
finite dimensional spaces has been broadly inspected in [24] and controllability of
fractional evolution dynamical systems in a dimensional space has been talked about
in works such as, [6,7,10,14,36,41].

Ji et al. [22] considered the controllability of impulsive differential systems with non-
local conditions by using Ménch’s fixed point technique. Wang et al. [42] established
the adequate conditions for nonlocal controllability for fractional evolution systems
and the comes about were gotten by utilizing fractional calculus and Ménch’s fixed
point theorem. Meraj and Pandey [31] considered the existence of mild solutions
and approximate controllability for a class of fractional semilinear integrodifferential
equations with nonlocal and impulsive conditions where the impulses are not instan-
taneous. They employed semigroup theory and fixed point theorems to analyze this
problem.

This paper deals with the Fractional Neutral Integro-Differential Equations
and Non-Instantaneous impulses with infinite delay

t
(1) CDru(t) — S(t, u)] :mu(t)+ﬁ(t,ut, / T, s,us)ds>, t € (50, toral,
0
k=0,1,2,...,m,
(12) u(t) = Jk(u(tk)) + g]f(?ﬁ, ut), t e (tk, Sk], k=1,2,...,m,
(13) u =o€ A, te (—O0,0].

where ¢ D7 is the Caputo fractional derivative of order r € (0,1) and J = [0, T]. The
operator 2 denotes the infinitesimal generator of an analytic semigroup {Q(¢)}:>¢ in
a Banach space X having norm || - ||, this suggests that we can find .#Z4 > 1 to ensure
that ||Qt)|| < M, F :IX B, xX =X, G:Ix B, > X, H: D xAB, - X are
given functions satisfying certain assumptions, 9 : (g, sg] X X — X, J; : X — X for
k=1,2,...,m. %) is a phase space characterised in preliminaries. Here ® = {(t,s) €
ijIOSSStST},O:tOZSO<t1SSl<t2§82<"'<tm§8m<tm+1:‘j
are fixed numbers.

The impulses in problem (1.1)—(1.3) start abruptly at the points 5 and their action
continues on the interval [tg, sx]. To be precise, the function u takes an abrupt impulse
at ¢ and follows different rules in the two subintervals (¢, si| and (sg, tx41] of the
interval (tx,tg+1]. At the point s, the function u is continuous. The term Jy(u(ts))
means that the impulses are also related to the value of u(ty) = u(ty ).

We remark that if ¢, = s; and the second equation of (1.1)—(1.3) takes the form
of Au(ty) = Tn(u(ty)) = uty) — u(ty) with w(t)) = lim._o+ u(ty + ¢), u(t;) =
lim, .- u(ty — €) representing the right and left limits of u(t) at ¢t = .

For almost every continuous function u defined on (—oo, J] and for almost every
t > 0, we designate by wu; the part of %), characterized by u(0) = u(t 4 ) for 6 < 0.
Now w(-) refers to the historical backdrop of the state from every 6 € (—o0, 0] like
the current time ¢.



686 K. MALAR AND R. ILAVARASI

Motivated by the above mentioned works, the main aim of this paper is to establish
the existence and controllability of impulsive fractional neutral integro-differential
system and non-instantaneous impulse with infinite delay using the new definition of
the phase space and fixed point theorem of Mdnch’s and the technique of Hausdorff
measure of noncompactness. To best of our knowledge there is some new results in
this paper.

The paper is organized as follows. In Section 2, we recall some basic defi-
nitions, notations and preliminary facts. In Section 3, the existence and uniqueness
results for equation (1.1)—(1.3) using fixed point theorems. In Section 4, the controlla-
bility results for fractional neutral integro-differential equation and non-intantaneous
impulses with delay. In Section 5, we have examples to demonstrate the obtained
results.

2. PRELIMINARIES

In this section, we mention notations, definitions, lemmas and preliminary facts
needed to establish our main results.

Let £(X) : X — X represents the Banach space of all bounded linear operators,
obtain its norm recognized as || - || ¢(x)-

Let C'(J,X) symbolize the space of all continuous functions from J into X, having
norm || - ||¢@,x). Moreover, B,(u,X) represents the closed ball in X with the middle
at u and the distance 7.

We recall that a measurable function u : J — X is Bochner integrable if and only
if ||u|| is Lebesgue integrable. To get extra insights as regards the Bochner integral,
refer to the treatise of Yosida [45].

Permit £1(J,X) signifies the Banach space of all measurable functions v : J — X
which are Bochner integrable and have the norm

T
[ :/0 lu(®)||dt, for all u € L (T, X).

Definition 2.1 ([37]). Let 2 : ® C X — X be a closed linear operator. The operator
2l is considered to be sectorial if we can find 0 <0 < 3, .# > 0, and € R in such a
way that the p(21) exists exterior of the segment

ptSp={u+r:xeC [larg(-N\)| < 0},
|or -1 < A/—//u Né 1+ Ss.

For short, we say that 2 is sectorial of type (., 6, 1).

Let 2A defines the infinitesimal generator of an anlyatic semigroup in a Banach space
and 0 € p(2A), where p(2) is the resolvent set of 2. We characterize the fractional
power 27 for 0 < ¢ < 1, as a closed linear operator on its domain ®(2(?) with inverse
A7 (see [33]). The following are basic properties of 9.

(i) ®(A9) is a Banach space with the norm |Ju||, = ||[2%u|| for u € D(A?).
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(ii) Q(t) : X — X, for t > 0.

(iii) A9Q(t)u = Q(t)A%u for each u € D(AT) and ¢t > 0.

(iv) For every ¢t > 0, 49Q(t) is bounded on X and there exists .#, > 0 such that
|RA9Q(¢)|| < A tre .

(v) For 0 < ¢ <1 and u € ©(A9), we obtain ||Q(t)u — u|| < C,t?||2A%||.

We denote by PC([0,T],X) the space of piecewise continuous function from [0, T]
into X. g : PC(J,X) — X are given functions satisfying certain assumptions. In
particular, we introduce the space PC formed by all piecewise continuous function
u : [0,T] — X such that u(-) is continuous at t # t;, u(t;) = wu(t;) and u(t])
exists for t = 1,2,...,m. We assume that PC' is a Banach space, endowed with the
norm |[ul|pc = supsepoq [|u(s)|pc. It is clear that (PC, || - ||pc) is a Banach space.
PC((0,7],X) = {u: (0,T] = X such that u; € C((¢;,ti11],X), ¢ =0,1,2,...,m and
there exist u(¢;") and u(¢;) with norm wu(t;) = u(t;), i = 0,1,2,...,m}. We define
Cr(3,X) = {v € PC((0,7],X) : ||v(t) — v(s)|| < I|t — s| for all t,s € [0, T]}, where I
is some positive constant, is a Banach space endowed with piecewise norm. It should
be fixed that, once the delay is infinite, then we need to discuss about the theoretical
phase space %), in a useful way. In this we consider the phase spaces %}, %7;1 which
are same as described in [13].

We present the abstract phase space %),. Suppose H : (—o00,0] — (0,+00) is
a continuous function with [ = [°_ H((t)dt < +oo and for any a > 0, we define
B = {1 : [—a,0] — X such that () is bounded and measurable} and equip the
space % with the norm [|¢||(—a0) = SuDse(_a0 V()] and ¢ € L. Let us define
By, = {1 (—00,0] = X for any ¢ > 0, 1||_.q € & and [° H(s)|[¥)||s.0ds < +00}.
If %), is endowed with the norm ¢z, = [ H(s)|¥||s0ds, for every ¢ € 2y,
then it is clear that (%, | - ||4,) is a Banach space. Now we consider the space
B, = PO((—00,7],X) = {u: (=00, T] — X such that uls € C(J;,X) and there exist
w(t]) and w(t;) with u(t;) = u(t;), uo = ¢ € By, i = 0,1,2,...,m}, where u; is

the restriction of u to J; = (¢;,t;11], set || - H@; be the seminorm in %), defined by
lull 7 = l1¢llz, +sup{llu(s)] : s € [0,T]}, u € B,
We count on that the phase space (%, || - ||4,) could be a semi-normed linear area

of function mapping (—oo, 0] into X, and enjoyable the next elementary adages as a
results of Hale and Kato (see case in purpose in [17,20]).
If u is continuous function from (—oo,T], T > 0, into X, defined on J and uy € %y,
then for every t € J the following situations preserve.
(J1) w is in By,
(12) flu(®)llx < Al 2, i
(J3) Nluellz, < Da(t) sup{juls)]lx : 0 < s <t} + Ds(t)|uoll,, where A7 > 0 is
a constant and D;(-) : [0,400) — [0, +00) is continuous, Dy(-) : [0, +00) —
[0,400) is locally bounded, and D, Dy are independent of u(-). For our
convenience, denote D} = sup,c; D1(s), Dj = sup,cg Da(s).
Let us recall the following known definitions. For more details see [4,23,27].
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Definition 2.2 (]23]). The fractional integral of order r with the lower limit zero for
a function f is defined as

- Lot f(s)
Jf(t):r(r>/0 (t—s)l—rds’ t>0,r>0,

provided the right-hand side is pointwise defined on [0, 00), where I'(+) is the gamma
function.

Definition 2.3 ([23]). The Riemann-Liouville derivative of order r with the lower
limit zero for a function f : [0, +00) — R can be written as

1 ary\ [t
Definition 2.4 ([23, 34]). The Caputo derivative of order r for a function f :
[0,4+00) — R can be written as

n—1 tk

“Drf(t) =tD" (f(t) = k'f(k)(O)> , t>0n—1<r<n.
k=0 "
Remark 2.1 ([23]). (1) If f(t) € C™[0,+0o0), then

1 t
[ (=) s = (), > 0.
N AR 1),

(2) The Caputo derivative of a constant is equal to zero.

(3) If f is an abstract function with values in X, then integrals which appear in
Definitions 2.2 and 2.3 are taken in Bochner’s sense.

Definition 2.5. A function u € C'(J,X) is said to be a mild solution of the following
problem:

°Drf(t) =

{CDTu(t) = Au(t) +v(t), te (0,7],
u(0) = uyp,
if it satisfies the integral equation

u(t) = (0o + | (= $) 1Pt — s)u(s)ds.
Here

0,(t) = [T ooy, Pty =r [ g O)T(0)0,

1

0r(6) = 070, (67F) 20,

1 & r 1
o.-(0) = - Z(—l)"‘lﬁ_w—l(m;j_) sin(nmr), 6 € (0,+00),
n=1 :

and @, is a probability density function defined on (0, +00), that is,

+oo
()20, 0€(0,400), [ p(0)do=1.
0



EXISTENCE RESULTS 689

It is not difficult to verify that
1

+o0o
/0 b0, (0)0 = F 7y

We make the following assumption H(A1) in the whole paper.

H(A1): The operator 2 generators a strongly continuous semigroup {Q,(¢) : ¢t > 0}
in X, and there is a constant, .#4 > 1 such that supc( o) [|2-(t)l| L) < Aa.
For any t > 0, Q,(¢) is compact.

Lemma 2.1 ([41,46]). Let H(A1) hold. Then, the operators Q, and P, have the
following properties.
(1) For any fized t > 0, Q.(t) and P.(t) are linear and bounded operators, and for
any u € X,
P, (t)ull < —LA|lul|.
| (t)ul| < NETOLAL

(2) {Q,(t) : t >0} and {P.(t) : t > 0} are strongly continuous.
(3) For everyt >0, Q.(t) and P,(t) are compact operators.

r M4

0 (t)ul| < Aalull, |

We define the following definiton of the mild solution for the problem (1.1)—(1.3).

Definition 2.6. A function u € PC(J,X) is said to be a PC mild solution of problem
(1.1)—(1.3) if it satisfies the following equation:

Q, (1)[®(0) + 50, 2(0))] = S(t, u(t)) + fo(t — s) AP (t — 5)G(s, us)ds
+ Ji(t = 8) TPt — 8).F (s, us, [§ H(s, T,ur)dT)ds, t€[0,t],
E=0,1,...,m,

uw(t) =  T(ul(ty)) + G(t,we), t€ (tr,sel, k=1,2,...,m,

Q,(t — su) D — G(t, u(t)) + Ji(t — s)" AP, (t — 5)G(s, us)ds

+ fi(t = 8) 1Pt — 8).F (s, us, [§ H(s, T,ur)dT)ds, t € (sp,thyil,
E=1,2,....,m,

where
-@k :’Jk(u(tk)) + gk<8k, U(Sk)) + S(Sk, U(Sk))
— /0 k(sk — )" AP, (s, — 5)G (5, u(sy))ds

Sk s
(2.1) - / (sp — 8) " P, (sp — s)ﬁ(s,us,/
0 0

Now, we introduce the Hausdorff measure of noncompactness hy defined by

hy(B) = inf{e > 0 : B has a finite e-net in X},

H(s, T, uT)dT)ds, k=12 .m.

for a bounded set B in any Banach space Y. Some basic properties of hy(-) are given
in the following definition and lemmas.
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Definition 2.7 ([8]). Let Y be a real Banach space and B,C C Y be bounded, and
the following properties are satisfied:

(1) B is pre-compact if and only if hy(B) = 0;

(2) hy(B) = hy(B) = hY(convB), where B and convB are the closure and the
convex hull of B, respectively;

(3) hy(B) < hy(C), when B C C;

(4) hy(B + C) < hy(B) + hyC, where B+ C ={z+y:z € B,y € C};

(5) hiy(B U C) — max{ iy (B), hy(C)};

(6) hy(AB) < [Alp, (B) for any A € R;

(7) if the map @ : D(®) C Y — Z is Lipschitz continuous with constant x then
fy(®B) < Ky, (B) for any bounded subset B C D(P), where Z is a Banach
space;

(8) if {W, },;5 is a decreasing sequence of bounded closed nonempty subset of Y
and limy,—, 1 oo, (W) = 0, then N 2>9'W,, is nonempty and compact in Y.

Lemma 2.2 ([8]). If W C C([a,b],X) is bounded and equicontinuous, then h(W(t))
is continuous for t € [a,b] and A(W) = sup{R(W(t)) : t € [a,b]}, where W(t) = {u(t) :
ue W} CX.

Theorem 2.1 ([32,41)). If {x,},'2 is a sequence of Bochner integrable functions
from T into X with the estimation ||z, (t)|| < p(t) for almost allt € I and every n > 1,
where p € LY(J,R), then the function x(t) = h({z.(t) : n > 1}) belongs to L*(J,R)
and satisfies B({ 5 x(s)ds : n > 1} < 2 [ x(s)ds

Lemma 2.3 ([8] Darbo-Sadovskii). If W C Y is bounded, closed and convez, the
continuous map F : W — W is an h-contraction, then the map F has at least one
fixed point in W.

The following fixed point thoerem, a nonlinear alternative of Monch’s type, plays a
key role in our proof of system (1.1)—(1.3).

Lemma 2.4 ([28], Theorem 2.2). Let D be a closed conver subset of a Banach
space X and 0 € D. Assume that F : D — X is a continuous map which satisfies
Mdnch’s condition, that is (M C D is countable, M C ¢o({0} UF(M)) implies M is
compact). Then, F has a fived point in D.

3. MAIN RESULTS

In this section, we present and prove the existence results for problem (1.1)—(1.3). In
order to prove the main theorem of this section, we assume the following hypotheses.

H(A2): (i) A genertates a strongly continuous semigroup {Q,(¢) : t > 0} in X.
(ii) For all bounded subsets D C X and u € D, ||Q,.(t50)u — Q,.(t70)ul| — 0
as t; — to for each fixed 6 € (0, +00).
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H(A4):

H(A5):

H(A6):
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The function G : Ix %), — X is continuous and we can find constants 5 € (0, 1).
¢, > 0, and €3 > 0 in such a way that G is X g-valued and fulfills the subsequent
and assumptions:

HQ[’BS(t, 'Lbl) — Qlﬁg(t, u2>Hf)C S (ngul — UQH%}L, te J, Uy, U € %h,
|275(tw)|, < Gllullm, + . teTuec B

The function H : D x AB), — X satisfies the following.

(i) For every (t,s) € D, the function H(t,s,-) : B — X is continuous and
for each u € Ay, the function H(-,-,u) : D — X is strongly measurable.

(ii) There exist a function v € L'(J,R") and a continuous non-decreasing
function w : RT — (0, 00) to ensure that

|1H(t, s, u)|| < v(s)w(||lullz,), forae. t,sel ue B,

(iii) There exists © € L'(J x J,R") to ensure that

h(H(t,s,D)) < ((t,s)| sup A(D(H))|, forae. t,sed,
—00<0<0

where D(0) = {z(0) : x € X} and h is the Hausdorff measures of non-
compactness.
The function .Z : J x %), x X — X satisfies the following.

(i) For a.e. t € X, (¢,u) — F(t,¢,u) is continuous and for all (¢,u) €
B, x X, t — F(t,¢p,u) is strongly measurable.

(ii) There exists a function m € L'(J,RT) and a continuous non-decreasing
function 2 : R — (0, +00) to ensure that

|7t 0,0)],, <m0, + lul), (¢ 6,u) € X x By x X.

(iii) For every bounded sets D C %), F* C X, there exists a positive function
n € LY(X,R") is such a way that

h(ﬁ(t,D, F*)) < n(t)[ sup R(D(0)) + h(F*)|, forae. tel,

—00<6<0

where D(0) = {v(0) : v € D}.

The function 4 : (t,sk] X B — X, k = 1,2,...,m are continuous, and
satisfies the following conditions.
(i) There exist constants C;,C; > 0, ¢ = 1,2,...,m, in such a way that

1% (t, ¢)Hx < Cl|pllz, + Ciy  tE (trysi],d € By

(ii) There exists constants 7; > 0 such that, for each bounded D C %,

M. (t, D)) < DZ{ sup h(D(H))}, for a.e. t € (ty, sk, k =1,2,...,m,

—00<6<0

where D(0) = {z(0) : z € D}.
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H(A7): For k=1,2,...,m, Jx € C(X,X) and there is a constant £; > 0 such that

H(A8): For k = 1,2,...,m, the functions %, € C([t, sk] x X;X) and there exists
L, € C(3,R") such that

H%g(t,u) - gk(t,v)H < Ly(t)||lu—nv|, forallu,veXandt e [tg, sk

Jp(u) — Jk(v)H < Lyllu—vl|, forall u,v € X.

H(A9): For every bounded set x C %, the set {t — G (t,us) 1 us € x}, k=1,2,...,m,
is equicontinuous in %,.
H(A9*): The following inequalities hold:

2 T t T
Q%Aﬂﬁ’f’q / (S)d 2%,4%67"7
0

[//A(Lk + ;) + /Otn(s)ds] fipe(W(T)) < 1,

I'(1+r) I'(1+r)
~ rB
P — (My+ 1){(/10 + //’Ii-(ig(f 1*) O TB )%@1} <1,
and
_ oy AL )T T
L= 11&2}&(///,4+1){(Lk+m)+ T+ 1) /0 n(s)ds} < L

For our convenience, let us take

1—q\,6 =u
K, = [( q)bl—qi
q—q

and %6 = :KQHUHL%(f,R*).

Theorem 3.1. Assume the hypotheses H(A1)-H(A9*) are satisfied, then the problem
(1.1)—(1.3) has at least one mild solution on [0,T] provided that

My gT(B+1)_ TP
rrrn g | <t

Proof. We will transform the system (1.1)—(1.3) into a fixed point problem. Let the
operator Y : %, — %, be defined by

d(t), te(—o0,0],

Q,(t)[®(0) + G(0,®(0))] — S(t,us) + fy(t — s) AP, (t — 5)G(s, us)ds
+ Jit = 8) TPt — 8).F (s, us, f§ H(s, T,ur)dT)ds, t€[0,t],
k=0,1,2,...,m,

Te(ulty)) +9(t,ue), te(ty,sel, k=1,2,...,m,

Q,(t — 81) Dy — G(t,ur) + [y (t — ) AP, (t — 5)G(s, us)ds

+ Ji(t = 8) TPt — 8).F (s, us, [§ H(s, T,ur)dT)ds, t € (sp,thil,
k=1,2,...,m,

with %, k =1,2,...,m, defined by (2.1).

1-g;

s i:0,1,2, %4 = :Kle” 1
L1 (7 RT)

(3.1) max Dy [(//A(Lk + ;) + A+

(Tu)(t) =
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Obviously the fixed points of the operator T are mild solutions of the model (1.1)-
(1.3). The function g(-) : (—o0,T] — X is defined by

o), t € (—o0,0],
o) = {QT(t)Q(O), el

Then, gy = ®. For every function Z € C(J,R) with 2(0) = 0, we take as z is defined

by
0, <0
t: ) f— b
() {5@), ted.

If w(-) fulfils (2.1), we are able to split it as u(t) = §(t) + 2(t), t € I, which suggests
u = Uy + 2, for each ¢ € J and also the function Z(-) fulfills

Q,(1)G(0,®) — G(t, 2 + ) + Jo(t — 8)" AP, (t — 5)G(s, Zs + Us)ds

+ Ji(t = 8) TPt — 8).F (8, Zs + Ts, J§ H(s, T, 2, + §r)d7) ds, t€[0,t],
k=0,1,2,...,m,

2(15) = Jk(u(tk))+%€(t,§t+gjt), t e (tk,é‘k], k=1,2,3,...,m,

Q(t—81) Dk — G(t, 2 + G) + Jo(t — 8) AP, (t — 5)G(s, 2, + Fs)ds

+ Jit = s) TPt — 8).F (8, Zs + Ts, J§ H(s, T, 2, + G )dT) ds,
tG(Sk,t].H_l], k=1,2,...,m,

where

D =Ti(u(tr)) + sk, Zs, + Usi) + G (58, Zsp, + Usy)
[ U s — )55, + D)

Sk s
(3.2) — / (sp — 8) 1P (sp — s)?(s, Zs + 3]3,/ H(s, 7,2, + ﬂf)d7'>ds,
0 0
k=1,2,3,....m. Let B, ={€ B, : % =0¢€ B,}. For any ? € B,
12l = sup [[Z2(£) [l + (|20l = sup [2()[|x, 2 € By,
teg teg

as a result (%, || - H%Z) is a Banach space. Consider B, = {# € 4, : ||Z||x < ¢} for
some q > 0. Then for each B, C ,%’g is uniformly bounded, and for z € B,. We have
the phase space axioms (J1)-(J2),
12 + Gsll 2, < 1|2l + 119,
<Dy sup |[Z(7)[lx + DallZollm, + D1 sup  |G(7)]| + D2llollz,

(0<7<25+7s) (0<7<2+7)
= (02r<s) 1Z(7)]lac + D1l Qe () Lo |9(0) [ 2, + D2|| ]| 5,

< Dil|Z||x + (D1tty + D5)||®|| 2,
< Diq + Cn.
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In the event that ||Z||x < ¢, ¢ > 0,
(33) Hgs +st|‘3?h S D1q+5n7
where &, = (D4, + Ds)||®||5,. Define the operator Y : B, — A, by

Q,.()5(0, @) — G(t, z + )
+ it = s) AP (t — 5)G(s, Zg + s )ds
+ ot — )1 Pt - 5)
XF (8,25 + Us, Jo H(s, T, 2 + §,)dT)ds, t€[0,t],
- k=0,1,2,...,m,
Jk(u(tk))+%k(t,2t+yjt), t e (tk,Sk], k=1,2,3,...,m,
Q. (t — sx)Dr — G(t, 2 + Ut)
+ Ji(t — s) 1Pt — 5)G(s, 2, + Us)ds
+ Jot — 8) TP (t — 8).F (8, Zs + Ts, J§ H(s, T, 2 + G )dT) ds,
t € (Sk, tka1],
with %, k =1,2,3,...,m, defined by (3.2). )
Thus, the operator T has a fixed point if and only if T has a fixed point. Now, first
we calculate the following estimations.

Remark 3.1. By utilizing the above equation H(A1)-H(A9), we obtain
Py = 9:()S(0, @)l = Aa|AP|[A77G(0,®) ||, < Aatty [%1]0] 5, + 6],
where . = |7,
Py =[St 2+ Go)llx = 27 @A0)S(t, 2+ 50|, < Ao [%1 17 + G, + G
< My |6 (Di| 2] + En) + G] < MG (D12 + En) + AE,

P3 = ||9(Sk7§5k + gSk)HX = ||Ql_ﬂ(2(6)9(8k725k + gsk)”x
< Mo G125, + Usi ||, + 2] < Ao [€1(D1]|Z]s, + En) + 62
S %chl(‘Dng”sk + én) + %chﬂy t S (Sk; tk‘-i—l])

t
P | [ o2, - (s, + s
< Tﬂkﬁr(l +8

X

) /Ot(t — s)rﬁ—l(cfl(DlHZHS + &) + 6)ds

- TA+rp)

- T//?(_fj_(iﬁj; h) (61(D1|Z]|: + ¢n) + €2) /Ot(t — )14
rB

ALTUD 6L ey

P5 = H /OSk<8k - S)T_lgll_ﬁj)r(sk - S)(mﬁ)g(& Zs t gs)dS X
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M sT(1+ - "
<« -p ( 6)<<g1(@1||z||t+cn)—}—%)(Sk) ;€ (g tpsa),

- T+rp) 3
= H/ )IATIPL(t = $)ATG (s, +gs)ds)|
Mr—I'(1+ B) I T8
S F(l +7"6) (Cgl(®1”z”t+cn) ‘}'652) 3 ) S [0,7],

Pr = [[Ju(u()llx + 1%t 2+ G)ll < Lo+ Ci[DallZ]le + Gl + Ciy ¢ € (5],
Py = [|Tn(ulte)llx + 195 (sk, 25, + Ts) |
<Lk+e[®1”~||sk +5n] +€i7 t e (Sk‘atk—l—l];

Py = H/ VPt — 5).F <S,Zs+g57/5ﬂ(377,27+g7)d7)d8
0

X

< F(T)/O(t—s) “Ln()UD |2« + En)ds

< %(jli)m(sm(@lnzns + &+ b(7)(1 + Di|Z]l, + &))ds
< PO QD Il + 0+ WD + ) sup(s), ¢ 1]
Py = H /Sk(Sk —8) P (s — s)f/‘(s, Zs + Vs, /S H(s, 1,2, + ng)dT) ds
0 0 X
AMu(SK)" . - .
< als1) Q(D1||Z]ls + n + o (7)(D1||Z||- + Cn)) supm(s), t € (g, try1],
L(r+1) ted
Py < H/ )Pt — )T (s,és —1—313,/8 H(s,, 2, +ng)dT>ds
0 X
< F({”*fl)ﬂ<®1||z||s F et ) (DilEl + ) supms), € [0,7),

Pio <[5 + §s) 1y < ||@)° @077 [S(t 2 +5) — S(t 2 + )] |,
< Mo || @) (S8, 27+ 3) = 5, 2+ )]

Fis < H/ It~ )2 (S5, 21 4 G) — G5, 2+ )] ds|
My_gT (B +1) trﬁ o o
(TB + 1) ﬂ [9(57 Zs + ys) - 9(57 Zs + ys)] des, t € [O’ tl];

Pua < | [ (51 = 510 o = ) (55,22 4+ ) = S5, 5+ 51)] ds

My _gT(B+1) (sp)™8 on
= I'(rg+1) B /o

t € (sk, trs1),

X

[S(s, 2 + 8s) — (s, Zs + Us)]

‘xds’
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Pis < H/ )P t—s)[f( ,ig—l—gjs,/osj'f(s,T,Zf-FgT)dT)
—J<5,25+3]5,/055{(3,T, 27+g7)d7>} )
< Fiffil) /Ot ﬁ<s,zg+gs,/089{(s,7,2¢+g7)d7)
— 9(5, Zs + Us, /Os H(s, 7,2, + gT>d7'):| des, t €[0,t],
Po < | [ o= 5770 = 9)| F (.22 i [ 965,722+ 5)dr )
—ﬁ<s,2s+gs,/osf}c(s,¢, 27+g7)dr>} )

Ma(s1)" [
= ['(r+1) /

— §<3, Zs + Us, /8 H(s, 7,2, + QT)dTﬂ H ds, t€ (S, tpr1)-
0 x

ds

ﬁ(s, g y/ H(s, T, 5" + QT)dT)
0

Now, we define (T2%)(t) as

Q,()5(0,®) — G(t, 2 + Ge) + Jo(t — 8)" AP, (t — 8)S(s, Z + 7 )ds,
tel0,t], k=0,1,2,...,m

0, te (tx,sx), k=1,2,...,m,

(T22)(t) = { Qu(t)(t = 58) [ G5k, Zoy + Ts) — S (55 — 5)7 AP (5, — 5)

xS§(s, Z + Gi)ds| — G(t, % + i)

+ Ji(t — s)TTIAP(t — 8)G(s, Zs + Fs)ds,  t € (s, trr],
k=1,2,3,....m

We obtain
I(T22)(t) = (Ta2)(0) 1 <N@)°]] |[(20) ﬁSt%+%n—<y%wzﬁmg
H / V5P (¢ — s)
X {( )9S (s, 24 + 0s) — (AP)G(s, 25 + ﬂs)} ds .
- Mi_gT 1) ¢ 5
<Myt Hit — % 2, + ;(iﬁ(—fj_) ) . %Cﬁ Hit — 2 2,
since

|7 =2, < DullZ®llx + (D2 +3") 20l = DallZ(®)lx — (D2 + %) Z0ll,
< DulE(t) = 2(1)lx < DallZ — Zll
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we have
o . . My_gT(B+1) 7 -
[(ta)0 - (b)), stz ~ 2l + LD Bz - 21
M- (B+1) 1’ _
< [— — i
_[///ocngl + T(rB + 1) 3 1D |]|2 Z”(@hv
t €[0,t],

|(022)(1) = (To2)(8)],
<10 ¢ = si)llece) 1)) 58 20+ o) = (A)°S58, oy + Gl
—+Aﬂ%—W”%”%w—@b%@a+m—m%@2+wws
AP A (2. 2+ ) — A°G(t, 5+ )

+ /O (= sy APt — ) {mﬁg(s, 5o+ ) — A0G(s, 5, + gs)} ds

MU (B+1) (s)”
I(rg+1) 8

1

+

X

M| MHD 2 F gy + G112 — 2l ]

X %0%1@1”2 — §||33;:

M_gD(B+1)  (tpe)™ 53
L) ) ez - 3

L(rg+1) I6]
M -pl'(B+1) (trh)™?  AMa(se)"\7, - =
S{(%A+1)%O%191+ T(rB+1) %191{ 5 + 5 HHZ_Z”%Z’
t € (S, thr]s
and
|(T22)(8) — (T22)(8)],
M_gl(+1) . T

<My + 1) | M1y + G2~ 2y, te

rr6+1)
Presently, let us demostrate that T has a fixed point. Subsequently we will prove that
T has a fixed point by using Lemma 2.4.

Step 1. We show that there exist some ¢ > 0 such that T(%,) C 4,. If it is not
true, then for each positive number ¢, there exists a function 29(.) € %4, and some
t € I such that ||(T29)(t)|| > q.

On the other hand, from hypotheses the H(A2)-H(A9), Lemma 2.1 (1) and Holder’s
inequality, for ¢ € [0, ],

¢ < (T2 @) <2 @) eSO, @)l + 15, 2 + o)

+ ‘ /t(t — )" AP (t — 5)G(s, Zs + Fs)ds
0 X
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S

+ /t(t —8) Pt — s)ﬁ<s, Zs + gs,/ H(s, 7,2, + QT)d7'> ds
0 0 X
SMp M| C1|| Q| 2, + Co] + AC (D12 + ) + MG
rB
//l;(ig(—f :_) D (G1(Du|2||¢ + €n) + CKQ)%
+ ﬁQ(DIHEH + ¢, + bo(7)(D1||Z]|- + €n)) supm(s)
C(r+1) ° " ! M e
=01.

For any ¢ € (ty, sx], kK =1,2,...,m, we have

¢ < (T2 @) < 1Tx(ult))llx + 1Dt Z + G lx < Li+ C[Da|IZ]le + &) + €
= .

In the same way, for any t € (s, tx1], K =1,2,...,m,

g < I(PE) @ <Nt — si)ll ey | 1Tn ()| + 1G5 (sk 2 + G|
+ Hg(skv’gsk +g5k)||x

+ H sk = 2P (51— )55, 2, + )
JACED O

X ﬂ(s, % + s, /OSJ'C(S,T, z + gr)dT)dS x}

182 gl + | [ (0= 8P = 5)90s, 2 + s
[y —s)

x 7 (5543 [
0

<M, [Lk + CDLIZ N, + 0] + Ci + ML (D[ s, + ) + Mo

*|

X

i

H(s, T,z + QT)dT> ds

X

TG+ e ()
F(Tﬁ + 1) (Cg1(91||z||sk + Cn) + CKQ) ﬁ
+ mﬁ(ﬂllilu + Cn + bu(7)(Dil|Z]- + ¢n)) Stlé:}])m(s)
+ MG (D1 2| + En) + AMC
M_gT(B+1) 5 3 (P
F(T‘ﬁ + 1) (Cgl(Dl“ZHt + Cn) + C62)T
Ma(trn)”

Q(D1||2||s + &, + bo(T)(D4||Z]|- + &,)) supm(s).
R L (D[], + ) supm(s)
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Then, for all t € J, we find that
M gU(B+1) T
Lro+1) 3

I(T29)(1)]] <€ + (Ma+ 1) |(Lr + Ci + AG) +
X (Dal[2]le + &)

///A(r/(iﬁi)lﬁ QD1 |25 + & + bo(T) (D1 2|7 + &) stlelym(s),

where

¢ = max {///A//zo[%ﬂqu% LG+ (M 1) (///0% G

1<k
M _gT(B+1)_ T
T(rB+1) %55 )}
T

Q(D1|Z||s + &, + bo(T)(D4]|Z]| - + E,)) supm(s).
Tl +1) (D]l (T) (D1 |2 ) P (s)

Combining the above equations
M_gT(B+1)_ T
Lr6+1) 5

0 < [(T2)O)] SE + (Aa+1)| (B + & + M%) +

X (D1l|Z[] + )
Ma( My +1)TT
L(r+1)
Dividing both sides by ¢ and letting ¢ — 400, we obtain

M _gL(B+ 1)(5 T
LrB+1) B

QUD1[|Z]]s + n + bo(7)(D1|Z[|7 + &n)) SU?W(S)-
te

1< |[(T29)(8)]] <€ + (Ma+1)|(Ly + C; + MG +

X (Da|z]le + )
MA(AMy+ 1)T"
L(r+1)
Then, by hypothesis, we get 1 < 0. This is a contradiction.
Hence, for some positive integer T(%,) C 4,.
Step 2. Y : B, — %, is continuous. For this purpose let {2} C %, with
7 — % in %,. Then there is a number ¢ > 0 such that ||2((¢)|| < ¢ for all n and
ae. t€d sozm e B,={2¢€ B, : HZH%’Z <} C %, and z € B.. From remark,

we have ||Z, 4 9|z, < ¢, t €.
By H(A4), H(A5), Remark Py, Pi3, P14, P15, and Lebesgue’s dominated convergence
theroem, we obtain, for ¢ € [0, ],

I(TZ") (1) — (T2)(8)]|x

<M

UDI2]ls + én + bo(T)(DalZ]+ + ) Sug)m(S)-
te

AN 1 I 700y e O (1Y
e+ -z +0]| + S
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x [ @805, 20 +52) — (s, % + )] leds

Ma(t) [t
I'(r+1) /0

_ﬂ<3,28+gs,/ H(s, T, ZT+QT)dT>
0

ﬁ’(s, g y/ H(s, T, 5" + gT)dT)
0

ds — 0, asn — +oo.
x

For any t € (ty, s, k = 1,2,...,m, we obtain ||(Tz")(t) — (T2)(t)|lx = 0. In the same
way, for any t € (s, txr1], K =1,2,...,m, we have

I(F2)0) - (F2)(0)x
<190t = 1)y |19 (ult)) x + 1%, 2, + i)
—%@h@,+%mu+uwyﬂymem%ﬁ;+mg

AM-T(B+1) (s1)"”
L(rp+1) B

< [ @07 [Stor 22+ 5 = S0, 20 + 5] s
Masi)" /Sk

+

- (9’059(8167 gsk + gsk) .

L(r+1)
- ﬁ<87 fsk + gs;m/ %(87 T, 27’ + gT)dT)
0

33(3, oot yk/o H(s, T, 5" + ng)d7'>

ds]

X

+ @) J@orse. 2 + ) - @7 s+ )|
My—gU(B+1)  (trs)"™” /t

ds
X

I'(rg+1) g
MaA(tpr)” [T
I(r —l|€—+1) /0

_ ﬁ<s, Zs + gjs,/ H(s, 7,2, + ng)dT>
0

(7 |5(5.20 + ) = (0°9(s. 5, + )

9(3, 2+ gjs,/ H(s, T, 2" + @T)d7'>
0

ds — 0, asn — +oo.
x

, = 0. Thus, T is continuous.
3?]1

It is simple to see that lim,, H(T%n) - (T%)’

Step 3. T is & - contraction.
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To demonstrate this we separate T as Ty 4+ T3 for t € J, where (T52)(t) is defined
in axioms and

[t —8) 1Pt — 8).F (s Zs + Us, Jo H(s, T, 2r +37T)d7')ds,
te0,t], k=0,1,2,...,m,

Tr(ulte)) + %t Ze +31), tE€ (teysk), k=1,2,3,...,m,
(T32)(t) = § Qut — s¢) [Tn(ults)) + Gilsk, o, + i)

— J*(sk = 8) T Pu(sk — ) (s, 2o + T, Jy H(s, 7, 2 + §r)d ) ds]
+ ot = ) 1Pt — ) (5, Za + Gar J H(s, 7, 2, + §r)d7 ) ds,

t € (sk,ter1], k=1,2,3,....,m

First, we show that Y5 is Lipschitz continuous on A,. In fact 2,Z € %, then from
axioms, we have, for all t € [0, ],

M_gL(B+ 1) t]

(290 = (Tl < [ (o + Y]~

Lr6+1) B
In the same way, for any ¢t € (s, tr11], K = 1,2,...,m, we obtain
o . My_gD(B+1 i -
I(E22)(0) — (POl < (i + 1] (ot + 2D C Ve )z - 2

Then, for all t € J, we get

M_gLU(B+1) ‘ T8
Lrg+1) B

I(Ta2)(8) = (C2A)ON < (a+1)| (o +

< jHZ - EH%Z'

>C€191} 12 — 2| g

From the assupmtion H(A9*), we observe that .2 < 1. Hence, T, is Lipschitz
continuous.

Next, we prove that T3 maps bounded sets into equicontinuous sets of B, .

Let 0 < 71 < 1 <t;. For each u € 4., we have

|(Ta2)(m2) = (Te2)(m),

< 072 (72— 8)" ' P12 — 8) < ys, (3,7', Zr + ng)d7'> ds
_ /071<7-1 —8)" P (1, — 8)F (s, 2, + yT, H(s, 1,2, + ng)d7'>ds .

S’ /On[(fz —8) 1P (2 — 8) — Po(m — s)]ﬁ<s, 2o+ T, /0 H(s, T, 2 + @)m) s
. ™ (o — 8)"1P, (3 — s)ﬁ<s, Zs + s, /OS H(s, T, 2, + @T)d7> ds .

T1
</
0

(79— 8) " 'Pu(my — 8) — (11 — 8)" 1Py (11 — S)H

L(x)m(s)Q(és + s)ds
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b s [ = D )14 b+ )
For any t € (ty, s], 71 < 72, k= 1,2,...,m, we have
|(Ts2)(72) = (T32)(7)|, =N1Tw(u(72)) = (u(m)|

+ |9k, 2y + Try) — Gi(T1, 20y + Gry)

Similarly, for any 71,72 € (s, tgr1], 11 < T2, K =1,2,...,m, we get
|(Ts2)(2) = (T32)(m)],

<[ [2(m2 = s1) = Qulm1 — 50)| T (ulti)) + G5, Za, + T
+ [0 = 50 = 0t = )] [ (51— 9 Puln — 9

X ﬁ(s, 5+ y/ H(s, T, % + ng)dT>ds
0

'

X

x
i H /Tl (r1 — S)r—l[(PT(Tg —58)—(m — s)]ﬁ(s,%s + QS,/S H(s, 7,2, + @T)d7'>ds
0 0

T 8
/ (o — 8)" 1P, (75 — s)y(s, 5t i, /
T 0

1

X
¢

H(s, T, 2, + Z?r)dT) ds

X
<[190(72 = ) = Q71 = s8)l| () [ﬂk + Ci[Dl|Z[]: + 54 +6

%AT

T 172~ 50 (m = sllec

[ = I ADE 0+ oD + )

T1
[0 = s P = 9P = 9)lec
X m(s)QUD1||Z]|s + én + bu(T)(D1]|Z]|- + ¢n))ds
%AT T2
>< e —
I'(r+1) /T
At the point when 75 — 7, the right hand side of the overhead inequality has a
tendency to zero, afterwards by H(A6)-H(A8), P,.(t), Q,(t) are uniformly continuous,
this demonstrates the equicontinuity.
We end of the step by proving that T is a A-contraction. For any W C %’Z, W
is piecewise equicontinuous since P,.(t) is equicontinuous. Here hpc = sup{h(W(t)),

t € [sg,trs1]}, B = 0,1,2,...,m. Then, for each bounded set W € PC, from the
following H(A4)-H(A6), we have for ¢ € [0, ¢1],

R(T5W) (1) :h< Ji s (- s)gz(s, W, + g, [ 900,70, + gf)dT) ds)

i 077 (o0 3t e )
<— _ &\ T
_F(T)/O(t S) h F 37W5+y57/(] :}C(S?T?WT_‘_yT)dT dS

(2 = 8)" " m()QDul|Z]ls + & + bo(r) (D12l + En))ds.

1
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- F/f% /ot(t _ syLii(s) [_:}iggo h(W(s +0) + §i(s + 0))
# [ Clor) s BOWG+0) + o5+ 0 ]ds
<55 0= 971000 sup HORG) ¢ s i) s
S///AI(}(;;C*) /Ot(t — )" 1q(s)ds S h(W(s))
A0 O N

NEEEAY | ats)ds.

For any t € (t, sx], k =1,2,...,m, we have

R(TsW)(t) = h(ﬁk(Wt + i) + Gu(t, W, + gt))

< Ly sup h(W(t +0)+g(t+ 0)) +7; sup h(W(t +0) + gt + e))
—00<60<0 —00<0<0

< (L +174) OEEET h(W(7))

< (Lg + i) hpc(W).

Similarly, for any ¢ € (sg, txs1], K =1,2,...,m, we have

ATW)(0) <h(Qut = 53R+ 30)) + Ghlt, Ws + )
(2t = 50) [l = 9 Pulse )
9(5, W, + G, /0 H(s, v, W, + @T)dr)ds>
+a( /Ot(t =9t =) F (5. W+, [

<A FeWay + ) + Gl W, + i)

S—

H(s, 7, W, + ﬂT)dT) ds)

2 s - s ~
G / sk — S)r—lf-L(ﬁ(s,ws +g5,/ H(s, r, W, +g7)dr)>ds
I'(r) Jo 0

//fAt_r—1<o~<~~s >>
+I“(,’,,)/O(t S) h{ .7 S7W5+ys,/0 }C(S,T,WT—I—’(I/T)CZT ds

<My (Lk sup h(W(si +6) + g(sk +0))

—00<0<0

£ sup B(W(s+ ) + s+ )
—00<6<0
2

+ IffiA) /Osk(Sk - s)r—lﬁ(s){ sup  B(W(s +0) + (s + 0))

—00<6<0
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+ [[Clsm) sup BOW(s +0) + (s + 0))dr | ds

—00<0<0

+ m[) (t — S)T_l’f](s)[ sup FL(W(S + 9) + (S + 0))

F(/r) —00<6<0
# f o) _sup ROV +0)+ s+ 0)ir|
S ALy + ) sup. h(W(T))
M35 [ r—1x A * A
o (o000 g WOV . s OV s
5 [ =ar )] s AR+ s HOWE)]ds

<MLy, + 7)) (W) + W /OSk(sk — 8) " 1ij(s)ds Sup. h(W(s))

) [ sy=ats)s sup BOW()

I'(r) 0<s<T
<cta(-+ 7o)+ ZAL LN i [ sga

# A D) o)

Therefore, for all t € J,

AED)(0) < (i + 1) (L + ) + MAF(ETTBTT [ its)ds e (W)

and

h(TgW) < thc(W) < hpc(W),

where ¢ = max <g<m (s + 1)<(Lk + ;) 4 2l 17:(1) JEn(s)d ) <1

Therefore, T is h-contraction. By Lemma 2.4, we conclude that YT has at least one
fixed point in § € W C B, . Let u(t) = j(t) + 2(t) on t € (—00,T]. Then, u is a fixed
point of the operator T which is the mild solution of the system (1.1)~(1.3) and the
proof of theorem is complete. O

Theorem 3.2. Assume that the hypotheses H(A1)-H(A9) are satisfied, then the system
(1.1)—(1.3) has atleast one mild solution on J, for some

- - 2%3%67’7T t 2%,4%67’77‘ t
= [%A(C’k + l/,> + F(l—i—?“)/o n(s)ds + F(l—l—?“)/o n(S)dS} < 1.
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Proof. Define the operator Y : &, — %, by

O(t), te (—o0,0],

Q,(t) [®(0) + $(0, D(0))| — S(t, ue) + fot(t—s)r_lﬂTT(t—s)S(s,us)ds
+ Jit —s) TPt — s ff(s Us, Jo H(s, T, uT)dT)ds, t € [0,tx],
k=0,1,2,....m,

Tr(u(ty)) +9(t,ug), t€ (te,sk], k=1,2,3,....m,

Q,(t — 5k) Dy — Gt ug) + [3(t — ) AP (t — 5)G(s, u,)ds

+ Jit = s)TTIPL(t — 5)F (s us, Jo H(s,, UT)dT>dS, t € (sk, trr1],
k=1,2,...,m

(Tu)(t) =

Here T is well defined and shows that the operator YT satisfied the hypotheses of
Lemma 2.4. By applying same techniques as in Theorem 3.1. The proof consists of
following steps.

Step 1. We show that there exists some ¢ > 0 such that Y(%,) C %,. If it is
not true, then for each positive number ¢, there exist a function 29(.) € %, and some
t € J such that ||(Tzq)( )|| > q.

Step 2. T : %, — %, is continuous.

Step 3. (Tgu) maps bounded sets into equicontinuous sets of %, .

Step 4. Monch’s condition holds.

Suppose that W C B, is countable and W C conv({0} U T3(W)). We show that
K(W) = 0, where £ is the Hausdorff measure of noncompactness. Without loss of
generality, we may suppose that W = {u,},27. We can easily verify that W is bounded
and equicontinuous.

Now we need to show that T5(W(t)) is relatively compact in X for each ¢ € J.

Case 1. For each t € [0,t], we get

n({TsWie 1)

gh({ /Ot(t _ St — )

~ s ~ +oo
X f(s, W, + g]s,/ H(s, 7, W, + QT)dT) ds} )
0

B (N IS |
gf{j) [a=sr=u)| s n({ W0 +as+0) )
+h<{ /()S%(S,T,W7+g7)d7}+j) ds
2M ar " ~
S[T(l—i— )<1+2C >%6] foigggoh(w(ﬂ)ds
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< N
I'(1+7)
Case 2. For any t € (t,sx], k=1,2,...,m, we have
A({T0) 15 ) =h( 30+ 30 + %l 0o+ 30))
<Ly sup R(W(t+0)+j(t+06))
—00<0<0

+5; sup A(W(t+0)+g(t+0))

—00<6<0

<(Li+ ) sup EOW(r)) < (Lx + 1) hipe (W),

0<7<T

(1 +2¢)Ms npe(W)-

Case 3. Now, for every t € (sg, tg1], K =1,2,...,m, we have

AT L ) <, = 5030 (u) + G0 W, +75)
+ h( (= s /OSk(sk —8) 1P (s — )

x F (s, W, +g8,/s }C(S,T,WT—F?]T)dT>dS>
0

+h /Ot(t — )Pt — 8)

J A 1] 2%2T o r—
SARHIe(s,) + o W+ Bo)) 4 £y RS

X h(ﬁ <s, W + §s. /s H(s, 7, W, + gT)d¢)>ds
0

2.//147" t r—1
YEEES /o (t=9)

x h(ﬁ(s,ws 4 / H(s,r, W, + gf)df))ds
0

<My (Lk +7; sup A(W(sk + 0) + §(sp + 0)))
—00<0<0
2///317’

T+r) / i - s)r‘ln(s){ sup  A(W(s +0) +§j(s + 0))

—00<0<0

+ / s,7) sup h(W(s+0) + §(s + 9))d7] ds

—00<6<0

R s WO ) +its +0)

+ / s,7) sup h(W(s+0) +§(s + 9))d7’] ds

—00<6<0
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3 . 2M3r [ .
< ) s S — e\
<My (llk + 7 _;1;%?r h(W(T))) + T+ 7) /0 (sk — s)

<) sup BOW()) +¢" sup BOW(r)|ds

2.//147" t r—1
IYCETS /o (t=s)

sup B(W(7)) + ¢* sup h(W(T))} ds

0<r<s 0<r<s
2 37
I(1+7r)

< [ se =5y 'n(s)ds sup BOW(s))

0<s<T
2.//,47"
L(1+r)
< Mx (Lk + Z'hpc(w))
Q%IXT(tk_;'_l)r
INOED)
Q%A’F(tlﬁ_l)r
D(1+7)

g///AKLk + u) + (%ﬁ(l +2¢7).As

(1490)45) [ n(s)ds

x n(s)

< Ma (ﬁk + %ﬁpc(w)> + (1 +2¢"). A5

+ (14 20). M / (t — 5)""Ly(s)ds sup K(W(s))

t
0 0<s<T

(1 4 2C°)Mshpe(W) /0 " (s)ds

(14 2¢%) Mshpc(W) /Otn(s)d&

2rJ"
C(1+7)

hpc(W).

_|_

Along these lines, for all t € J, we get

_ 2%3%67’77” t
%A (Lk + l/i> + M/O n(s)ds

SR [t Bec(W(r),

hpe(YW)(t) <

which implies, by Lemma 2.2, fipc.(T(W)) < Z*h(W), where Z* is defined in condition
(3.2). Thus, from Ménch’s condition, we get

hpe(W) < hpe (conv({0} U (T(W)))) = hpe(T(W)) < 27 hpe(W),
which implies that hpc(W) = 0.
Hence, using Lemma 2.4, T has a fixed point ¢ in %4,. Then, u = y + Z is a mild
solution of system (1.1)—(1.3). This completes the proof. O
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4. CONTROLLABILITY RESULTS
We consider the Controllability of Fractional Neutral Integro-Differential Equa-

tion and Non-Instantaneous impulses with infinite delay of the form

t
41 D ult) — §(t, us)] =Au(t) + £Z<t, s, / H(t, s, us)ds> + Bu(t),

0

tE(Sk,thrl] k=0,1,2,...,m,

(4.2) J(u(te)) + %t ue), t€ (sp,te], kE=1,2,...,m
(4.3) (t) =®(t), t e (—00,0],

/\
~~

~—
l

where © DI denotes the Caputo derivative with € (0,1). The control function u(.) is
given by L?(J,U), a Banach space of admissible control function, with U as a Banach
space. B is a bounded linear operator from U into X. u; : (—00,0] — X, defined by
u(s) = u(t + s), belongs to some abstract phase space 8. G, %, k=0,1,2,...,m,
4., k=1,2,...,m are appropriate function 0 = so < t; <ty < --- < t,,, < b are fixed
number and Au(ty) = I(u(ty)) = u(ty) —u(ty). Let u(t)) and u(t;, ) denote the right
and left limits of w at ¢ = ¢,.

Definition 4.1. A function u : (—o0,b] — X is called a mild solution of the control
system (4.1)—(4.3) if up = ® € A, on (—o0, 0] and the integral equation

Q,(1)[®(0) + G(0,®(0))] — G(t,us) + [y (t — s)" AP, (t — 5)G(s, us)ds

+ Jot —8)1P(t — 5) [ff(s us, Jo H(s, T, uT)dT) + ’Bu(s)]ds,

tef0,t], k=0,1,...,m,

u(t) = jk(u(tk))+g]§(t Ut) t e (tk,Sk], k=1,2,...,m,

Q,(t — sk) Dy — Gt ug) + [3(t — ) AP, (t — 5)G(s, u,)ds

+ Jot —8) 1Pt — ) { (s us, Jo H(s,, uT)d7'> —I—‘Bu(s)]ds,
te (Sk,tk+1],]{} =1,2,....m

where
(14) T =Ou(u(t)) + Gelse us) = [ (= 977 AP, (51— )55, uls))ds
— /Sk(s;.C —8) P (s — 5 { (s us, [ H(s,T, UT)CZ7'> + ‘Bu(s)}ds,
0
k=1,2,...,m.

Definition 4.2. System (4.1)—(4.3) is said to be controllable on J if for every contin-
uous inital function ® € %, u; € X, there exists a control v € L*(J, U) such that the
mild solution u(t) of satisfies u(b) = uy.

For the study of the system (4.1)—(4.3), we introduce the following assumption.
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H(A10): (i) The linear operator B : L*(J,U) — L'(J,U) is bounded, = : L*(J,U) — X
is defined by

= u _/ )L (t — s)Bu(s)ds,
has an inverse operator =~ which takes values in L?(J,U)/Ker = and there

exist two constants .45, .43 > 0 such that |B]| < .4, and |7 < 5.
1

(ii) There exist a constant ¢y € (0, ¢) and Kz € Lw (J,R") such that for any
bounded subset Q C X, A((Z71Q)(t)) < K=(t)h(Q).

The result is based on Monch’s fixed point theorem.

Theorem 4.1. Assume that hypotheses H(A1)-H(AS8), H(A10) are satisfied. Then,
the system (4.1)—(4.3) s controllable on J, provided by

2%,4%2%57" « 2%,4%67” ~
([1 M(1+C)M+(Lk+v))<1.

Proof. Using hypotheses H(A10), for an arbitrary function u(-) € C, we define the
control X, (t)

[ 5(0) + (0, 2(0))) — 50, u)
+f0b( )AP, (b — 5)G(s, us)ds
S0 — sy (b — ) F (s, s, J3 H (s, uT)dT)ds” ),
ug(t) = ¢t € [0,t4], k—QL”w m,
J (u(tk)) + %G (t,ug), te€ (te,sk], k=1,2,.
—Q,.(b— sk) D — ( up) + fo (b — s) AP, (b— s)9(s,us)ds

w)
+fsk( —§) 1P (b — ) [9(8 s, Jo H(s, T, UT)dT> +%um(s)}d5],
tE(Sk,tk+1], k=1,2,...,m

We show that, using this control, the operator Y : %, — %, defined by

O(t), te —(o0,0],

Q, (1)[@(0) + (0, 2(0))] — G(t, ur) + Jo(t — )" AP(t — 5)G(s, us)ds
+ Jot — s)TIP(t — s { (s us, Jo H(s, T, UT)dT) ~|—‘Bux(s)]ds,
tef0,t], k=0,1,....m

Te(u(ty)) +9(t,ug), t€ (tg,sk), k=1,2,...,m

Q,(t — 81)Dr — G(t,up) + Jo(t — ) AP, (t — 5)G(s, us)ds

+ = s) P (t — 8) {ﬁ(s us, Jo H(s, T, UT)dT) + ’Bux(s)]ds,

te (s, ter1], k=1,2,...,m,

Tu(t) =
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has a fixed points. The fixed point is then a solution of the given system. Clearly,
du(b) = uy, which implies the fractional system is controllable on J.
Let ® € Ay, we define § by

o), t € (—o0,0],
i) = {Qr(t)QJ(O), e,

then u(t) = g(t) + 2(t), t € J. Tt is easy to see that u satisfies (4.4) if and only if Z
satisfies 2y = 0 and

0, t<0,
Q,(1)5(0,®) — G(t, G + %) — Jo(t — ) IAP(t — 5)G(s, Js + Z5)ds
F [Nt — 8Pt — s) {ﬁ( s + Zs, (s, 7, §r + ET)dT) + ‘Buy(s)]ds,

H1) = te0,t1], k=0,1,...,m,
Te(u(te) + Gt e + Z0), 0 € (tiysi], kB =1,2,...,m,
Q,(t — sp) Dy — Gt, G + 2) + [o(t — 8) AP (t — 5)G(s, Ts + Z)ds
+ JL(t =) P (t — ) {f(s, Ts, Jo H(s, T, uT)dT) + %uy(s)}ds,
te€ (s, trr1], k=1,2,....,m,
where

uy(s) =27 {Ul —Q,(0)[®(0) — G(0,2(0))] — G(s, Fs + Zs) + T(u(tr)) + %(s, Js + Zs)
+/ VAP, (b — 5)S(s, s + 21)ds

+/ ) IPL(b— 8).F (s ys—|—zs’/sﬂ{(3,7‘,g7+2T)dT)d8} ().
0
Let B, ={2€ %, :% =0¢€ %,}. For any € %,,
I1Zllo = [[Z0ll, +sup{llZ(s)]| : 0 <'s < b} = sup{|[2(s)[| : 0 < s <},

thus (%, - ||») is a Banach space. Set %, = {# € %, : ||Z|l, < ¢} for some ¢ > 0,
B, C B, is uniformly bounded, and for every z € 4,.
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Define the operator T : B, — %, by

(I)(t)a le _<OO>O]7

Q,(1)[@(0) + (0, 2(0))] — G(t,ue) + Jo(t — )" ' AP(t — 5)G(s, us)ds
+ Jot —s)T P (t — s [ (s us, fo H(s, T, UT)dT) + %uy(s)}ds,

- Jtelot], k=0,1,...,m,

TZ(t) N jk(u(tk)) +§§(t,ut), t e (tk,sk], k=1,2,...,m

Q.(t —81)Dr — G(t,up) + Jo(t — ) 7 'AP,(t — 5)G(s, us)ds

+ Jo(t — s)T 1Pt — 5) [ﬂ (s, us, Jo H(s, T, uT)d7'> + %uy(s)}ds,
tE(Sk,tk_H], k=1,2,...,m

Thus, the operator T has a fixed point is equivalent to T has one. So our goal is to
show that T has a fixed point and the proof is given in the following steps.

Step 1. There exists ¢ > 0 such that T(%4,) C %,. If it is not true, then for
each positive number ¢, there exists a function 29(-) € %, and some t € J such that
1(T29)(t)|| > ¢ for some t € J.

Then by hypotheses H(A4) (iii), H(Ab) (iii), H(A6) (ii), H(A10) (ii) and Lemma 2.1

(1), we have
g <[(CON < 12O eSO, @)l + 1S, 2 + 7o)«

[ (6= sy~ 55,7+ G)ds
x

t s
+ / (t—8)'1P.(t —s) [35 (s, Zs + 373,/ H(s, 7,2, + 37T)d7> + ‘Buyq(s)}ds
0 0
SAMaMC|| P 5, + Ca) + MG (D2 + E) + A

7’6
AOD 65, 2, + ) + )L

|

I'(rg+1) e
At = SUDu||Z][s + & + bu(7)(Da| 2]l + ¢a)) sup m(s)
L(r+1) " T e
Matloyr [ D21
T(r+1) or 1l
=01,

where
|wyal|2 = A3 [||U1H + MM G| @ 3, + Co] + A E (D1 || Z||¢ + ) + MG

Mgl (B +1)
C(rg+1)

P
(G1(Du|2||¢ + En) + 652)%
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//A//Qt’l"g
C(r+1)
For any ¢ € (ty, sx], k =1,2,...,m, we have
g < [[(CZN)@)] < 1Tn(ulte)llx + 19t 2 + Fe)lx
< Ly + C[Dy| 2l + &) + €
= Jo,
and for ¢t € (s, txs1], k=1,2,...,m,

(D1]|Z]|s + ¢n + bu(T)(D1]|Z]|+ + ¢n)) sug)m(s) )
te

g < (T2 @)] <[|Q0(t — s1) |l eca) [ij(u(tk))H + %5k, Zsy, + Tsi ) |l
+ 1S (ks Zs, + T )|l
+ H /OS’“(sk —S)TIAP, (s — 5)G(s, 24 + ) ds

/OSk(sk —8) 1P, (s — )

7 (5543 [ }
0 X

t
190 5+ 3) |+ H/O (t = )7 UP,(t = )55, % + Gi)ds|

i

H(s, 7,2, + ng)dT> + ‘Bug(s)}ds

X

t S
+ ’ / (t — s)r_l?r(t —s) {35 <s, Ze + QS,/ H(s, 7,2, + QT)dT)
0 0
+‘Bug(s)]ds
X
SMp| Ly 4 Ci[D1||Z|ls,, + En] + Ci + MG (D1||s, + En) + MGy
M-l (B+1) i " (sx)"”
(B + 1) (G1(D1l| 2]y, + En) + 62) 5
+ WQ(@J\EHS + ¢y + bu(T)(D1]| 2]l + ¢n)) St161:11) m(s)
Madly(sT) [ 521 [ J
rorr1) V2o 7 |lwnll + At [61]| 2|5, + 2]
- MG(D||E | + ) + MG + Lo + CD1|Z ] + E] + €
M _gT (B +1) o t’
GO ) e
Dy 2, + &+ b DAl +en>>sgm<s>]]

+ M6 (D1 2| + ) + AoCo



EXISTENCE RESULTS 713

ML (B +1)
L(rg+1)
M Ma(tin)”
L(r+1)
%A%Q(S};) b2r—1 |:
D|| 4
torn Vo 1| lml+ A2, + )
+ MG (D1 Z|: + En) + MGs + Ly 4 Ci[ D1 2] + &) + €

Mgl (B+1) ~ ~ ﬁﬁ
=D el + e+ 605

+%lenzns+en+bv<7><®1ll5“f”n”i‘é?m(s) |

Then, for all ¢t € J, we find that

- Mp Mo Mzr | DT
q *
[(Tz)(0)] <& +(1+ e \/27«_1)

VARINGES 1)% T
T(rg+1) ' B

3
(G (D2l + &) %)““ﬁl)

QD 2]ls + én + bo(T)(DalZ]l+ + ) Stuym(é’)
€

B

X (Lk+€l+///0‘51)+

@izt +2)

n .//A///4(%A + 1)Tr
I'(r+1)

. (o) Aol M+ )T [ 21
P T(r+1) 2r =1

. , MMy Msr |21 — 1
& = max, {///A///o[%H@H%h + %]+ ( I'(r+1) \/;Jr 1)

My gT(B+1)_ TP
L(r3+1) % 3 )}

QD]+ + bu(r)(Di 21+ 7))

QD] + & +bo(r) (il + 22)

where

X (%0652 + OZ +

AMAT"

NI

supm(s).
ted
Combining the above equation

g <[ (T2 @)

i} MMM | BT
Sé"—}—(l—i— L(r+1) 2r—1>

X (D2l + )

Mgl (B + 1)% T
T(r+1) '8

[(Lk + Gz + %0(51) +
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N MAMG( Mo+ 1)TT
I'(r+1)

+ supm(s) TAMANMs + DT [0
e T(r+1) Vor—1

Now dividing on both sides by ¢ and taking the limit as ¢ — oo, we get
L <T@

. MMy Msr | DL
<
_£)+<1+ F(r+1) V2r—1
M _gU(B+1) T

o G| (@l )

(Dl + & + be(r) (D 2l + 7))

X

(Ly + C; + A6)) +

MAM( M+ 1)TT
I'(r+1)

y MaMoMs( My + 1)TT | b1
I'(r+1) 2r— 1

We get 1 < 0. This is contradiction. Hence, for some integer Y(%,) C 4,.
Step 2. Y : %, — %, is continuous,

F.(s) = ﬂ(s, 28‘) + 68,/0 H(s,T, Zﬁn) + g]T)dT>,

Q(Dlﬂzut + 4+ bo()(Du 3] + an)) supm(s)
te

F(s) = 53<s, z + c/ H(s, T, % + gf)d7>.
0

For this purpose let {2} 7% C %, with 2" — Z in 2,. Then there is a number
¢ > 0 such that |2 (¢)|| < ¢ for all n and a.e. t € J, s0 3" € B, = {2 € B, -
H%H%,Z <} C %, and z € B,. From remark, we have ||%, + @], < ¢ , t €J.

By H(A4), H(A5), Remark P, Pi3, P14, P15, and Lebesgue’s dominated convergence
theroem, we obtain, for ¢ € [0, #],

I(T2")(#) = (T2)(#)|x

@[5+ 50) ~ 9 (8.5 + )

< | (= syt

///A(tl)T ¢ r—1
+F(r—|—1)/o(t_s) [

L AMsL(BHD) (8)7
x F(T‘ﬁ + 1) ﬁ

@785, 22 + ) = 5.5+ )| as

<M

‘?(s, zZr + ?]S,/O H(s, T, 2" + g]T)dT> + By

— y’(& Zs + @S,/ H(s, 7,2, + g]T)dT> + Bu,
0

‘ds—>0 as n — +o0o.
X
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For all t € (ty, sx], K =1,2,...,m, we obtain
I(T2")(8) = (T2)(6)]lx = 0.
In the same way, for all ¢ € (sg, tx11], K =1,2,...,m, we have
I(Tz")(t) = (T2) (1)l
<190 (t = s)ll ey [ij(u(tk))ﬂx + 190 (sk, 28, + Fsi) — Gl Zoy + Tsi)llx

+ 7 2078 s 2+ ) = (278502 + 7

//flfﬁr(ﬁ + 1) (Sk)rﬂ /Sk(sk - 3)7“—1

NGRSV
(907851, 2, + 51) = S0, 2o + 0

Ma(sr)" [ r—1
T(r +k1) /o (5 = )

_ 32<s, Z, + yk/ H(s, T, 5 + gf)dT) + Bu,
0

X ds
X

9(3, Zy + gjsk,/o H(s, 7,2 + ng)dT> + Buy

ds]

x

+ a2 |evsse. 2+ g - @755+ 2|
AT (B+1) (tesr)™” /t {

L(rg+1) 5

MaA(tesr)" [ r—1
F?r +1) /o (5% =)

- 9?(57 Zs + gjs,/ H(s, 7,2, + QT)dT) + Bu,
0

'@oﬁ [9<s, 240 — (W)7G(s, 2+ ?78)} H

ﬁ(s, Zr + gs,/ H(s, 1, 2 + ng)d7'> + Buy
0

}ds%() as n — +o0o.
X

It is simple to see that

(Tz") — (12)

, = 0.

lim
n—+400

Thus, T is continuous.
Step 3. (T22) maps bounded into equicontinuous set of %, .
Let 0 < 11 < 19 <t;. For each Z € 93;;, we have

7

SH /T2 (72— 8) ' Pp(12 — $) [9 (s, Zs + Us, /S H(s, 7,2, + ﬂT)dT> + ‘Buy] ds
0 0

/ (11— 8)" 'P, (11 — 5) {ﬁ’ (s, Zs + Us, /8 H(s, 7,2, + gT)dr) + ‘Buy] ds
0

0

(T22)(72) — (T22)(m1)

/!

2,

SH /OT1 (19 — 8)" ! [TT(TQ —8) —P.(1 — 3)]



716 K. MALAR AND R. ILAVARASI

X

5"(3, Zs + gs,/ H(s, 7,2, + QT)dT) + %uy} ds
0

T2
/7—
1

X {ff (s, Zg + Cq, /8 H(s, 7,2, + QT)dT) + ‘Buy} ds.
0

(1o — 8) " 'Pu(my — 8) — (11 — )" ' Pp(11 — 5)

For all 71,7 € (ty, Sk), 1 < T2, k= 1,2,...,m, we have

(T22)(2) — (To2)(m)|| , =||Tk(u(r2) — u(r1))

/!

g
‘Zh

*|

gk‘<7—27§7'2 + gTQ) - ggk:(7—17§7'1 + ng)

=0,

and for 7,7 € (g, tpr1], 71 < T2, k=1,2,...,m, we get

(Yo2)(72) — (Yo2)(m1)

/!

g
‘Zh

<[ |22 = 1) = Qulrs = 50)| Fulut) + Gl 2o, + )
|22 = 50 = 2 = s)| [ 51— 7P — )
x [ﬁ <s, % + g, /0 H(s, T, % + zJT)dT> ds + %uy}
| [ = P = ) = (1 = )]

X [ﬁ <s, Zs + gs,/ H(s, T,z + QT)dT>d8 + ‘Buy}
0

ds

ds

* ‘ / (2= ) P )
X ﬁ(s, Zs + Us, /s H(s, T, 2, + g]T)d7'>ds + ‘Buy} ds
0
<[ =) = Qulm = )| [Lk + D2 + 5,11} L e
M T
g p (7 — 2 = 90l

X/%<k—@r1<> (Drllzll + s + bo(r) (D2l + ) ds

%A%QT
1+TV% lhallie + [ 8B — 92— )

MaMor | b1 el
Uqya
T(1+7)\2g—1"v"¥

x m(s)QUD1||Z]ls + & + bu(T)(Du| 2]l - + &n))ds +

T1
[T = s P = 9P = 9)lec
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2q—1
< m(S)UD ], G+ BN+ 6 + FET [l
—I—M/72(7'2—S)r_lm(s)ﬂ(®1||2|| + &+ bo(r) (Du |2, + &))ds
I(r+1) Jn T T
Mty [P0
+ T(1+r)\2g— 1HuquL2,

At the point when 7 — 71, the right hand side of the above inequality has a tendency
to zero. Therefore, (T5Z) is equicontinuous on J.

Step 4. Monch’s condition holds.

Suppose that = C 4, is countable and Z C conv({0} U T5(Z)). We show that
h(Z) = 0, where £ is the Hausdorff MNC. Without loss of generality, we may suppose
that = = {Z,}52, we can easily verify that = is bounded and equicontinuous. Now
we need to show that Yo(Z(t)) is relatively compact in X for each t € J.

Case 1. For each t € [0,¢;], by Theorem 2.1 and we get

h({Tzéyn (1) m) §h< /O "(b— sy 1P, (b — s)Fn(s)ds>
5&@)% /O b<b — )

X n(s)[ sup h({%n(s—ir@) +gj(s—|—9)}+oo>

00< <0 n=1

+ FL({ /08 H(s, T, 28 + QT)dT}:i)]ds

<Kee) s [ s ()14 2) sup WE(T)ds.

This implies that

h({TZyn(t) ;g) gh({ /O b(b—s)’”1?r(b—s)Fn(s)ds}+m>

4 h({ / "th— sy, (b s)%uyn(:):;s}:oj)
<o = s+ 20) sup hE()
(1200 TR [ s Ke()s )
[Fr s 0ot g s
St
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Q%A/fgtq Q%Atg
T(1+r) °T(1+r)
Case 2. For each t € (tx, sg), K =1,2,...,m, we have

({725, (012 ) =h(3((t) + (e, 5+ )

<L) sup h({E(t+9)+g](t+9)}+m

—00<6<0

(1+2g*),///6} sup A(E(r))ds.

0<7<s

+7; sup h({E(t—f—Q +yt+9} >

—00<6<0
<Ly sup A(Z(7))+7; sup A(ZE(7)) < (Lr + 7i)hpc(Z).
0<7<T 0<r<T
Case 3. Now, for any t € (sg,txi1], K =1,2,...,m, we have

h({TQEyn (t)};f’:l) gh(Qr(t _ sk)J(u(tk)) + G5 ut))
KQT (t—sp) [ (55— ) Prlsr — )
x y(
+/0(t )P, (t—s)

X 9( 8, Zs + Us, /8 H(s, 7,2 + 7. )dT + ’Buy(s)>ds]

5.5, + ys, H(s, 7,50 + G, )dr + ‘Buy(s)>ds>

+

<Ly + 7 Og%h(E(r)) + [szislz) (1+2¢7).4 + % 5
< T (14204 sup WE(T))
< [Lk +Dilipc(2) + 13&/1//18:) (1+2¢7)4 + % 5
x I?(/r//flz) (1+ 2@‘*)//6} S AE(T)).
Therefore,
(@) < |1+ W} (1+ 2<*)m + Lo+ ) Sp AE(T)),

v

which implies that Lemma 2.4, A(T(Z)) < $*7(Z). Thus, from Mdnch’s condition,
we get

G«

hE) < h(conv{()} U (T(z))) — KT (E) <

which implies that A(Z) =

(=),
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Hence, using Lemma 2.4, T has a fixed point § in A,. Then u = § + % is a mild
solutions of system (4.1)-(4.3) satisfying u(b) = uy. Therefore, system (4.1)—(4.3) is
controllable on J. This completes the proof. O

5. EXAMPLES

Ezample 5.1. Now, we consider the space X = £2([0, 7], R) and the following fractional
neutral partial diffferential equation with infinite delay:

61) “Difuta)+ [ al6,2)u(t,0)ao]

= xQU(t’x) —l—u(t xy (-, u), /t ui(t,s,xt(~,u))ds), t € [sk,trs1], wu €0,
(5.2) w(t,x) =T(u(t,z)) + %(t,u(t,z)), te (tx,sk), ue]|0,m7],

(5.3) u(t,0) =u(t,7) =0, te]l0,7],

(54) wu(t,x) =o(t,z), —o0o<t<0, 0<z<m,

where si, € (tg,trs1], k= 1,2,...,m, in the partition 0 =ty < t; < -+ < tpy1 =T
of the interval [0, T] with so = 0 and w,; indicates the portion of the solution u(-,-) :
(—00,T] x [0,7] — X, that is for any t > 0, u(+,-) : (—00,0] x [0, 7] — X is given by

u(0,2) = u(t +0,z), for e (—o0,0].
Let XX = L?[0, 7] and define 2 : D(A) € X — X by Au = u”, on

D(RA) = {ue:x g“ g ! ¢ % and u(0) = (ﬂ:o}.

Then 2 generates a infinitesimal generator of a analytic semigroup Q(t);>o on X
and Q(¢) is not a compact semigroup on X, with A(Q(#)®) < (D), where h is the
Hausdorff measure of noncompactness and there exists a constant an .#4 > 1 such

that sup,. , ||Q(t)|| < .#x. Define f,g: [0,7] x X — X by
u(t)r = u(t, x),
g(u)x = /07T a0, z)u(6)do,
u(t,x) = J(u(t,x)) + %(t,u(t,z)), = €]|0,mxl,
£(t.0, [ 3(t.5.0)0 = 1 (1,600, [ ma(t.5.60.0)ds) . 6 (~o0,0),
®(0)(z) = P(0,x), 6€(—00,0], ze€][0,n],

with the following assumptions.

(i) For each k =0,1,2,...,m, the function .%# is defined above by is continuous
and we impose a suitable condition on F' to satisfy the hypotheses H(A4)-
H(A5).

(ii) For each k =1,2,...,m, the function % is defined above by is continuous and

we impose a suitable condition on G to satisfy the hypothesis H(AG6).
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With the above setting the system of equations (5.1)—(5.4) reduces to the system
of equations (1.1)—(1.3) satisfying the hypotheses of Theorem 3.1 and hence, ensuring
a mild solution on (—oo, 7.

Example 5.2. We consider the following fractional control impulsive system:

3

65) D)+ [ mlty.9)2(5)()ds)

=§;u<t,y> + Zpa(t, y)
(5.6) + p2 (t, _too p3(s — t)u(s,y)ds, /Ot /_OOO pa(s,y, 7 — S)U(Tl,y)dﬁds);
(5.7) u(t,y) = ®(t,y), te(—o0,0], yel0,1],
68 ulty) = Aulty ) + ottty te (53],

where CDd%’t is a Caputo fractional derivative of order ® € Ay, us : I x [0, 1] x [0,1] is
continuous in ¢ and ® is continuous and satisfies certain smoothness conditions.

Let U =Y = L*(0,1) be endowed with the usual norm || - || 2, and Let 2 : D () C
X — X be defined by 220 = 3";90 € D(A), where D(A) = {W € X : W'
X, 2(0) = W(1) = 0}. It is well know that 2 is an infinitesimal generator of a
semigroup that {Q,.(¢) : ¢t > 0} in X and is given by Q,(¢t)%(s) = (¢ + s) for
20 € X. Q,(t) is not a compact semigroup on X with A(Q,.(¢)D) < (D), where h
is the Hausdorff measure of noncompactness, and there exists .#4 < 1 such that
sup;eq [|Q-(t)|] < 4. For the phase space, we choose h = €%, s < 0, then | =
12 h(s)ds = 1 < 400 for t <0, and we determine

||, :/_OOO h(s) sup 1(0) || ds.

€[s,0]

Hence, for (t,¢) € [0,7T] x %), where ¢(0)(x) = ¢(0,x), (0,z) € (—o0,0] x [0, d].
Moreover, t — QU(t%G + s)x is equicontuinuous for t > 0 and 6 € (0, +00).
Define

0) =
() = U(t Y),
5(.9)() = [ palt.y. )2 (w)ds,

7 (10, [ 96, @)ds) ) =t [ pslo)@(s)w)ds, [ 3¢(s,@)(0)ds )
Let B : X — X be defined by
(Bu)(t)(y) = Epa(t,y), 0<y <1,

CDO tu<
(

u(t
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with this choice of 2, B and .#, system (5.6) can be rewritten as

C D u(t) + S(t, ur)] =2Au(t) + ﬁ’(t,ut, / "H(e, s,us)ds> +Bult), € (sk b,
k=0,1,2,...,m,
u(t) =J(u(ty)) + 9 (t,u), t € (ty, sk,
uy =® € By, (—00,0], k=1,2,...,m.
For y € (0,1), the linear operator Z is given by

E)(y) = [ (1= 9)FP(1 — 5)Wpna(s,y)ds,

where
3 0
P, (1W(s) = / Ons (0)20(£56 + 5)do,
0 4
4 7 — -
p3(0) = J07 W (07),
_ 00 anaa I 3n+4
9, (0) — = 3 (—1y =g 1 ) sin <3”7r>, 8 € (0, +00).
4 T n! 4

Thus, under appropriate conditions on the functions %, G, % and J; as those in H(A1)-
H(A9). We assume that = satisfies H(A10), then all the conditions of Theorem 4.1
are satisfied. Hence, the system (5.5)—(5.8) is controllable on J.

6. CONCLUSION

In this paper, we have studied the existence, uniqueness and controllabil-
ity results for fractional neutral integro-differential equation and non-instantaneous
impulses with delay involving the Caputo derivatives in a Banach space. More pre-
cisely, some appropriate assumption, by utilizing the ideas and techniques of sectorial
operator, the theory of fractional calculus, Darbo-sadovskii and Ménch’s fixed point
theorem via Hausdorff measure of noncompactness. Finally, an example is presented
in the end to show the applications of the obtained abstract results.
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