DENUMERABLY MANY POSITIVE SOLUTIONS FOR ITERATIVE SYSTEM OF BOUNDARY VALUE PROBLEMS WITH N-SINGULARITIES ON TIME SCALES

K. R. PRASAD1, MAHAMMAD KHUDDUSH2, AND K. V. VIDYASAGAR3

Abstract. In this paper we consider a iterative system of two-point boundary value problems with integral boundary conditions having \(n \) singularities and involve an increasing homeomorphism, positive homomorphism operator. By applying H"older’s inequality and Krasnoselskii’s cone fixed point theorem in a Banach space, we derive sufficient conditions for the existence of denumerably many positive solutions. Finally we provide an example to check validity of our obtained results.

1. Introduction

Theory of time scales was created to unify continuous and discrete analysis. Difference and differential equations can be studied simultaneously by studying dynamic equations on time scales. Since a time scale is any closed and nonempty subset of the real numbers set. So, by this theory, we can extend known results from continuous and discrete analysis to a more general setting. As a matter of fact, this theory allows us to consider time scales which possess hybrid behaviours (both continuous and discrete). These types of time scales play an important role for applications, since most of the phenomena in the environment are neither only discrete nor only continuous, but they possess both behaviours. Moreover, basic results on this issue have been well documented in the articles [1, 2] and monographs of Bohner and Peterson [7, 8].

The study of turbulent flow through porous media is important for a wide range of scientific and engineering applications such as fluidized bed combustion, compact

1 Key words and phrases. Iterative system, time scale, singularity, homeomorphism, homomorphism, cone, Krasnoselskii’s fixed point theorem, positive solutions.

2010 Mathematics Subject Classification. Primary: 34B18. Secondary: 34N05.

DOI

Received: April 06, 2020.
Accepted: August 30, 2020.
heat exchangers, combustion in an inert porous matrix, high temperature gas-cooled reactors, chemical catalytic reactors [9] and drying of different products such as iron ore [15]. To study such type of problems, Leibenson [13] introduced the following p-Laplacian equation
\[\left(\varphi_p(\varpi'(t)) \right)' = f(t, \varpi(t), \varpi'(t)), \]
where \(\varphi_p(z) = |z|^{p-2}z, p > 1 \), is the p-Laplacian operator and its inverse function is denoted by \(\varphi_q(\tau) \), with \(\varphi_q(\tau) = |\tau|^{q-2}\tau \) and \(p, q \) satisfy \(\frac{1}{p} + \frac{1}{q} = 1 \). It is well known fact that the p-Laplacian operator and fractional calculus arises from many applied fields such as turbulant filtration in porous media, blood flow problems, rheology, modelling of viscoplasticity, material science, it is worth studying the fractional differential equations with p-Laplacian operator.

In this paper, we consider an operator \(\varphi \) called increasing homeomorphism and positive homomorphism operator (IHPHO), which generalizes and improves the p-Laplacian operator for some \(p > 1 \) and \(\varphi \) is not necessarily odd. Liang and Zhang [14] studied countably many positive solutions for nonlinear singular m–point boundary value problems on time scales with IHPHO,
\[
\left(\varphi(\varpi(t)) \right)^\nabla + a(t)f(t, \varpi(t)) = 0, \quad t \in [0, T]_T,
\]
\[
\varpi(0) = \sum_{i=1}^{m-2} a_i \varpi(\xi_i), \quad \varpi(T) = 0,
\]
by using the fixed-point index theory and a new fixed-point theorem in cones.

In [10], Dogan considered second order p-boundary value problem on time scales,
\[
\left(\varphi_p(\varpi(t)) \right)^\nabla + \varpi(t)f(t, \varpi(t)) = 0, \quad t \in [0, T]_T,
\]
\[
\varpi(0) = \sum_{i=1}^{m-2} a_i \varpi(\xi_i), \quad \varphi_p(\varpi(T)) = \sum_{i=1}^{m-2} b_i \varphi_p(\varpi(\xi_i)),
\]
and established existence of multiple positive solutions by applying fixed-point index theory.

Inspired by aforementioned works, in this paper by applying Hölder’s inequality and Krasnoselskii’s cone fixed point theorem in a Banach space, we establish the existence of denumerably many positive solutions for dynamical iterative system of two-point boundary value problem with n singularities and involving IHPHO on time scales,
\[
\varphi(\varpi_j^\Delta(t)) + \chi(t)f_j(\varpi_{j+1}(t)) = 0, \quad 1 \leq j \leq \ell, \quad t \in [0, 1]_T,
\]
\[
\varpi_{\ell+1}(t) = \varpi_1(t), \quad t \in [0, 1]_T,
\]
\[
\alpha \varpi_j(0) - \beta \varpi_j^\Delta(0) = \int_0^1 \kappa_1(\tau) \varpi_j(\tau)^\nabla \tau, \quad 1 \leq j \leq \ell,
\]
\[
\gamma \varpi_j(1) + \delta \varpi_j^\Delta(1) = \int_0^1 \kappa_2(\tau) \varpi_j(\tau)^\nabla \tau, \quad 1 \leq j \leq \ell,
\]
where \(\ell \in \mathbb{N} \), \(\chi(t) = \prod_{i=1}^{\ell} \chi_i(t) \) and each \(\chi_i(t) \in L^p_{\mathbb{T}}([0,1]_\mathbb{T}) \), \(p_i \geq 1 \), has a singularity in the interval \((0,1/2)_\mathbb{T}\) and \(\varphi : \mathbb{R} \to \mathbb{R} \) is an IHPHO with \(\varphi(0) = 0 \).

A projection \(\varphi : \mathbb{R} \to \mathbb{R} \) is called a IHPHO, if the following three conditions are fulfilled:

(a) \(\varphi(\tau_1) \leq \varphi(\tau_2) \) whenever \(\tau_1 \leq \tau_2 \), for any real numbers \(\tau_1, \tau_2 \);

(b) \(\varphi \) is a continuous bijection and its inverse \(\varphi^{-1} \) is continuous;

(c) \(\varphi(\tau_1) = \varphi(\tau_2) \) for any real numbers \(\tau_1, \tau_2 \).

We use following notations in the entire paper: \(i = 1,2,3 \in (0,1/2)_\mathbb{T} \),

\[
a(t) = \gamma + \delta - \gamma t, \quad b(t) = \beta + \alpha t, \quad d = \alpha \gamma + \alpha \delta + \beta \gamma,
\]

\[
\kappa_0(t,\tau) = \frac{1}{d} \left\{ \begin{array}{ll} a(\tau)b(t), & t \leq \tau, \\ a(t)b(\tau), & \tau \leq t, \end{array} \right. \quad c_i = \int_0^1 \left[\int_0^1 \kappa_0(\tau_1,\tau_2)\kappa_i(\tau_1)\nabla \tau_1 \right] \chi(\tau_2) \nabla \tau_2,
\]

\[
u_a = \frac{1}{d} \int_0^1 \kappa_1(\tau)a(\tau)\nabla \tau, \quad u_b = \frac{1}{d} \int_0^1 \kappa_1(\tau)b(\tau)\nabla \tau, \quad \kappa_i = \int_0^1 \kappa_i(\tau)\nabla \tau,
\]

\[
u_a = \frac{1}{d} \int_0^1 \kappa_2(\tau)a(\tau)\nabla \tau, \quad v_b = \frac{1}{d} \int_0^1 \kappa_2(\tau)b(\tau)\nabla \tau, \quad \kappa_i(\jmath) = \int_0^{1-i} \kappa_i(\tau)\nabla \tau,
\]

\[
\eta(t) = \frac{(1-v_b)a(t) + v_a b(t)}{d((1-u_a)(1-v_b) - u_b v_a)}, \quad \lambda(t) = \frac{(1-u_a)b(t) + u_a a(t)}{d((1-u_a)(1-v_b) - u_b v_a)},
\]

\[
\eta^* = \max_{t \in [0,1]} \eta(t), \quad \eta(\jmath) = \max_{t \in [1-j,j]} \eta(t), \quad \lambda^* = \max_{t \in [0,1]} \lambda(t), \quad \lambda(\jmath) = \max_{t \in [1-j,j]} \lambda(t).
\]

We assume the following conditions are true in the entire paper:

\((H_1) f_j : [0, +\infty) \to [0, +\infty) \) and \(\kappa_1, \kappa_2 : [0,1]_\mathbb{T} \to [0, +\infty) \) are continuous;

\((H_2) \) there exists a sequence \(\{t_r\}_{r=1}^{\infty} \) such that \(0 < t_{r+1} < t_r < \frac{1}{2} \),

\[
\lim_{r \to \infty} t_r = t^* < \frac{1}{2}, \quad \lim_{t \to t_r^+} \chi_i(t) = +\infty, \quad i = 1,2,\ldots,n, \quad r \in \mathbb{N},
\]

and each \(\chi_i(t) \) does not vanish identically on any subinterval of \([0, 1]_\mathbb{T}\). Moreover, there exists \(\delta_i > 0 \) such that

\[
\delta_i < \varphi^{-1}(\chi_i(t)) < \infty \quad \text{a.e. on } [0,1]_\mathbb{T}, \quad i = 1,2,\ldots,n.
\]

2. PRELIMINARIES

In this section, we introduce some basic definitions and lemmas which are useful for our later discussions; for details, see [3–5,7,12,17,18].

Definition 2.1. A time scale \(\mathbb{T} \) is a nonempty closed subset of the real numbers \(\mathbb{R} \). \(\mathbb{T} \) has the topology that it inherits from the real numbers with the standard topology. It follows that the jump operators \(\sigma, \rho : \mathbb{T} \to \mathbb{T} \), and the graininess \(\mu : \mathbb{T} \to \mathbb{R}^+ \) are defined by \(\sigma(t) = \inf\{\tau \in \mathbb{T} : \tau > t\} \), \(\rho(t) = \sup\{\tau \in \mathbb{T} : \tau < t\} \) and \(\mu(t) = \rho(t) - t \), respectively.

- The point \(t \in \mathbb{T} \) is left-dense, left-scattered, right-dense, right-scattered if \(\rho(t) = t \), \(\rho(t) < t \), \(\sigma(t) = t \), \(\sigma(t) > t \), respectively.
- If \(\mathbb{T} \) has a right-scattered minimum \(m \), then \(\mathbb{T}_k = \mathbb{T} \backslash \{m\} \). Otherwise, \(\mathbb{T}_k = \mathbb{T} \).
If T has a left-scattered maximum m, then $T^k = T \setminus \{m\}$. Otherwise, $T^k = T$.

A function $f : T \to \mathbb{R}$ is called rd-continuous provided it is continuous at right-dense points in T and its left-sided limits exist (finite) at left-dense points in T. The set of all rd-continuous functions $f : T \to \mathbb{R}$ is denoted by $C_{rd}(T) = C_{rd}(T, \mathbb{R})$.

A function $p : T \to \mathbb{R}$ is called ld-continuous provided it is continuous at left-dense points in T and its right-sided limits exist (finite) at right-dense points in T. The set of all ld-continuous functions $f : T \to \mathbb{R}$ is denoted by $C_{ld}(T) = C_{ld}(T, \mathbb{R})$.

By an interval time scale, we mean the intersection of a real interval with a given time scale, i.e., $[a, b]_T = [a, b] \cap T$ other intervals can be defined similarly.

Definition 2.2. Let μ_Δ and μ_∇ be the Lebesgue Δ-measure and the Lebesgue ∇-measure on T, respectively. If $A \subset T$ satisfies $\mu_\Delta(A) = \mu_\nabla(A)$, then we call A is measurable on T, denoted $\mu(A)$ and this value is called the Lebesgue measure of A.

Let P denote a proposition with respect to $t \in T$.

(i) If there exists $\Gamma_1 \subset A$ with $\mu_\Delta(\Gamma_1) = 0$ such that P holds on $A \setminus \Gamma_1$, then P is said to hold Δ-a.e. on A.

(ii) If there exists $\Gamma_2 \subset A$ with $\mu_\nabla(\Gamma_2) = 0$ such that P holds on $A \setminus \Gamma_2$, then P is said to hold ∇-a.e. on A.

Definition 2.3. Let $E \subset T$ be a ∇-measurable set and $p \in \bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ be such that $p \geq 1$ and let $f : E \to \mathbb{R}$ be ∇-measurable function. We say that f belongs to $L^p_\nabla(E)$ provided that either
\[
\int_E |f|^p(s) \nabla s < \infty \quad \text{if } p \in \mathbb{R},
\]
or there exists a constant $M \in \mathbb{R}$ such that
\[
|f| \leq M \quad \nabla\text{-a.e. on } E, \text{ if } p = +\infty.
\]

Lemma 2.1. Let $E \subset T$ be a ∇-measurable set. If $f : T \to \mathbb{R}$ is a ∇-integrable on E, then
\[
\int_E f(s) \nabla s = \int_E f(s) ds + \sum_{t_i \in I_E} \left(t_i - \rho(t_i) \right) f(t_i),
\]
where $I_E := \{ t : t_i \in E \}$ and $\{t_i\}_{i \in I}$, $I \subset \mathbb{N}$, is the set of all left-scattered points of T.

Lemma 2.2. For any $g(t) \in C([0, 1]_T)$, the boundary value problem,
\[
\begin{align*}
\varphi(\omega_1^\Delta(t)) &= g(t), \quad t \in [0, 1]_T, \\
\alpha \omega_1(0) - \beta \omega_1^\Delta(0) &= \int_0^1 \kappa_1(\tau) \omega_1(\tau) \nabla, \\
\gamma \omega_1(1) + \delta \omega_1^\Delta(1) &= \int_0^1 \kappa_2(\tau) \omega_1(\tau) \nabla,
\end{align*}
\]
has a unique solution
\[
\omega_1(t) = \int_0^1 \mathcal{N}(t, \tau) \varphi^{-1}(g(\tau)) \nabla \tau,
\]
where

\[\mathcal{N}(t, \tau) = \mathcal{N}_0(t, \tau) + \eta(t) \int_0^1 \mathcal{N}_0(\tau_1, \tau) \kappa_1(\tau_1) \nabla \tau_1 + \lambda(t) \int_0^1 \mathcal{N}_0(\tau_1, \tau) \kappa_2(\tau_1) \nabla \tau_1. \]

Proof. Suppose \(\varpi_1 \) is a solution of (2.1), then

\[\varpi_1(t) = - \int_0^t \varphi^{-1}(\varphi(\tau_1)) \nabla \tau_1 \Delta \tau + At + B \]

so we have

\[\text{By simple computations, we find that} \]

\[A_1 = \frac{1}{d} \int_0^1 [\alpha \kappa_2(\tau) - \gamma \kappa_1(\tau)] \varphi_1(\tau) \nabla \tau + \frac{1}{d} \int_0^1 \alpha [\gamma (1 - \tau) + \delta] \varphi^{-1}(\varphi(\tau)) \nabla \tau \]

and

\[A_2 = \frac{1}{d} \int_0^1 [(\gamma + \delta) \kappa_1(\tau) + \beta \kappa_2(\tau)] \varphi_1(\tau) \nabla \tau + \frac{1}{d} \int_0^1 \beta [\gamma (1 - \tau) + \delta] \varphi^{-1}(\varphi(\tau)) \nabla \tau. \]

So, we have

\[\varpi_1(t) = \int_0^1 \mathcal{N}_0(t, \tau) \varphi^{-1}(\varphi(\tau)) \nabla \tau + \frac{a(t)}{d} \int_0^1 \kappa_1(\tau) \varphi_1(\tau) \nabla \tau + \frac{b(t)}{d} \int_0^1 \kappa_2(\tau) \varphi_1(\tau) \nabla \tau. \]

By simple computations, we find that

\[\int_0^1 \kappa_1(\tau) \varphi_1(\tau) \nabla \tau = \frac{c_1(1 - u_b) + c_2 u_b}{(1 - u_a)(1 - v_b) - u_b v_a}, \]

(2.4)

\[\int_0^1 \kappa_2(\tau) \varphi_1(\tau) \nabla \tau = \frac{c_2(1 - u_a) + c_1 v_a}{(1 - u_a)(1 - v_b) - u_b v_a}. \]

(2.5)

Plugging (2.4) and (2.5) into (2.3), we received

\[\varpi_1(t) = \int_0^1 \mathcal{N}_0(t, \tau) \varphi^{-1}(\varphi(\tau)) \nabla \tau + c_1 \eta(t) + c_2 \lambda(t) \]

\[= \int_0^1 \mathcal{N}_0(t, \tau) + \eta(t) \int_0^1 \mathcal{N}_0(\tau_1, \tau) \kappa_1(\tau_1) \nabla \tau_1 + \lambda(t) \int_0^1 \mathcal{N}_0(\tau_1, \tau) \kappa_2(\tau_1) \nabla \tau_1 \]

\[\times \varphi^{-1}(\varphi(\tau)) \nabla \tau \]

\[= \int_0^1 \mathcal{N}(t, \tau) \varphi^{-1}(\varphi(\tau)) \nabla \tau. \]

This completes the proof. \(\square \)

Lemma 2.3. Suppose \((H_1)-(H_2) \) hold. For \(\delta \in (0, \frac{1}{2}) \), let

\[\mathcal{L}(\delta) = \min \left\{ \frac{\alpha \delta + \beta}{\alpha + \beta}, \frac{\gamma \delta + \delta}{\gamma + \delta} \right\} < 1. \]

Then \(\mathcal{N}_0(t, \tau) \) have the following properties:

(i) \(0 \leq \mathcal{N}_0(t, \tau) \leq \mathcal{N}_0(\tau, \tau) \) for all \(t, \tau \in [0, 1] \).
(ii) $\mathcal{L}(j) \mathbb{N}_0(\tau, \tau) \leq \mathbb{N}_0(t, \tau)$ for all $t \in [\bar{3}, 1 - \bar{3}]_T$ and $\tau \in [0, 1]_T$.

Proof. (i) is evident. We establish (ii), for this, let $t \in [\bar{3}, 1 - \bar{3}]_T$ and $t \leq \tau$. Then

\[
\frac{\mathbb{N}_0(t, \tau)}{\mathbb{N}_0(\tau, \tau)} = \frac{b(t)}{b(\tau)} = \frac{\alpha t + \beta}{\alpha \tau + \beta} \geq \frac{\alpha_3 + \beta}{\alpha + \beta} \geq \mathcal{L}(j).
\]

For $\tau \leq t$,

\[
\frac{\mathbb{N}_0(t, \tau)}{\mathbb{N}_0(\tau, \tau)} = \frac{a(t)}{a(\tau)} = \frac{\gamma + \delta - \gamma t}{\gamma + \delta - \gamma \tau} \geq \frac{\gamma_3 + \delta}{\gamma + \delta} \geq \mathcal{L}(j).
\]

This completes the proof. \qed

Lemma 2.4. Suppose (H_1)-(H_2) hold. Then $\mathbb{N}(t, \tau)$ satisfies properties:

(i) $0 \leq \mathbb{N}(t, \tau) \leq \Xi \mathbb{N}_0(\tau, \tau)$ for all $t, \tau \in [0, 1]_T$;
(ii) $0 \leq \Xi_3 \mathbb{N}_0(\tau, \tau) \leq \mathbb{N}(t, \tau)$ for all $t \in [\bar{3}, 1 - \bar{3}]_T$ and $\tau \in [0, 1]_T$, where

\[
\Xi = 1 + \eta^* \kappa_1^* + \lambda^* \kappa_2^*
\]

and

\[
\Xi_3 = \mathcal{L}(j) \left[1 + \eta(3) \kappa_1(3) + \lambda(3) \kappa_2(3) \right].
\]

Proof. From Lemma 2.3, we get

\[
\mathbb{N}(t, \tau) = \mathbb{N}_0(t, \tau) + \eta(t) \int_0^1 \mathbb{N}_0(\tau_1, \tau) \kappa_1(\tau_1) \nabla \tau_1 + \lambda(t) \int_0^1 \mathbb{N}_0(\tau_1, \tau) \kappa_2(\tau_1) \nabla \tau_1
\]

\[
\leq \mathbb{N}_0(\tau, \tau) + \eta(t) \int_0^1 \mathbb{N}_0(\tau, \tau) \kappa_1(\tau_1) \nabla \tau_1 + \lambda(t) \int_0^1 \mathbb{N}_0(\tau, \tau) \kappa_2(\tau_1) \nabla \tau_1
\]

\[
\leq \left[1 + \eta(t) \int_0^1 \kappa_1(\tau_1) \nabla \tau_1 + \lambda(t) \int_0^1 \kappa_2(\tau_1) \nabla \tau_1 \right] \mathbb{N}_0(\tau, \tau)
\]

\[
\leq \left[1 + \eta^* \kappa_1^* + \lambda^* \kappa_2^* \right] \mathbb{N}_0(\tau, \tau).
\]

On the other hand, for $t \in [\bar{3}, 1 - \bar{3}]_T$ and $\tau \in [0, 1]_T$, we have

\[
\mathbb{N}(t, \tau) = \mathbb{N}_0(t, \tau) + \eta(t) \int_0^1 \mathbb{N}_0(\tau_1, \tau) \kappa_1(\tau_1) \nabla \tau_1 + \lambda(t) \int_0^1 \mathbb{N}_0(\tau_1, \tau) \kappa_2(\tau_1) \nabla \tau_1
\]

\[
\geq \mathbb{N}_0(t, \tau) + \eta(t) \int_{\bar{3}}^{1-\bar{3}} \mathbb{N}_0(\tau_1, \tau) \kappa_1(\tau_1) \nabla \tau_1 + \lambda(t) \int_{\bar{3}}^{1-\bar{3}} \mathbb{N}_0(\tau_1, \tau) \kappa_2(\tau_1) \nabla \tau_1
\]

\[
\geq \mathcal{L}(j) \left[1 + \eta(t) \int_{\bar{3}}^{1-\bar{3}} \kappa_1(\tau_1) \nabla \tau_1 + \lambda(t) \int_{\bar{3}}^{1-\bar{3}} \kappa_2(\tau_1) \nabla \tau_1 \right] \mathbb{N}_0(\tau, \tau)
\]

\[
\geq \mathcal{L}(j) \left[1 + \eta^* \kappa_1^* + \lambda^* \kappa_2^* \right] \mathbb{N}_0(\tau, \tau).
\]

This completes the proof. \qed

Notice that an ℓ-tuple $(\varpi_1(t), \varpi_2(t), \varpi_3(t), \ldots, \varpi_\ell(t))$ is a solution of the iterative boundary value problem (1.1)-(1.2) if and only if

\[
\varpi_j(t) = \int_0^1 \mathbb{N}(t, \tau) \varphi^{-1} \left[\chi(\tau) f_j(\varpi_{j+1}(\tau)) \right] \nabla \tau, \quad t \in [0, 1]_T, 1 \leq j \leq \ell,
\]

\[
\varpi_{\ell+1}(t) = \varpi_1(t), \quad t \in [0, 1]_T,
\]
i.e.,
\[
\varpi_1(t) = \int_0^1 \mathcal{N}(t, \tau_1) \varphi^{-1} \left[\chi(\tau_1)f_1 \left(\int_0^1 \mathcal{N}(\tau_1, \tau_2) \varphi^{-1} \left[\chi(\tau_2)f_2 \left(\int_0^1 \mathcal{N}(\tau_2, \tau_3) \right) \right] \right] \right] \tau_1 \\
\times \varphi^{-1} \left[\chi(\tau_3)f_3 \left(\int_0^1 \mathcal{N}(\tau_3, \tau_4) \right) \right] \tau_2 \\
\times f_{\ell-1} \left(\int_0^1 \mathcal{N}(\tau_{\ell-1}, \tau_{\ell}) \varphi^{-1} \left[\chi(\tau_{\ell})f_{\ell}(\varpi_1(\tau_{\ell})) \right] \tau_{\ell} \right) \tau_{\ell} \tau_1.
\]

Let \(B \) be the Banach space \(C_{ld}([0, 1]_\tau, \mathbb{R}) \) with the norm \(\|\varpi\| = \max_{t \in [0, 1]} |\varpi(t)| \).

For \(j \in \left(0, \frac{1}{2}\right) \), we define the cone \(K_j \subset B \) as
\[
K_j = \left\{ \varpi \in B : \varpi(t) \text{ is nonnegative and } \min_{t \in [0, 1]_\tau} \varpi(t) \geq \frac{\varpi(0)}{\|\varpi\|} \right\}.
\]

For any \(\varpi_1 \in K_j \), define an operator \(\Omega : K_j \rightarrow B \) by
\[
(\Omega \varpi_1)(t) = \int_0^1 \mathcal{N}(t, \tau_1) \varphi^{-1} \left[\chi(\tau_1)f_1 \left(\int_0^1 \mathcal{N}(\tau_1, \tau_2) \varphi^{-1} \left[\chi(\tau_2)f_2 \left(\int_0^1 \mathcal{N}(\tau_2, \tau_3) \right) \right] \right] \right] \tau_1 \\
\times \varphi^{-1} \left[\chi(\tau_3)f_3 \left(\int_0^1 \mathcal{N}(\tau_3, \tau_4) \right) \right] \tau_2 \\
\times f_{\ell-1} \left(\int_0^1 \mathcal{N}(\tau_{\ell-1}, \tau_{\ell}) \varphi^{-1} \left[\chi(\tau_{\ell})f_{\ell}(\varpi_1(\tau_{\ell})) \right] \tau_{\ell} \right) \tau_{\ell} \tau_1.
\]

Lemma 2.5. Assume that \((H_1)-(H_2)\) hold. Then for each \(j \in \left(0, \frac{1}{2}\right) \), \(\Omega(K_j) \subset K_j \) and \(\Omega : K_j \rightarrow K_j \) is completely continuous.

Proof. From Lemma 2.3, \(\mathcal{N}(t, \tau) \geq 0 \) for all \(t, \tau \in [0, 1]_\tau \). So, \((\Omega \varpi_1)(t) \geq 0 \). Also, for \(\varpi_1 \in K \), we have
\[
(\Omega \varpi_1)(t) \leq \Xi \int_0^1 \mathcal{N}_0(\tau_1, \tau_1) \varphi^{-1} \left[\chi(\tau_1)f_1 \left(\int_0^1 \mathcal{N}(\tau_1, \tau_2) \varphi^{-1} \left[\chi(\tau_2) \right] \right) \right] \tau_1 \\
\times f_2 \left(\int_0^1 \mathcal{N}(\tau_2, \tau_3) \varphi^{-1} \left[\chi(\tau_3) \right] \right) \tau_2 \\
\times f_{\ell-1} \left(\int_0^1 \mathcal{N}(\tau_{\ell-1}, \tau_{\ell}) \varphi^{-1} \left[\chi(\tau_{\ell})f_{\ell}(\varpi_1(\tau_{\ell})) \right] \tau_{\ell} \right) \tau_{\ell} \tau_1.
\]
So,
\[
\|\Omega \varpi_1\| \leq \Xi \int_0^1 \mathcal{N}_0(\tau_1, \tau_1) \varphi^{-1} \left[\chi(\tau_1)f_1 \left(\int_0^1 \mathcal{N}(\tau_1, \tau_2) \varphi^{-1} \left[\chi(\tau_2) \right] \right) \right] \tau_1 \\
\times f_2 \left(\int_0^1 \mathcal{N}(\tau_2, \tau_3) \varphi^{-1} \left[\chi(\tau_3) \right] \right) \tau_2 \\
\times f_{\ell-1} \left(\int_0^1 \mathcal{N}(\tau_{\ell-1}, \tau_{\ell}) \varphi^{-1} \left[\chi(\tau_{\ell})f_{\ell}(\varpi_1(\tau_{\ell})) \right] \tau_{\ell} \right) \tau_{\ell} \tau_1.
\]
\[\times f_{t-1} \left(\int_0^1 N(t_{\ell-1}, t_{\ell}) \varphi^{-1} \left[\chi(t_{\ell}) f_{t}(\varphi_{1}(t_{\ell})) \right] \nabla t_{\ell} \right) \cdots \nabla t_3 \nabla t_2 \nabla t_1. \]

Again from Lemma 2.3, we get
\[
\min_{t \in [b,1]} \{ (\Omega \varphi_1)(t) \} \geq \Xi_3 \int_0^1 N_0(t_1, t_1) \varphi^{-1} \left[\chi(t_1) f_1 \left(\int_0^1 N(t_1, t_2) \varphi^{-1} \left[\chi(t_2) \right] \right) \right. \\
\left. \times f_2 \left(\int_0^1 N(t_2, t_3) \varphi^{-1} \left[\chi(t_3) f_3 \left(\int_0^1 N(t_3, t_4) \varphi^{-1} \left[\chi(t_4) \right] \right) \right] \right. \\
\left. \times f_{\ell-1} \left(\int_0^1 N(t_{\ell-1}, t_{\ell}) \varphi^{-1} \left[\chi(t_{\ell}) f_{\ell}(\varphi_{1}(t_{\ell})) \right] \nabla t_{\ell} \right) \cdots \nabla t_3 \nabla t_2 \nabla t_1. \]

It follows from the above two inequalities that
\[
\min_{t \in [b,1]} \{ (\Omega \varphi_1)(t) \} \geq \frac{\Xi_3}{\Xi_1} \| \Omega \varphi_1 \|.
\]

So, \(\Omega \varphi_1 \in K_1 \) and thus \(\Omega (K_4) \subset K_1 \). Next, by standard methods and Arzela-Ascoli theorem, it can be proved easily that the operator \(\Omega \) is completely continuous. The proof is complete.

\[\square \]

3. Denumerably Many Positive Solutions

For the existence of denumerably many positive solutions for iterative system of boundary value problem (1.1), we apply following theorems.

Theorem 3.1 ([11]). Let \(E \) be a cone in a Banach space \(X \) and \(M_1, M_2 \) are open sets with \(0 \in M_1, \overline{M_1} \subset M_2 \). Let \(A : E \cap (\overline{M_2} \setminus M_1) \to E \) be a completely continuous operator such that

(a) \(\| Az \| \leq \| z \|, \) \(z \in E \cap \partial M_1, \) and \(\| Az \| \geq \| z \|, \) \(z \in E \cap \partial M_2, \) or

(b) \(\| Az \| \geq \| z \|, \) \(z \in E \cap \partial M_1, \) and \(\| Az \| \leq \| z \|, \) \(z \in E \cap \partial M_2. \)

Then \(A \) has a fixed point in \(E \cap (\overline{M_2} \setminus M_1) \).

Theorem 3.2 ([8, 16]). Let \(f \in L^p_v(J), \) with \(p > 1, \) \(g \in L^q_v(J), \) with \(q > 1, \) and \(\frac{1}{p} + \frac{1}{q} = 1. \) Then \(fg \in L^1_v(J) \) and \(\| fg \|_{L^1_v} \leq \| f \|_{L^p_v} \| g \|_{L^q_v}, \) where

\[
\| f \|_{L^p_v} := \begin{cases} \left(\int_J |f|^p(s) \nabla s \right)^{\frac{1}{p}}, & \text{if } p \in \mathbb{R}, \\
\inf \left\{ M \in \mathbb{R} \mid |f| \leq M \text{ \nabla-a.e. on } J \right\}, & \text{if } p = \infty, \end{cases}
\]

and \(J = (a, b)_{\mathbb{T}}. \)
Theorem 3.3 (Hölder’s). Let $f \in L^p_i(\mathcal{J})$, with $p_i > 1$, for $i = 1, 2, \ldots, n$ and $\sum_{i=1}^{n} \frac{1}{p_i} = 1$. Then $\prod_{i=1}^{n} f_i \in L^p_i(\mathcal{J})$ and

$$\left\| \prod_{i=1}^{n} f_i \right\|_1 \leq \prod_{i=1}^{n} \| f_i \|_{p_i}.$$

Further, if $f \in L^p_i(\mathcal{J})$ and $g \in L^p_i(\mathcal{J})$, then $f g \in L^p_i(\mathcal{J})$ and $\|fg\|_1 \leq \|f\|_1 \|g\|_\infty$.

Consider the following three possible cases for $\chi_i \in L^p_i([0, 1])$:

(i) $\sum_{i=1}^{n} \frac{1}{p_i} < 1$;
(ii) $\sum_{i=1}^{n} \frac{1}{p_i} = 1$;
(iii) $\sum_{i=1}^{n} \frac{1}{p_i} > 1$.

Firstly, we seek denumerably many positive solutions for the case $\sum_{i=1}^{n} \frac{1}{p_i} < 1$.

Theorem 3.4. Suppose (H_1)–(H_3) hold, let $\{\zeta_r\}_{r=1}^\infty$ be a sequence with $\zeta_r \in (t_{r+1}, t_r)$. Let $\{\Gamma_r\}_{r=1}^\infty$ and $\{\Theta_r\}_{r=1}^\infty$ be such that

$$\Gamma_{r+1} < \frac{\Xi}{2} \Theta_r < \Theta_r < 3 \Theta_r < \Gamma_r, \quad r \in \mathbb{N},$$

where

$$\Xi = \max \left\{ \left[\sum_{i=1}^{n} \delta_i \int_{\delta_i}^{1-\delta_i} \kappa_0(\tau) \nabla \tau \right]^{-1}, 1 \right\}.$$

Assume that f satisfies

(C1) $f_j(\varpi) \leq \varphi(\Omega_1 \Gamma_r)$ for all $t \in [0, 1]$, $0 \leq \varpi \leq \Gamma_r$, where

$$\Omega_1 = \left[\Xi \|\kappa_0\|_{L^p_i} \prod_{i=1}^{n} \left\| \varphi^{-1}(\chi_i) \right\|_{L^p_i} \right]^{-1};$$

(C2) $f_j(\varpi) \geq \varphi(3 \Theta_r)$ for all $t \in [\zeta_r, 1 - \zeta_r]$, $\zeta_r \leq \varpi \leq \Theta_r$.

Then the iterative boundary value problem (1.1)–(1.2) has denumerably many solutions

$$\{(\varpi_1^r, \varpi_2^r, \ldots, \varpi_{\ell}^r)\}_{r=1}^\infty$$

such that $\varpi_j^r(t) \geq 0$ on $[0, 1]$, $j = 1, 2, \ldots, \ell$ and $r \in \mathbb{N}$.

Proof. Let

$$M_{1,r} = \{ \varpi \in \mathcal{B} : \|\varpi\| < \Gamma_r \},$$

$$M_{2,r} = \{ \varpi \in \mathcal{B} : \|\varpi\| < \Theta_r \},$$

be open subsets of \mathcal{B}. Let $\{\zeta_r\}_{r=1}^\infty$ be given in the hypothesis and we note that

$$t^* < t_{r+1} < \zeta_r < t_r < \frac{1}{2},$$

for all $r \in \mathbb{N}$. For each $r \in \mathbb{N}$, we define the cone K_{ζ_r} by

$$K_{\zeta_r} = \{ \varpi \in \mathcal{B} : \varpi(t) \geq 0, \min_{t \in [\eta, 1-\zeta_r]} \varpi(t) \geq \frac{\Xi}{\zeta_r} \|\varpi(t)\| \}.$$
Let \(\varpi_1 \in K_p \cap \partial M_r \). Then \(\varpi_1(\tau) \leq \|\varpi_1\| \) for all \(\tau \in [0, 1]_\tau \). By (C1) and for \(\tau_{\ell-1} \in [0, 1]_\tau \), we have
\[
\int_0^1 N(\tau_{\ell-1}, \tau_{\ell}) \varphi^{-1} \left[\chi(\tau_{\ell}) f_{\ell} (\varpi_1(\tau_{\ell})) \right] \nabla \tau_{\ell} \leq \Xi \int_0^1 N_0(\tau_{\ell}, \tau_{\ell}) \varphi^{-1} \left[\chi(\tau_{\ell}) f_{\ell} (\varpi_1(\tau_{\ell})) \right] \nabla \tau_{\ell} \\
\leq \Xi \mathcal{M}_r \Gamma_r \int_0^1 N_0(\tau_{\ell}, \tau_{\ell}) \varphi^{-1} \left[\chi(\tau_{\ell}) \right] \nabla \tau_{\ell} \\
\leq \Xi \mathcal{M}_r \Gamma_r \int_0^1 N_0(\tau_{\ell}, \tau_{\ell}) \varphi^{-1} \left[\prod_{i=1}^n \chi_i(\tau_{\ell}) \right] \nabla \tau_{\ell} \\
\leq \Xi \mathcal{M}_r \Gamma_r \int_0^1 N_0(\tau_{\ell}, \tau_{\ell}) \prod_{i=1}^n \varphi^{-1}(\chi_i(\tau_{\ell})) \nabla \tau_{\ell}.
\]

There exists a \(q > 1 \) such that \(\frac{1}{q} + \sum_{i=1}^n \frac{1}{p_i} = 1. \) So,
\[
\int_0^1 N(\tau_{\ell-1}, \tau_{\ell}) \varphi^{-1} \left[\chi(\tau_{\ell}) f_{\ell} (\varpi_1(\tau_{\ell})) \right] \nabla \tau_{\ell} \leq \Xi \mathcal{M}_r \Gamma_r \left\| N_0 \right\|_{L_{p_1}^q} \left\| \prod_{i=1}^n \varphi^{-1}(\chi_i) \right\|_{L_{p_2}^q} \\
\leq \Xi \mathcal{M}_r \Gamma_r \left\| N_0 \right\|_{L_{p_1}^q} \prod_{i=1}^n \left\| \varphi^{-1}(\chi_i) \right\|_{L_{p_2}^q} \\
\leq \Gamma_r.
\]

It follows in similar manner for \(\tau_{\ell-2} \in [0, 1]_\tau \) that
\[
\int_0^1 N(\tau_{\ell-2}, \tau_{\ell-1}) \varphi^{-1} \left[\chi(\tau_{\ell-1}) f_{\ell-1} \left(\int_0^1 N(\tau_{\ell-1}, \tau_{\ell}) \varphi^{-1} \left[\chi(\tau_{\ell}) f_{\ell} (\varpi_1(\tau_{\ell})) \right] \nabla \tau_{\ell} \right) \right] \nabla \tau_{\ell-1} \\
\leq \Xi \mathcal{M}_r \Gamma_r \int_0^1 N_0(\tau_{\ell-1}, \tau_{\ell-1}) \varphi^{-1} \left[\chi(\tau_{\ell-1}) f_{\ell-1} (\Gamma_r) \right] \nabla \tau_{\ell-1} \\
\leq \Xi \mathcal{M}_r \Gamma_r \int_0^1 N_0(\tau_{\ell-1}, \tau_{\ell-1}) \varphi^{-1} \left[\chi(\tau_{\ell-1}) \right] \nabla \tau_{\ell-1} \\
\leq \Xi \mathcal{M}_r \Gamma_r \int_0^1 N_0(\tau_{\ell-1}, \tau_{\ell-1}) \prod_{i=1}^n \varphi^{-1}(\chi_i(\tau_{\ell-1})) \nabla \tau_{\ell-1} \\
\leq \Xi \mathcal{M}_r \Gamma_r \left\| N_0 \right\|_{L_{p_1}^q} \prod_{i=1}^n \left\| \varphi^{-1}(\chi_i) \right\|_{L_{p_2}^q} \\
\leq \Xi \mathcal{M}_r \Gamma_r \left\| N_0 \right\|_{L_{p_1}^q} \prod_{i=1}^n \left\| \varphi^{-1}(\chi_i) \right\|_{L_{p_2}^q} \\
\leq \Gamma_r.
\]

Continuing with this bootstrapping argument, we get
\[
(\Omega \varpi_1)(t) = \int_0^1 N(t, \tau_1) \varphi^{-1} \left[\chi(\tau_1) f_1 \left(\int_0^1 N(\tau_1, \tau_2) \varphi^{-1} \left[\chi(\tau_2) f_2 \left(\int_0^1 N(\tau_2, \tau_3) \varphi^{-1} \left[\chi(\tau_3) \right] \nabla \tau_3 \right) \right] \nabla \tau_2 \right) \right] \nabla \tau_1.
\]
Thus, if 3.1, that the operator
\[
\times \varphi^{-1}\left[\lambda(\tau_3)f_3\left(\int_0^1 \mathcal{N}(\tau_3, \tau_4)\right)\cdots
\times f_{\ell-1}\left(\int_0^1 \mathcal{N}(\tau_{\ell-1}, \tau_{\ell})\varphi^{-1}\left[\lambda(\tau_{\ell})f_{\ell}(\varpi(\tau_{\ell}))\right]\nabla^\tau_{\ell}\right)\cdots \nabla \tau_3\right] \nabla \tau_2] \nabla \tau_1
\leq \Gamma_r.
\]
Since $\Gamma_r = \|\varpi_1\|$ for $\varpi_1 \in K_r \cap \partial M_{1,r}$ we get
(3.1) $\|\Omega \varpi_1\| \leq \|\varpi_1\|$.

Let $t \in [3_r, 1 - 3_r]$. Then
\[
\Theta_r = \|\varpi_1\| \geq \varpi_1(t) \geq \min_{t \in [3_r, 1 - 3_r]} \varpi_1(t) \geq \frac{\Xi_j}{\Xi_i} \|\varpi_1\| \geq \frac{\Xi_j}{\Xi_i} \Theta_r.
\]

By (C2) and for $\tau_{\ell-1} \in [3_r, 1 - 3_r]$, we have
\[
\int_0^1 \mathcal{N}(\tau_{\ell-1}, \tau_{\ell})\varphi^{-1}\left[\lambda(\tau_{\ell})f_{\ell}(\varpi(\tau_{\ell}))\right] \nabla \tau_{\ell} \geq \Xi_j \int_{3_r}^{1-3_r} \mathcal{N}_0(\tau_{\ell}, \tau_{\ell})\varphi^{-1}\left[\lambda(\tau_{\ell})f_{\ell}(\varpi(\tau_{\ell}))\right] \nabla \tau_{\ell}
\geq \Xi_j \Theta_r \int_{3_r}^{1-3_r} \mathcal{N}_0(\tau_{\ell}, \tau_{\ell}) \prod_{i=1}^n \varphi^{-1}\left[\lambda_i(\tau_{\ell})\right] \nabla \tau_{\ell}
\geq \Xi_j \Theta_r \prod_{i=1}^n \delta_i \int_{3_1}^{1-3_1} \mathcal{N}_0(\tau_{\ell}, \tau_{\ell}) \nabla \tau_{\ell}
\geq \Theta_r.
\]

Continuing with bootstrapping argument we get
\[
(\Omega \varpi_1)(t) = \int_0^1 \mathcal{N}(t, \tau_1)\varphi^{-1}\left[\lambda(\tau_1)f_1\left(\int_0^1 \mathcal{N}(\tau_1, \tau_2)\varphi^{-1}\left[\lambda(\tau_2)f_2\left(\int_0^1 \mathcal{N}(\tau_2, \tau_3)\right)\cdots
\times \varphi^{-1}\left[\lambda(\tau_3)f_3\left(\int_0^1 \mathcal{N}(\tau_3, \tau_4)\right)\cdots
\times f_{\ell-1}\left(\int_0^1 \mathcal{N}(\tau_{\ell-1}, \tau_{\ell})\varphi^{-1}\left[\lambda(\tau_{\ell})f_{\ell}(\varpi(\tau_{\ell}))\right] \nabla \tau_{\ell}\right)\cdots \nabla \tau_3\right] \nabla \tau_2\right) \nabla \tau_1
\geq \Theta_r.
\]
Thus, if $\varpi_1 \in K_r \cap \partial K_{2,r}$, then
(3.2) $\|\Omega \varpi_1\| \geq \|\varpi_1\|$.

It is evident that $0 \in M_{2,k} \subseteq M_{2,k} \subseteq M_{1,k}$. From (3.1) and (3.2), it follows from Theorem 3.1 that the operator Ω has a fixed point $\varpi_1^{[3]} \in K_r \cap \left(\overline{M_{1,r} \setminus M_{2,r}}\right)$ such that $\varpi_1^{[3]}(t) \geq 0$.
on \([0,1]_T\), and \(r \in \mathbb{N}\). Next setting \(\varpi_{\ell+1} = \varpi_1\), we obtain denumerably many positive solutions \(\{ (\varpi_1^r, \varpi_2^r, \ldots, \varpi_\ell^r) \}^\infty_{\ell=1}\) of (1.1)–(1.2) given iteratively by

\[
\varpi_j(t) = \int_0^1 N(t, \tau) \varphi^{-1} \left[\chi(\tau)f_j(\varpi_{\ell+1}(\tau)) \right] \nabla \tau, \quad t \in [0,1]_T, \ j = \ell, \ell - 1, \ldots, 1.
\]

The proof is completed. \(\square\)

For \(\sum_{i=1}^n \frac{1}{r_i} = 1\), we have the following theorem.

Theorem 3.5. Suppose \((H_1)-(H_3)\) hold, let \(\{z_r\}^\infty_{r=1}\) be a sequence with \(z_r \in (t_{r+1}, t_r)\).
Let \(\{\Gamma_r\}^\infty_{r=1}\) and \(\{\Theta_r\}^\infty_{r=1}\) be such that

\[
\Gamma_{r+1} < \frac{\Xi}{\Xi} \Theta_r < \Theta_r < 3 \Theta_r < \Gamma_r, \quad r \in \mathbb{N},
\]

where

\[
3 = \max \left\{ \left[\prod_{i=1}^n k_i \int_{s_i}^{1-s_i} N_0(\tau, \tau) \nabla \tau \right]^{-1}, 1 \right\}.
\]

Assume that \(f\) satisfies

\((C_3)\) \(f_j(\varpi) \leq \varphi N_2 \Gamma_r\) for all \(t \in [0,1]_T, 0 \leq \varpi \leq \Gamma_r, \) where

\[
N_2 < \min \left\{ \Xi \| N_0 \|_{L^\infty} \prod_{i=1}^n \| \varphi^{-1}(\chi_i) \|_{L^{\infty}_T} \right\};
\]

\((C_4)\) \(f_j(\varpi) \geq \varphi \Theta_r\) for all \(t \in [z_r, 1 - z_r]_T, \frac{\Xi}{\Xi} \Theta_r \leq \varpi \leq \Theta_r, \)

Then the iterative boundary value problem (1.1)–(1.2) has denumerably many solutions \(\{ (\varpi_1^r, \varpi_2^r, \ldots, \varpi_\ell^r) \}^\infty_{r=1}\) such that \(\varpi_j^r(t) \geq 0\) on \([0,1]_T, j = 1, 2, \ldots, \ell, \) and \(r \in \mathbb{N}\).

Proof. For a fixed \(r\), let \(M_{1,r}\) be as in the proof of Theorem 3.4 and let \(\varpi_1 \in K_{t_1} \cap \partial M_{2,r}\). Again \(\varpi_1(\tau) \leq \Gamma_r = \| \varpi_1 \|\) for all \(\tau \in [0,1]_T\). By \((C_3)\) and for \(\tau_{\ell-1} \in [0,1]_T\), we have

\[
\int_0^1 N(\tau_{\ell-1}, \tau_\ell) \varphi^{-1} \left[\chi(\tau_\ell)f_\ell(\varpi_1(\tau_\ell)) \right] \nabla \tau_\ell \leq \Xi \int_0^1 N_0(\tau_\ell, \tau_\ell) \varphi^{-1} \left[\chi(\tau_\ell)f_\ell(\varpi_1(\tau_\ell)) \right] \nabla \tau_\ell
\]

\[
\leq \Xi \Xi N_2 \Gamma_r \int_0^1 N_0(\tau_\ell, \tau_\ell) \varphi^{-1} \left[\chi(\tau_\ell) \right] \nabla \tau_\ell
\]

\[
\leq \Xi \Xi N_2 \Gamma_r \int_0^1 N_0(\tau_\ell, \tau_\ell) \varphi^{-1} \left[\prod_{i=1}^n \chi_i(\tau_\ell) \right] \nabla \tau_\ell
\]

\[
\leq \Xi \Xi N_2 \Gamma_r \| N_0 \|_{L^\infty} \prod_{i=1}^n \| \varphi^{-1}(\chi_i) \|_{L^{\infty}_T}
\]

\[
\leq \Gamma_r.
\]

It follows in similar manner for \(\tau_{\ell-2} \in [0,1]_T\) that

\[
\int_0^1 N(\tau_{\ell-2}, \tau_{\ell-1}) \varphi^{-1} \left[\chi(\tau_{\ell-1})f_{\ell-1} \right] \nabla \tau_{\ell-1} \leq \Xi \Xi N_2 \Gamma_r \int_0^1 N_0(\tau_{\ell-1}, \tau_{\ell-1}) \varphi^{-1} \left[\chi(\tau_{\ell-1})f_{\ell-1}(\varpi_1(\tau_{\ell-1})) \right] \nabla \tau_{\ell-1}
\]
\[\leq \int_0^1 N(\tau_{\ell-2}, \tau_{\ell-1}) \varphi^{-1} \left[\chi(\tau_{\ell-1}) f_{\ell-1}(\Gamma_r) \right] \nabla \tau_{\ell-1} \]
\[\leq \Xi \int_0^1 N(\tau_{\ell-1}, \tau_{\ell-1}) \varphi^{-1} \left[\chi(\tau_{\ell-1}) f_{\ell-1}(\Gamma_r) \right] \nabla \tau_{\ell-1} \]
\[\leq \Xi \mathcal{N}_2 \Gamma_r \int_0^1 N(\tau_{\ell-1}, \tau_{\ell-1}) \varphi^{-1} \left[\chi(\tau_{\ell-1}) \right] \nabla \tau_{\ell-1} \]
\[\leq \Xi \mathcal{N}_2 \Gamma_r \int_0^1 N(\tau_{\ell-1}, \tau_{\ell-1}) \varphi^{-1} \left[\prod_{i=1}^n \chi_i(\tau_{\ell-1}) \right] \nabla \tau_{\ell-1} \]
\[\leq \Xi \mathcal{N}_2 \Gamma_r \mathcal{N}_0 \| \varphi^{-1}(\chi_i) \|_{L_p^\infty} \]
\[\leq \Gamma_r. \]

Continuing with this bootstrapping argument, we get
\[
(\Omega \varpi_1)(t) = \int_0^1 N(t, \tau_1) \varphi^{-1} \left[\chi(\tau_1) f_1 \left(\int_0^1 N(\tau_1, \tau_2) \varphi^{-1} \left[\chi(\tau_2) f_2 \left(\int_0^1 N(\tau_2, \tau_3) \right) \right] \right) \right] \nabla \tau_1 \]
\[\times \varphi^{-1} \left[\chi(\tau_3) f_3 \left(\int_0^1 N(\tau_3, \tau_4) \cdots \right) \right] \nabla \tau_3 \]
\[\times f_{\ell-1} \left(\int_0^1 N(\tau_{\ell-1}, \tau_\ell) \varphi^{-1} \left[\chi(\tau_\ell) f_1(\varpi_1(\tau_\ell)) \right] \nabla \tau_\ell \right) \cdots \nabla \tau_3 \nabla \tau_2 \nabla \tau_1 \]
\[\leq \Gamma_r. \]

Since \(\Gamma_r = \| \varpi_1 \| \) for \(\varpi_1 \in K_{\varpi} \cap \partial M_{1,r} \), we get \(\| \Omega \varpi_1 \| \leq \| \varpi_1 \| \). Now define \(M_{2,r} = \{ \varpi_1 \in B : \| \varpi_1 \| < \Theta_r \} \). Let \(\varpi_1 \in K_{\varpi} \cap \partial M_{2,r} \) and let \(\tau \in [3_r, 1 - 3_r] \). Then the argument leading to (3.2) can be done to the present case. Hence, the theorem is proved. \(\square \)

Lastly, the case \(\sum_{i=1}^n \frac{1}{p_i} > 1 \).

Theorem 3.6. Suppose \((H_1)-(H_2)\) hold, let \(\{3_r\}_{r=1}^\infty \) be a sequence with \(3_r \in (t_{r+1}, t_r) \).

Let \(\{\Gamma_r\}_{r=1}^\infty \) and \(\{\Theta_r\}_{r=1}^\infty \) be such that
\[\Gamma_{r+1} < \Xi \mathcal{N}_3 \Theta_r < \Theta_r < 3 \Theta_r < \Gamma_r, \quad r \in \mathbb{N}, \]
where
\[3 = \max \left\{ \left[\Xi \mathcal{N}_3 \prod_{i=1}^n \delta_i \int_{3_1}^{1-3_1} N(\tau, \tau) \nabla \tau \right]^{-1}, 1 \right\}. \]

Assume that \(f \) satisfies
\((C_5) \ f_j(\varpi) \leq \varphi(\mathcal{N}_3 \Gamma_r) \) for all \(t \in [0, 1] \), \(0 \leq \varpi \leq \Gamma_r \), where
\[\mathcal{N}_3 < \min \left\{ \left[\Xi \mathcal{N}_0 \| \varphi^{-1}(\chi_i) \|_{L_p^\infty} \right]^{-1}, 3 \right\}; \]
Then the iterative boundary value problem
\((C_6) \) \(f_j(\varpi) \geq \varphi(3\Theta_r) \) for all \(t \in [3r, 1 - 3r] \), \(\frac{3\varpi}{2} \leq \varpi \leq \Theta_r \).

Then the iterative boundary value problem (1.1)–(1.2) has denumerably many solutions \(\{ (\varpi_1^r, \varpi_2^r, \ldots, \varpi_{\ell}^r) \}_{r=1}^\infty \) such that \(\varpi_j^r(t) \geq 0 \) on \([0, 1]_T\), \(j = 1, 2, \ldots, \ell \), and \(r \in \mathbb{N} \).

Proof. The proof is similar to the proof of Theorem 3.1. So, we omit the details here.

\[\square \]

4. Examples

In this section, we present an example to check validity of our main results.

Example 4.1. Consider the following boundary value problem on \(T = [0, 1] \)

\[
\varphi(\varpi_j''(t)) + \chi(t)f_j(\varpi_{j+1}(t)) = 0, \quad j = 1, 2, t \in [0, 1],
\]

\[
\varpi_3(t) = \varpi_1(t),
\]

\[
\varpi_j(0) - \varpi_j'(0) = \int_0^1 \frac{1}{2} \varpi_j(\tau) d\tau,
\]

\[
\varpi_j(1) + \varpi_j'(1) = \int_0^1 \frac{1}{2} \varpi_j(\tau) d\tau,
\]

where

\[
\varphi(\varpi) = \begin{cases}
\varpi^3, & \varpi \leq 0, \\
\frac{1}{\varpi^2}, & \varpi > 0,
\end{cases}
\]

\[
\chi(t) = \chi_1(t) \cdot \chi_2(t),
\]

in which

\[
\chi_1(t) = \frac{1}{|t - \frac{1}{4}|}, \quad \chi_2(t) = \frac{1}{|t - \frac{1}{3}|^2},
\]

\[
f_1(\varpi) = f_2(\varpi) = \begin{cases}
0.05 \times 10^{-8}, & \varpi \in (0^{-4}, +\infty), \\
\frac{5604 \times 10^{-(9r+6)} - 0.05 \times 10^{-8r}}{10^{-(4r+3)} - 10^{-4r}} (\varpi - 10^{-4r}), & \varpi \in [10^{-4r}, 10^{-4r}], \\
+0.05 \times 10^{-8r}, & \varpi \in (0.98 \times 10^{-(4r+3)}, 10^{-(4r+3)}), \\
\frac{5604 \times 10^{-(9r+6)} - 0.05 \times 10^{-8r}}{0.98 \times 10^{-(4r+3)} - 10^{-(4r+3)}} (\varpi - 10^{-(4r+3)}), & \varpi \in [10^{-(4r+3)}, 0.98 \times 10^{-(4r+3)}], \\
+0.05 \times 10^{-8r}, & \varpi \in (10^{-(4r+3)}, 0.98 \times 10^{-(4r+3)}).
\end{cases}
\]

Let

\[
t_r = \frac{31}{64} - \sum_{k=1}^{r} \frac{1}{4(k+1)^4}, \quad \delta_r = \frac{1}{2} (t_r + t_{r+1}), \quad \text{for } r = 1, 2, 3, \ldots,
\]

then

\[
\delta_1 = \frac{15}{32} - \frac{1}{648} < \frac{15}{32} \quad \text{and} \quad t_{r+1} < \delta_r < t_r, \quad \delta_r > \frac{1}{5}, \quad \text{for } r = 1, 2, 3, \ldots
\]
Therefore, \(\frac{t}{r} = 3^r > \frac{1}{2}, \ j = 1, 2, 3, \ldots \) It is clear that
\[
t_1 = \frac{15}{32} < \frac{1}{2}, \quad t_r - t_{r+1} = \frac{1}{4(r+2)^4}, \quad r = 1, 2, 3, \ldots
\]
Since \(\sum_{r=1}^{\infty} \frac{1}{x^2} = \frac{x^2}{x^2} \) and \(\sum_{r=1}^{\infty} \frac{1}{x^2} = \frac{a^2}{6} \), it follows that
\[
t^* = \lim_{r \to \infty} t_r = \frac{31}{64} - \sum_{k=1}^{\infty} \frac{1}{4(r+1)^4} = \frac{47}{64} - \frac{\pi^4}{360} = 0.4637941914,
\]
\(\chi_1, \chi_2 \in L^p[0, 1] \) for \(0 < p < 2 \), so \(\delta_1 = \delta_2 = \frac{1}{\sqrt{3}} \).
\[
a(t) = 2 - t, \quad b(t) = 1 + t, \quad d = 3, \quad \mathbb{N}_0(t, \tau) = \frac{1}{3} \left\{ \begin{array}{ll}
(2 - \tau)(1 + t), & t \leq \tau, \\
(2 - t)(1 + \tau), & \tau \leq t,
\end{array} \right.
\]
\[
c_i = \int_0^1 \int_0^1 \mathbb{N}_0(t_1, \tau_2) \kappa_i(t_1) \nabla \tau_1 \chi(t_2) \nabla \tau_2 = 2.774076198,
\]
\[
u_a = u_b = v_a = v_b = \frac{1}{4}, \quad \kappa_1^* = \kappa_2^* = \frac{1}{2}, \quad \kappa_1(\bar{z}_1) = \kappa_2(\bar{z}_1) = 0.06558641976,
\]
\[
\mathcal{L}(ar{z}_1) = \min \left\{ \frac{\alpha \bar{z}_1 + \beta}{\alpha + \beta}, \frac{\gamma \bar{z}_1 + \delta}{\gamma + \delta} \right\} = \frac{1 + \bar{z}_1}{2} = 0.7336033950,
\]
\[
\eta(t) = \frac{(1 - v_b) (1 - u_a) + v_b u_a}{d[(1 - u_a)(1 - v_b) - u_b v_a]} = \frac{7 - 2t}{6}, \quad \eta^* = \frac{7}{6}, \quad \eta(\bar{z}_1) = 1.010931070,
\]
\[
\lambda(t) = \frac{(1 - u_a)(1 - v_b) - u_b v_a}{d[(1 - u_a)(1 - v_b) - u_b v_a]} = \frac{5 - 2t}{6}, \quad \lambda^* = \frac{5}{6}, \quad \lambda(\bar{z}_1) = 0.6775977366,
\]
\[
\Xi = 1 + \eta^* \kappa_1^* + \lambda^* \kappa_2^* = 2,
\]
\[
\Xi_{\bar{z}_1} = \mathcal{L}(\bar{z}_1) \left[1 + \eta(\bar{z}_1) \kappa_1(\bar{z}_1) + \lambda(\bar{z}_1) \kappa_2(\bar{z}_1) \right] = 0.8148459802.
\]
Note that \(\Xi_{\bar{z}_1} \) is increasing, it follows that \(1.969391539 = \Xi_{\bar{z}_1} < \Xi_3 < \Xi_4 = 2 \),
\(0.9846957695 \leq \frac{1}{\sqrt{3}} \leq 2 \) and
\[
\int_{\bar{z}_1}^{1-\bar{z}_1} \mathbb{N}_0(t, \tau) \nabla \tau = \int_{\bar{z}_1}^{1-\bar{z}_1} \mathbb{N}_0(t, \tau) \nabla \tau = \int_{\bar{z}_1}^{1-\bar{z}_1} \mathbb{N}_0(t, \tau) \nabla \tau = \int_{\bar{z}_1}^{1-\bar{z}_1} \frac{(2 - \tau)(1 + \tau)}{3} d\tau = 0.04918197800.
\]
Thus, we get
\[
3 = \max \left\{ \left[\Xi_{\bar{z}_1} \prod_{i=1}^n \delta_i \int_{\bar{z}_1}^{1-\bar{z}_1} \mathbb{N}_0(t, \tau) \nabla \tau \right]^{-1}, 1 \right\} = \max \left\{ 74.85826138, 1 \right\}
\]
\[
= 74.85826138
\]
and
\[
\| \mathbb{N}_0 \|_{L^q_0} = \left[\int_0^1 |\mathbb{N}_0(\tau, \tau)|^q d\tau \right]^{\frac{1}{q}} < 1, \quad \text{for} \ 0 < q < 2.
\]
Next, let \(0 < a < 1 \) be fixed. Then \(\chi_1, \chi_2 \in L^{1+a}[0, 1] \). It follows that
\[
\| \varphi^{-1}(\chi_1) \|_{1+a} = \left[\frac{1}{3-a} \left(\frac{3-a}{\gamma^2} + 1 \right) 2^{1+a} \right]^{\frac{1}{1+a}}
\]
and
\[\| \varphi^{-1}(\chi_2) \|_{1+a} = \left[\frac{4}{3-a} \left(2^{\frac{2-a}{2}} + 1 \right) (1/3)^{\frac{2-a}{4}} \right]^{\frac{1}{1+a}}. \]
So, for \(0 < a < 1 \), we have
\[0.2509961333 \leq \left[\frac{1}{n} \prod_{i=1}^{n} \| \varphi^{-1}(\chi_i) \|_{L^p_i} \right]^{-1} \leq 0.2856331500. \]
Taking \(\mathcal{N}_1 = 0.2 \). In addition, if we take \(\Gamma_r = 10^{-4r} \), \(\Theta_r = 10^{-4r+3} \),
then
\[\Gamma_{r+1} = 10^{-4r+4} < 0.9846957695 \times 10^{-4r+3} < \frac{1}{n} \Theta_r < \Theta_r = 10^{-4r+3} \]
\[< \Gamma_r = 10^{-4r}, \]
\[3\Theta_r = 74.85826138 \times 10^{-4r+3} < 0.2 \times 10^{-4r} = \mathcal{N}_1 \Gamma_r, \quad r = 1, 2, 3, \ldots, \]
and \(f_1, f_2 \) satisfies the following growth conditions:
\[f_1(\varpi) = f_2(\varpi) \leq \varphi(\mathcal{N}_1 \Gamma_r) = \mathcal{N}_1^2 \Gamma_r^2 = 0.04 \times 10^{-8r}, \quad \varpi \in [0, 10^{-4r}] \]
\[f_1(\varpi) = f_2(\varpi) \geq \varphi(3\Theta_r) = 3^2 \Theta_r^2 \]
\[= 5603.759297 \times 10^{-8r+6}, \quad \varpi \in [0.98 \times 10^{-4r+3}, 10^{-4r+3}] \].
Then all the conditions of Theorem 3.4 are satisfied. Therefore, by Theorem 3.4, the iterative boundary value problem (4.1)–(4.2) has denumerably many solutions \(\{(\varpi_1^r, \varpi_2^r)\}_{r=1}^\infty \) such that \(\varpi_j^r(t) \geq 0 \) on \([0, 1]\), \(j = 1, 2 \) and \(r \in \mathbb{N} \).

Acknowledgements. The authors would like to express sincere gratitude to the referee for his careful reading and useful comments.

References

1Department of Applied Mathematics, College of Science and Technology, Andhra University, Visakhapatnam, India-530003
Email address: rajendra92@rediffmail.com

2Department of Applied Mathematics, College of Science and Technology, Andhra University, Visakhapatnam, India-530003
Email address: khuddush89@gmail.com

3Government Degree College for Women, Marripalem, Koyyuru Mandal, Visakhapatnam, India-531116
Email address: vidyavijaya08@gmail.com