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ON WEIGHTED GENERALIZATION OF TRAPEZOID TYPE
INEQUALITIES FOR FUNCTIONS OF TWO VARIABLES WITH

BOUNDED VARIATION

H. BUDAK1 AND M. Z. SARIKAYA1

Abstract. In this paper, we obtain generalized weighted trapezoid inequalities for
functions of two independent variables with bounded variation. We also give some
applications for qubature formulas.

1. Introduction

In 1938, Ostrowski established the following interesting integral inequality for dif-
ferentiable mappings with bounded derivatives [20].

Theorem 1.1. Let f : [a, b]→ R be a differentiable mapping on (a, b) whoose deriv-
ative f ′ : (a, b) → R is bounded on (a, b), i.e., ‖f ′‖∞ := sup

t∈(a,b)
|f ′(t)| < ∞. Then, we

have the inequality

(1.1)

∣∣∣∣∣∣f(x)− 1
b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
1

4 +

(
x− a+b

2

)2

(b− a)2

 (b− a) ‖f ′‖∞ ,

for all x ∈ [a, b]. The constant 1
4 is the best possible.

This inequality is well known in the literature as the Ostrowski inequality.
In 2001, Dragomir [15] obtained following Ostrowski type inequality for functions

of bounded variation.

Key words and phrases. Function of bounded variation, Ostrowski type inequalities, Riemann-
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Theorem 1.2. Let f : [a, b]→ R be a mapping of bounded variation on [a, b] . Then∣∣∣∣∣∣
b∫

a

f(t)dt− (b− a) f(x)

∣∣∣∣∣∣ ≤
[

1
2 (b− a) +

∣∣∣∣∣x− a+ b

2

∣∣∣∣∣
]

b∨
a

(f)

holds for all x ∈ [a, b] . The constant 1
2 is the best possible.

In [21], Tseng et al. gave the following generalization of weighted trapezoidal in-
equality for functions of bounded variation.

Theorem 1.3. Let w : [a, b]→ [0,∞) nonnegative and continuous and h : [a, b]→ R
be differentiable such that h′(t) = w(t) on [a, b]. If f : [a, b] → R be mapping of
bounded variation on [a, b], then∣∣∣∣∣∣

b∫
a

w(t)f(t)dt− [(x− h(a)) f (a) + (h(b)− x) f (b)]

∣∣∣∣∣∣(1.2)

≤

1
2

b∫
a

w(t)dt+
∣∣∣∣∣x− h(a) + h(b)

2

∣∣∣∣∣
 b∨

a

(f),

for all x ∈ [h(a), h(b)]. The constant 1
2 is the best possible.

2. Preliminaries and Lemmas

In 1910, Fréchet [17] has given the following characterization for the double Riemann-
Stieltjes integral. Assume that f(x, y) and g(x, y) are defined over the rectangle
Q = [a, b]× [c, d]; let R be the divided into rectangular subdivisions, or cells, by the
net of straight lines x = xi, y = yi

a = x0 < x1 < ... < xn = b and c = y0 < y1 < ... < ym = d,

let ξi, ηj be any numbers satisfying ξi ∈ [xi−1, xi], ηj ∈ [yj−1, yj], i = 1, 2, ..., n,
j = 1, 2, ...,m and for all i, j let

∆11g(xi, yj) = g(xi−1, yj−1)− g(xi−1, yj)− g(xi, yj−1) + g(xi, yj).

Then if the sum
S =

n∑
i=1

m∑
j=1

f (ξi, ηj) ∆11g(xi, yj)

tends to a finite limit as the norm of the subdivisions approaches zero, the integral
of f with respect to g is said to exist. We call this limit the restricted integral, and
designate it by the symbol

(2.1)
b∫

a

d∫
c

f(x, y)dydxg(x, y).



ON WEIGHTED GENERALIZATION OF TRAPEZOID TYPE INEQUALITIES 111

If in the above formulation S is replaced by the sum

S∗ =
n∑

i=1

m∑
j=1

f (ξij, ηij) ∆11g(xi, yj),

where ξij, ηij are numbers satisfying ξij ∈ [xi−1, xi], ηij ∈ [yj−1, yj] we call the limit,
when it exist, the unrestricted integral, and designate it by the symbol

(2.2) (∗)
b∫

a

d∫
c

f(x, y)dydxg(x, y).

Clearly, the existence of (2.2) implies both the existence of (2.1) and its equality (2.2).
On the other hand, Clarkson [13] has shown that the existence of (2.1) does not imply
the existence of (2.2).

In [12], Clarkson and Adams gave the following definitions of bounded variation for
functions of two variables.

2.1. Definitions. The function f(x, y) is assumed to be defined in rectangle R(a ≤
x ≤ b, c ≤ y ≤ d). By the term net we shall, unless otherwise specified mean a set of
parallels to the axes:

x =xi, i = 0, 1, 2, ...,m, a = x0 < x1 < · · · < xm = b,

y =yj, j = 0, 1, 2, ..., n, c = y0 < y1 < · · · < yn = d.

Each of the smaller rectangles into which R is devided by a net will be called a cell.
We employ the notation

∆11f(xi, yj) = f(xi+1, yj+1)− f(xi+1, yj)− f(xi, yj+1) + f(xi, yj),

∆f(xi, yj) = f(xi+1, yj+1)− f(xi, yj).
The total variation function, φ(x) [ψ(y)], is defined as the total variation of f(x, y)
[f(x, y)] considered as a function of y [x] alone in interval (c, d) [(a, b)],or as +∞ if
f(x, y) [f(x, y)] is of unbounded variation.

Definition 2.1 (Vitali-Lebesque-Fréchet-de la Vallée Poussin). The function f(x, y)
is said tobe of bounded variation if the sum

m−1,n−1∑
i=0,j=0

|∆11f(xi, yj)|

is bounded for all nets.

Definition 2.2 (Fréchet). The function f(x, y) is said tobe of bounded variation if
the sum

m−1,n−1∑
i=0,j=0

εiεj |∆11f(xi, yj)|

is bounded for all nets and all possible choices of εi = ±1 and εj = ±1.
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Definition 2.3 (Hardy-Krause). The function f(x, y) is said tobe of bounded varia-
tion if it satisfies the condition of Definition 2.1 and if in addition f(x, y) is of bounded
variation in y (i.e., φ(x) is finite) for at least one x and f(x, y) is of bounded variation
in y (i.e., ψ(y) is finite) for at least one y.

Definition 2.4 (Arzelà). Let (xi, yi), i = 0, 1, 2, . . . ,m be any set of points satisfiying
the conditions

a =x0 < x1 < · · · < xm = b,

c =y0 < y1 < · · · < ym = d.

Then f(x, y) is said tobe of bounded variation if the sum
m∑

i=1
|∆f(xi, yi)|

is bounded for all such sets of points.

Therefore, one can define the consept of total variation of a function of variables,
as follows.

Let f be of bounded variation on Q = [a, b]× [c, d] and let ∑ (P ) denote the sum
n∑

i=1

m∑
j=1
|∆11f(xi, yj)| corresponding to the partition P of Q. The number

∨
Q

(f) :=
d∨
c

b∨
a

(f) := sup
{∑

(P ) : P ∈ P(Q)
}

is called the total variation of f on Q.
The following lemmas will be used in our main result.

Lemma 2.1 (Integrating by parts). [19, Lemma 2] If f(t, s) is continuous on renct-
angle Q = [a, b] × [c, d] and α(t, s) ∈ BVH(Q), then α(t, s) is integrable with respect
to f(t, s) over Q in the Riemann-Stieltjes sense and

b∫
a

d∫
c

f(t, s)dtdsα(t, s) =
b∫

a

d∫
c

α(t, s)dtdsf(t, s)

−
b∫

a

α(t, d)dtf(t, d) +
b∫

a

α(t, c)dtf(t, c)

−
d∫

c

α(b, s)dsf(b, s) +
d∫

c

α(a, s)dsf(a, s)

+ f(b, d)α(b, d)− f(b, c)α(b, c)− f(a, d)α(a, d)
+ f(a, c)α(a, c).
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Lemma 2.2. [18] Assume that Ω ∈ RS(g) on Q and g is of bounded variation on Q,
then

(2.3)

∣∣∣∣∣∣
d∫

c

b∫
a

Ω(x, y)dxdyg(x, y)

∣∣∣∣∣∣ ≤ sup
(x,y)∈Q

|Ω(x, y)|
∨
Q

(g) .

In [18], authors obtained the following Ostrowski type inequality for functions of
two variables with bounded variation.

Theorem 2.1. If the function f : Q = [a, b]× [c, d]→ R is of bounded variation on
Q, then for all (x, y) ∈ Q we have the inequality

∣∣∣∣∣∣f(x, y)− 1
b− a

b∫
a

f(t, y)dt− 1
d− c

d∫
c

f(x, s)ds+ 1
(b− a)(d− c)

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣
(2.4)

≤

1
2 +

∣∣∣x− a+b
2

∣∣∣
b− a

 1
2 +

∣∣∣y − c+d
2

∣∣∣
d− c

 b∨
a

d∨
c

(f),

where ∨
Q

(f) denotes the total (double) variation of f on Q.

Moreover, authors gave the following trapeozoid inequality for mappings of two
variables with bounded variation.

Theorem 2.2. Let f : Q→→ R be mapping of bounded variation on Q. Then for all
(x, y) ∈ Q, we have inequality∣∣∣∣∣∣f(b, d) + f(b, c) + f(a, d) + f(a, c)

4 − 1
2 (d− c)

 d∫
c

f(a, s)ds+
d∫

c

f(b, s)ds
(2.5)

− 1
2 (b− a)

 b∫
a

f(t, c)dt+
b∫

a

f(t, d)dt
+ 1

(b− a) (d− c)

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣
≤ 1

4

b∨
a

d∨
c

(f).

The constant 1
4 is the best possible. For a simple proof of sharpness of constant see [6].

In [8], Budak and Sarikaya obtained the following generalized trapezoid inequality.

Theorem 2.3. Let f : Q→ R be a mapping of bounded variation on Q. Then for all
(x, y) ∈ Q, we have inequality

|(b− x) (d− y) f(b, d) + (b− x) (y − c) f(b, c)(2.6)

+ (x− a) (d− y) f(a, d) + (x− a) (y − c) f(a, c)
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− (d− y)
b∫

a

f(t, d)dt− (y − c)
b∫

a

f(t, c)dt

− (b− x)
d∫

c

f(b, s)ds− (x− a)
d∫

c

f(a, s)ds +
b∫

a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣
≤

[
1
2 (b− a) +

∣∣∣∣∣x− a+ b

2

∣∣∣∣∣
] [

1
2 (d− c) +

∣∣∣∣∣y − c+ d

2

∣∣∣∣∣
]

b∨
a

d∨
c

(f),

where
b∨
a

d∨
c

(f) denotes he total variation of f on Q.

For more information and recent developments on inequalities for mappings of
bounded variation, please refer to [1–11,14–16,18,21–26].

The aim of this paper is to establish weighted generalization of trapezoid inequality
for functions of two independent variables with bounded variation.

3. Main Results

Let w1 : [a, b] → [0,∞) continuous and nonnegative on (a, b) and h1 : [a, b] → R
be differentiable such that h′1(t) = w1(t) on [a, b]. Similarly, let w2 : [c, d] → [0,∞)
continuous and positive on (c, d) and h2 : [c, d] → R be differentiable such that
h′2(t) = w2(t) on [c, d].

Theorem 3.1. If f : [a, b]× [c, d]→ R is a mapping of bounded variation on [a, b]×
[c, d], then we have the following inequality for all (x, y) ∈ [h1(a), h1(b)]× [h2(c), h2(d)]

|(h1(b)− x) (h2(d)− y) f(b, d) + (h1(b)− x) (y − h2(c)) f(b, c)(3.1)
+ (x− h1(a)) (h2(d)− y) f(a, d) + (x− h1(a)) (y − h2(c)) f(a, c)

− (h2(d)− y)
b∫

a

w1(t)f(t, d)dt− (y − h2(c))
b∫

a

w1(t)f(t, c)dt

− (h1(b)− x)
d∫

c

w2(s)f(b, s)ds− (x− h1(a))
d∫

c

w2(s)f(a, s)ds

+
b∫

a

d∫
c

w1(t)w2(s)f(t, s)dsdt

∣∣∣∣∣∣
≤

1
2

b∫
a

w1(t)dt+
∣∣∣∣∣x− h1(a) + h1(b)

2

∣∣∣∣∣


×

1
2

d∫
c

w2(t)dt+
∣∣∣∣∣y − h2(c) + h2(d)

2

∣∣∣∣∣
 b∨

a

d∨
c

(f) ,
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where
b∨
a

d∨
c

(f) denotes the total variation of f on interval [a, b]× [c, d].

Proof. For (x, y) ∈ [h1(a), h1(b)]× [h2(c), h2(d)], using integration by parts, we have
b∫

a

d∫
c

(x− h1(t)) (y − h2(s)) dtdsf(t, s)(3.2)

= (h1(b)− x) (h2(d)− y) f(b, d) + (h1(b)− x) (y − h2(c)) f(b, c)
+ (x− h1(a)) (h2(d)− y) f(a, d) + (x− h1(a)) (y − h2(c)) f(a, c)

− (h2(d)− y)
b∫

a

w1(t)f(t, d)dt− (y − h2(c))
b∫

a

w1(t)f(t, c)dt

− (h1(b)− x)
d∫

c

w2(s)f(b, s)ds− (x− h1(a))
d∫

c

w2(s)f(a, s)ds

+
b∫

a

d∫
c

w1(t)w2(s)f(t, s)dsdt.

Taking modulus (3.2) and using Lemma 2.2, we get
|(h1(b)− x) (h2(d)− y) f(b, d) + (h1(b)− x) (y − h2(c)) f(b, c)
+ (x− h1(a)) (h2(d)− y) f(a, d) + (x− h1(a)) (y − h2(c)) f(a, c)

− (h2(d)− y)
b∫

a

w1(t)f(t, d)dt− (y − h2(c))
b∫

a

w1(t)f(t, c)dt

− (h1(b)− x)
d∫

c

w2(s)f(b, s)ds− (x− h1(a))
d∫

c

w2(s)f(a, s)ds

+
b∫

a

d∫
c

w1(t)w2(s)f(t, s)dsdt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
b∫

a

d∫
c

(x− h1(t)) (y − h2(s)) dtdsf(t, s)

∣∣∣∣∣∣
≤ sup

t∈[a,b]
|x− h1(t)| sup

s∈[c,d]
|y − h2(s)|

b∨
a

d∨
c

(f) .

Since x − h1(t) is decreasing on [a, b] , h1(a) ≤ x ≤ h1(b), and h′1(t) = w1(t) on
[a, b], we have

sup
t∈[a,b]

|x− h1(t)| = max {x− h1(a), h1(b)− x}(3.3)

=h1(a) + h1(b)
2 +

∣∣∣∣∣x− h1(a) + h1(b)
2

∣∣∣∣∣
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=1
2

b∫
a

w1(t)dt+
∣∣∣∣∣x− h1(a) + h1(b)

2

∣∣∣∣∣ .
Similarly, we have

sup
s∈[c,d]

|y − h2(s)| = 1
2

d∫
c

w2(t)dt+
∣∣∣∣∣y − h2(c) + h2(d)

2

∣∣∣∣∣ .
This completes the proof. �

Remark 3.1. If we choose w1(t) ≡ 1, h1(t) = t on [a, b] and w2(s) = 1, h2(s) = s on
[c, d] in Theorem 3.1, then the inequality (3.1) reduces the inequality (2.6).

Corollary 3.1 (Weighted trapeozoid). Under the assumption of Theorem 3.1 with
x = h1(a)+h1(b)

2 and y = h2(c)+h2(d)
2 , then we have the following weighted trapeozoid

inequality ∣∣∣∣∣∣
 b∫

a

w1(t)dt
 d∫

c

w2(t)dt
 f(b, d) + f(b, c) + f(a, d) + f(a, c)

4(3.4)

−

 d∫
c

w2(t)dt
 b∫

a

w1(t)f(t, d)dt+
b∫

a

w1(t)f(t, c)dt


−

 b∫
a

w1(t)dt
 d∫

c

w2(s)f(b, s)ds+
d∫

c

w2(s)f(a, s)ds


+
b∫

a

d∫
c

w1(t)w2(s)f(t, s)dsdt

∣∣∣∣∣∣
≤1

4

 b∫
a

w1(t)dt
 d∫

c

w2(t)dt
 b∨

a

d∨
c

(f) .

The constant 1
4 is the best possible.

Remark 3.2. If we choose w1(t) ≡ 1, h1(t) = t on [a, b] and w2(s) = 1, h2(s) = s on
[c, d] in Corollary 3.1, then the inequality (3.4) reduces the inequality (2.5).

Corollary 3.2 (Weighted left rectangle inequality). Under the assumption of Theorem
3.1 with x = h1(b) and y = h2(d), then we have the following weighted left rectangle
inequality ∣∣∣∣∣∣

 b∫
a

w1(t)dt
 d∫

c

w2(t)dt
 f(a, c)−

 d∫
c

w2(t)dt
 b∫

a

w1(t)f(t, c)dt(3.5)

−

 b∫
a

w1(t)dt
 d∫

c

w2(s)f(a, s)ds+
b∫

a

d∫
c

w1(t)w2(s)f(t, s)dsdt

∣∣∣∣∣∣
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≤

 b∫
a

w1(t)dt
 d∫

c

w2(t)dt
 b∨

a

d∨
c

(f) .

Remark 3.3. If we choose w1(t) ≡ 1, h1(t) = t on [a, b] and w2(s) = 1, h2(s) = s on
[c, d] in Corollary 3.2, then Corollary 3.2 reduces the Remark 1.a in [5].

Corollary 3.3 (Weighted right rectangle inequality). Under the assumption of The-
orem 3.1 with x = h1(a) and y = h2(c), then we have the following weighted right
rectangle inequality∣∣∣∣∣∣

 b∫
a

w1(t)dt
 d∫

c

w2(t)dt
 f(b, d)−

 d∫
c

w2(t)dt
 b∫

a

w1(t)f(t, d)dt

−

 b∫
a

w1(t)dt
 d∫

c

w2(s)f(b, s)ds+
b∫

a

d∫
c

w1(t)w2(s)f(t, s)dsdt

∣∣∣∣∣∣
≤

 b∫
a

w1(t)dt
 d∫

c

w2(t)dt
 b∨

a

d∨
c

(f) .

Remark 3.4. If we choose w1(t) ≡ 1, h1(t) = t on [a, b] and w2(s) = 1, h2(s) = s on
[c, d] in Corollary 3.3, then Corollary 3.3 reduces the Remark 1.b in [5].

4. Application to a Cubature Rule

Let us consider the arbitrary division In : a = x0 < x1 < · · · < xn = b, and
Jm : c = y0 < y1 < · · · < ym = d with li1 := xi+1 − xi and lj2 := yj+1 − yj, and let

υ(l1) := max
{
li1 | i = 0, . . . , n− 1

}
,

υ(l2) := max
{
lj2 | j = 0, . . . ,m− 1

}
,

υ(W1) := max
{
W i

1 | i = 0, . . . , n− 1
}
, W i

1 :=
xi+1∫
xi

w1(u)du = h1(xi+1)− h1(xi)

and

υ(W2) := max
{
W j

2 | j = 0, . . . ,m− 1
}
, W j

2 :=
yj+1∫
yj

w2(u)du = h2(yj+1)− h2(yj).

Let us have w1, h1, w2 and h2 defined as in Theorem 3.1 and let ξi ∈ [h1(xi), h1(xi+1)],
i = 0, . . . , n− 1 and ηj ∈ [h2(yj), h2(yj+1)], j = 0, . . . ,m− 1.

Define the sum
A(f, w1, h1, w2, h2, In, Jm, ξ, η)(4.1)

:=
m−1∑
j=0

(h2(yj+1)− ηj)
b∫

a

w1(t)f(t, yj+1)dt+
m−1∑
j=0

(ηj − h2(yj))
b∫

a

w1(t)f(t, yj)dt
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+
n−1∑
i=0

(h1(xi+1)− ξi)
d∫

c

w2(s)f(xi+1, s)ds+
n−1∑
i=0

(ξi − h1(xi))
d∫

c

w2(s)f(xi, s)ds

−
n−1∑
i=0

m−1∑
j=0

(h1(xi+1)− ξi) (h2(yj+1)− ηj) f(xi+1, yj+1)

−
n−1∑
i=0

m−1∑
j=0

(h1(xi+1)− ξi) (ηj − h2(yj)) f(xi+1, yj)

−
n−1∑
i=0

m−1∑
j=0

(ξi − h1(xi)) (h2(yj+1)− ηj) f(xi, yj+1)

−
n−1∑
i=0

m−1∑
j=0

(ξi − h1(xi)) (ηj − h2(yj)) f(xi, yj).

Theorem 4.1. Let f defined as in Theorem 3.1 and let
b∫

a

d∫
c

w1(t)w2(s)f(t, s)dsdt

=A(f, w1, h1, w2, h2, In, Jm, ξ, η) +R(f, w1, h1, w2, h2, In, Jm, ξ, η),

where the remainder term R(f, w1, h1, w2, h2, In, Jm, ξ, η) satisfies

|R(f, w1, h1, w2, h2, In, Jm, ξ, η)|(4.2)

≤
[

1
2υ(W1) + max

0≤i≤n

∣∣∣∣∣ξi −
h1(xi) + h1(xi+1)

2

∣∣∣∣∣
]

×
[

1
2υ(W2) + max

0≤j≤m

∣∣∣∣∣ηj −
h2(yj) + h2(yj+1)

2

∣∣∣∣∣
]

b∨
a

d∨
c

(f)

≤υ(W1)υ(W2)
b∨
a

d∨
c

(f) .

Proof. Appliying Theorem 3.1 to the bidimentional interval [xi, xi+1]× [yj, yj+1], we
have

|(h1(xi+1)− ξi) (h2(yj+1)− ηj) f(xi+1, yj+1)(4.3)
+ (h1(xi+1)− ξi) (ηj − h2(yj)) f(xi+1, yj)
+ (ξi − h1(xi)) (h2(yj+1)− ηj) f(xi, yj+1)
+ (ξi − h1(xi)) (ηj − h2(yj)) f(xi, yj)

− (h2(yj+1)− ηj)
xi+1∫
xi

w1(t)f(t, yj+1)dt− (ηj − h2(yj))
xi+1∫
xi

w1(t)f(t, yj+1)dt
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− (h1(xi+1)− ξi)
yj+1∫
yj

w2(s)f(xi+1, s)ds− (ξi − h1(xi))
yj+1∫
yj

w2(s)f(xi, s)ds

+
xi+1∫
xi

yj+1∫
yj

f(t, s)dsdt

∣∣∣∣∣∣∣
≤
[

1
2W

i
1 +

∣∣∣∣∣ξi −
h1(xi) + h1(xi+1)

2

∣∣∣∣∣
]

×
[

1
2W

j
2 +

∣∣∣∣∣ηj −
h2(yj) + h2(yj+1)

2

∣∣∣∣∣
] xi+1∨

xi

yj+1∨
yj

(f) ,

for any ξi ∈ [h1(xi), h1(xi+1)], i = 0, . . . , n − 1 and ηj ∈ [h2(yj), h2(yj+1)],
j = 0, . . . ,m− 1.

Summing the inequality (4.3) over i from 0 to n − 1 and j from 0 to m − 1 and
using the generalized triangle inequality, we get

|R(f, w1, h1, w2, h2, In, Jm, ξ, η)|(4.4)

≤
n−1∑
i=0

m−1∑
j=0

[
1
2W

i
1 +

∣∣∣∣∣ξi −
h1(xi) + h1(xi+1)

2

∣∣∣∣∣
]

×
[

1
2W

j
2 +

∣∣∣∣∣ηj −
h2(yj) + h2(yj+1)

2

∣∣∣∣∣
] xi+1∨

xi

yj+1∨
yj

(f)

≤ max
0≤i≤n

[
1
2W

i
1 +

∣∣∣∣∣ξi −
h1(xi) + h1(xi+1)

2

∣∣∣∣∣
]

× max
0≤j≤m

[
1
2W

j
2 +

∣∣∣∣∣ηj −
h2(yj) + h2(yj+1)

2

∣∣∣∣∣
]

n−1∑
i=0

m−1∑
j=0

xi+1∨
xi

yj+1∨
yj

(f) ,

which finishes the proof of the first inequality in (4.2).
In the last inequality in (4.4), we have∣∣∣∣∣h1(ξi)−

h1(xi) + h1(xi+1)
2

∣∣∣∣∣ ≤ 1
2W

i
1, i = 0, 1, . . . , n− 1,

and so,

max
i=0,...,n−1

∣∣∣∣∣h1(ξi)−
h1(xi) + h1(xi+1)

2

∣∣∣∣∣ ≤ 1
2υ(W1).

Similarly, we get

max
j=0,...,m−1

∣∣∣∣∣h2(ηj)−
h2(yj) + h2(yj+1)

2

∣∣∣∣∣ ≤ 1
2υ(W2).

The proof of the theorem is completely completed. �

Remark 4.1. If we choose w1(t) ≡ 1, h1(t) = t on [a, b] and w2(s) ≡ 1, h2(s) = s on
[c, d] in Theorem 4.1, then the inequalities (4.2) reduce to the inequalities (4.2) in [8].
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Corollary 4.1. Under the assumption of Theorem 4.1 with ξi = h1(xi+1) and ηj =
h2(yj+1), we get

b∫
a

d∫
c

w1(t)w2(s)f(t, s)dsdt = AL(f, w1, h1, w2, h2, In, Jm)+RL(f, w1, h1, w2, h2, In, Jm),

where AL(f, w1, h1, w2, h2, In, Jm) is built from the weighted left rectangle rule

AL(f, w1, h1, w2, h2, In, Jm)

=
m−1∑
j=0

W i
2

b∫
a

w1(t)f(t, yj)dt+
n−1∑
i=0

W i
1

d∫
c

w2(s)f(xi, s)ds

−
n−1∑
i=0

m−1∑
j=0

f(xi, yj)W i
1W

j
2

and remainder term RL(f, w1, h1, w2, h2, In, Jm) satisfies

|RL(f, w1, h1, w2, h2, In, Jm)| ≤ υ(W1)υ(W2)
b∨
a

d∨
c

(f).

Corollary 4.2. Under the assumption of Theorem 4.1 with ξi = h1(xi) and ηj =
h2(yj), we have
b∫

a

d∫
c

w1(t)w2(s)f(t, s)dsdt = AR(f, w1, h1, w2, h2, In, Jm)+RR(f, w1, h1, w2, h2, In, Jm),

where AR(f, w1, h1, w2, h2, In, Jm) is constructed from the weighted right rectangle rule

AR(f, w1, h1, w2, h2, In, Jm)

=
m−1∑
j=0

W i
2

b∫
a

w1(t)f(t, yj+1)dt+
n−1∑
i=0

W i
1

d∫
c

w2(s)f(xi+1, s)ds

−
n−1∑
i=0

m−1∑
j=0

f(xi+1, yj+1)W i
1W

j
2

and remainder term satisfies

|RL(f, w1, h1, w2, h2, In, Jm)| ≤ υ(W1)υ(W2)
b∨
a

d∨
c

(f).

Corollary 4.3. Under the assumption of Theorem 4.1 with ξi = h1(xi)+h1(xi+1)
2 and

ηj = h2(yj)+h2(yj+1)
2 then

b∫
a

d∫
c

w1(t)w2(s)f(t, s)dsdt = AT (f, w1, h1, w2, h2, In, Jm)+RT (f, w1, h1, w2, h2, In, Jm),
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where AT (f, w1, h1, w2, h2, In, Jm) is constructed from the weighted trapezoid rule
AT (f, w1, h1, w2, h2, In, Jm)

=1
2

m−1∑
j=0

W i
2

b∫
a

w1(t) [f(t, yj) + f(t, yj+1)] dt

+ 1
2

n−1∑
i=0

W i
1

d∫
c

w2(s) [f(xi, s) + f(xi+1, s)] ds

− 1
4

n−1∑
i=0

m−1∑
j=0

[f(xi+1, yj+1) + f(xi+1, yj) + f(xi, yj+1) + f(xi, yj)]W i
1W

j
2

and remainder term satisfies

|RT (f, w1, h1, w2, h2, In, Jm)| ≤ 1
4υ(W1)υ(W2)

b∨
a

d∨
c

(f).

The constant 1
4 is the best possible.
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