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THE SOLVABILITY OF p-KIRCHHOFF TYPE PROBLEMS WITH
CRITICAL EXPONENT

HAYAT BENCHIRA1, ATIKA MATALLAH12, ABBES BENAISSA1, SVETLIN G. GEORGIEV2,
AND KHALED ZENNIR3

Abstract. The article aims to study new and current problems in the theory
of nonclassical partial differential equations and their applications, proving the
existence and nonexistence of solutions to p-Kirchhoff type problems with critical
exponent of Sobolev in Rn, which are of great interest in the study of mathematical
physics equations. We show the existence of a local minimizer with negative/positive
energy by using variational methods. More precisely, we considered a minimization
of Eλ constrained in a neighborhood of zero using the Ekeland variational principle,
then we found the first critical point of Eλ which achieves the local minimum of Eλ

whose level is negative; next around the zero point, using the mountain pass theorem,
we also obtained a critical point whose level is positive. In addition, we studied the
case of λ = 0, where there is no non-trivial solution using the contradiction principle.
We also established infinite solutions and discuss the different cases.

1. Introduction and Position of Problem

In Rn, we are concerned with the following problem

(1.1) −
(

a
(∫

Rn
|∇u|p dx

)θ−1
+ b

)
div

(
|∇u|p−2 ∇u

)
= |u|p∗−2u + λf (x) ,

where 1 < p < n, 0 ≤ a, b, 0 < a + b, θ > 1, λ is a parameter, p∗ = pn/ (n − p) is the
critical Sobolev exponent and f ∈ W ∗\ {0} . Here, W ∗ is the dual space of W 1,p(Rn).
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Since equation (1.1) contains an integral over Rn, it is no longer a point-wise identity.
Therefore, it is often called a nonlocal problem. It is also called non-degenerate if
0 < b and a ≥ 0, while it is degenerate if b = 0 and 0 < a.

The non-local elliptic problem (1.1) is related to the original Kirchhoff equation in
[1] which was first introduced by Kirchhoff as an extension of the classical D’Alembert
wave equation for free vibrations of elastic strings. Kirchhoff’s model takes into
account the changes in length of the strings produced by transverse vibrations.

Problems involving non-local operators have been widely studied due to their numer-
ous and relevant applications in various fields of science. In particular, Kirchhoff-type
problems proved to be valuable tools for modeling several physical and biological
phenomena, and many works have been made to ensure the existence of solutions for
such problems. We quote in particular the article of Lions [2]. Since this famous paper,
very fruitful developments are given rise to many works in this promising direction,
and in most of them, with most relying on topological methods. However, only a few
improvements have been made concerning the multiplicity of solutions. In this regard,
the variational approach was sought instead of topological methods to solve these
kinds of problems and also to prove the existence of multiple solutions (see [3, 4]).

In the last few years, great attention has been paid to the study of Kirchhoff
problems involving critical nonlinearities. This problem creates many difficulties in
applying variational methods. It is worth mentioning that the semilinear Laplace
equation of elliptic type involving the the critical Sobolev exponent was investigated
in the crucial paper of Brézis and Nirenberg [5]. After that, many researchers have
dedicated themselves to the study of several kinds of elliptic equations with a critical
exponent in a bounded domain or in the whole space. For p = 2 and a = 0, Tarantello
[6] treated the problem (1.1) in a bounded domain of Rn and proved the existence of
at least two solutions using Nehari manifold methods. The first work on the Kirchhoff-
type problem with the critical Sobolev exponent was by Alves, Corrêa and Figueiredo
in [7]. Naimen in [8] showed a Brézis-Nirenberg type result for the Kirchhoff problem
in a bounded domain. In [9], He et al. considered the following problem

−
(

a
∫
Rn

|∇u|p dx + b
)

div
(
|∇u|p−2 ∇u

)
= f (u) + h in Ω,

u = 0 on ∂Ω,

where Ω ⊂ R3 is a bounded domain, 0 ≤ h ∈ L2 (Ω) and f ∈ C (R,R). They obtained
the existence of at least one or two positive solutions using the monotonicity technique
and the non-existence criterion by using the corresponding Pohožaev identity. Also,
they showed nonexistence properties for the 3-sublinear case and the critical case.
Under general assumptions on the nonlinearity, they also established the existence
result for the whole space R3 by using the properties of the Pohožaev identity and
some delicate analysis.
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In [10], Miyagaki et al. obtained the existence of infinitely many solutions for the
following problem

− (a
∫
Rn |∇u|p dx + b) div

(
|∇u|p−2 ∇u

)
= λg (x, u) + µ|u|p∗−2u, in Rn,

where λ > 0, 0 < µ < µ∗, with µ∗ a positive constant, n ≥ 2p and g (x, u) satisfies
certain subcritical growth conditions.

Ke et al. in [11] considered the problem (1.1) with θ = 2 and f ∈ L
p∗

p∗−1 (Rn) .
They obtained the existence of infinitely many solutions for problem (1.1) and the
multiplicity of solutions for the non-degenerate case (0 < b) with p∗ = 2p and 0 <
a < S−2 and the degenerate case (b = 0) with p∗ > 2p and 0 < a.

Recently, Benaissa et al. in [12] discussed the problem (Pλ) with θ = 2. When
p∗ > 2p, the authors showed the existence of λ∗ > 0 such that for 0 < λ < λ∗ (1.1)
has at least two solutions in a particular dimension n = 3p/2.

The main results in the present paper can be considered as an extension of the work
of [11] and [12] for a more general non-local problem (degenerate or non-degenerate
problem) with a large range of n.

To our knowledge, many of the results are new for p > 1 and even in the case θ = 2.
Our results and setting are more general and delicate; it is not difficult to obtain the
second solution in the degenerate case where θ < p∗

p
.

In the case where a = λ = 0, b = 1 and 1 < p < n, our main problem can be
reduced to the following problem
(1.2) −div (|∇u|p−2∇u) = |u|p∗−2u, in Rn.

Sciunzi in [13] provided that if u is a positive solution of (1.2) then u (x) = vε,x0 (x)
where

(1.3) vε,x0 (x) :=

 ε
1

p−1 n
1
p

(
n−p
p−1

) p−1
p

ε
p

p−1 + |x − x0|
p

p−1


n−p

p

, ε > 0, x0 ∈ Rn.

Consequently,

S := inf
u∈W 1,p(Rn)\{0}

∥u∥p(∫
Rn |u|p∗

dx
)p/p∗

satisfies

(1.4) ∥vε,x0∥p =
∫
Rn

|vε,x0|p
∗

dx = S
p∗

p∗−p .

For more details, see [14].
This paper is composed of four sections in addition to the introduction and the

conclusion with discussion. In Section 2, we give some abstract conditions when
the functional Eλ satisfies the Palais Smale condition, so to overcome the lack of
compactness, we need to determine a good level of the Palais Smale condition. We
state and prove our first main contribution results regarding the existence of local



1448 H. BENCHIRA, A. MATALLAH, A. BENAISSA, S. G. GEORGIEV, AND KH. ZENNIR

minimizer with negative/positive energy (Theorem 3.1 and Theorem 3.2) in Section
3, by using variational methods. More precisely, we consider a minimization of Eλ

constrained in a neighborhood of zero using the Ekeland variational principle (see
[15]). Then we can find the first critical point of Eλ that reaches the local minimum
of Eλ whose level is negative, next around the zero point, using the mountain pass
theorem (see [16]). We also obtain a critical point whose level is positive. The proof
of the second results (Theorem 4.1 and Theorem 4.2) is given and proved in Section 4,
where we study the case of λ = 0.

2. Preliminaries and Tools

In this section, we state several preliminary results needed.
First, we make use of the following assumptions:
(H0) 1 < θ < p∗

p
, 0 < a and 0 < b;

(H1) 1 < θ < p∗

p
, a ≥ 0, 0 ≤ b and a + 0 < b;

(H2) θ = p∗

p
, a ≥ 0 and 0 < b;

(H3) θ = p∗

p
, 0 ≤ a < S−θ and 0 < b;

(H4) θ = p∗

p
, a > S−θ and b = 0;

(H5) θ = p∗

p
, a ≥ S−θ and 0 < b;

(H6) θ = p∗

p
, 0 < a and b = 0;

(H7) θ > p∗

p
, 0 < a and b = b∗, where

b∗ = θp − p∗

(θ − 1) p

(
(θ − 1) p

p∗ − p
a

)− p∗−p
θp−p∗

S− (θ−1)p∗
θp−p∗ ;

(H8) p∗

p
< θ, 0 < a and b > b∗;

(H9) θ > p∗

p
, 0 < a and b < b∗.

The Sobolev space W 1,p(Rn) is the space of measurable functions u : Rn → Rn such
that u and the distributional gradient ∇u = (∂1u, . . . , ∂nu) are in Łp(Rn).

Definition 2.1. Let c ∈ R. A sequence (un) ⊂ W 1,p(Rn) is a Palais Smale sequence
at level c, so called (PS)c sequence, if

Eλ (un) → c and E ′
λ (un) → 0.

Here, Eλ verifies the (PS)c condition at level c if any (PS)c sequence has a convergent
subsequence in W 1,p(Rn).

Lemma 2.1. Suppose that f ∈ W ∗\ {0} and assume that (H1) or (H2) holds. Let
c ∈ R and (un) ⊂ W 1,p(Rn) be a (PS)c sequence for Eλ. Then,

un ⇀ u, in W 1,p(Rn),

for some u ∈ W 1,p(Rn) with E ′
λ (u) = 0.
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Proof. We have
Eλ (un) → c and E ′

λ (un) → 0.

Then,
c + on (1) = Eλ (un) and on (1) ∥v∥ = ⟨E ′

λ (un) , v⟩ ,

for all v ∈ W 1,p(Rn), where on (1) denotes any quantity that tends to zero as n → +∞.
Since n → +∞, we have

c + on (1) − 1
p∗ on (1) ∥un∥ =Eλ (un) − 1

p∗ ⟨E ′
λ (un) , un⟩

=a
p∗ − θp

θpp∗ ∥un∥θp + b
p∗ − p

pp∗ ∥un∥p−λ
p∗ − 1

p∗

∫
Rn

f (x) undx

≥a
p∗ − θp

θpp∗ ∥un∥θp + b
p∗ − p

pp∗ ∥un∥p − λ
p∗ − 1

p∗ ∥f∥W ∗ ∥un∥ ,

that is, (un) is bounded in W 1,p(Rn) if (H1) or (H2) holds. Up to a subsequence if
necessary, there exists a function u ∈ W 1,p(Rn) such that un ⇀ u in W 1,p(Rn) and
in Lp∗ (Rn) , un → u a.e. in Rn, and

∫
Rn f (x) undx →

∫
Rn f (x) udx. Then,

⟨E ′
λ (un) , v⟩ = 0, for all v ∈ C∞

0 (Rn) .

Thus, E ′
λ (u) = 0. This completes the proof. □

In order to introduce the local Palais Smale condition, we must state the following
lemma, which can be considered a key step in obtaining a solution with positive energy
(a mountain pass-type solution).

Lemma 2.2. Let θ > 1, 0 ≤ a, b, 0 < a + b, σ ≥ 0 and x̃ =
(

σ
a
S−θ

) 1
1−σ for σ ̸= 1.

For x ≥ 0, let us consider the function Ψ : R+ → R∗, where
Ψ (x) = S−1xσ − aSθ−1x − b.

Then, the following hold.
(1) If σ = 1, S−θ > a ≥ 0 and 0 < b, then the equation Ψ (x) = 0 has a unique

positive solution such that
x1 = b

(S−θ − a) Sθ−1 ,

and Ψ (x) ≥ 0 for all x ≥ x1.
(2) If σ > 1, the equation Ψ (x) = 0 has a unique positive solution x2 > x̃

and Ψ (x) ≥ 0 for all x ≥ x2.
(3) If σ < 1, then we have the following cases.
i) If Ψ (x̃) < 0, then we have Ψ (x) ̸= 0 for all x ≥ 0.
ii) If Ψ (x̃) = 0, then we have

b = S−1 (1 − σ)
(

σ

a
S−θ

) σ
1−σ

,

and Ψ (x) ̸= 0 for all x ̸= x̃.
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iii) If Ψ (x̃) > 0, then we have

b < S−1 (1 − σ)
(

σ

a
S−θ

) σ
1−σ

,

and Ψ (x) = 0 for two different points.

Proof. (1) For σ = 1, S−θ > a ≥ 0 and 0 < b, we have

Ψ (x) = Sθ−1
(
S−θ − a

)
x − b.

That is, equation Ψ (x) = 0 has a unique positive solution

x1 = b

(S−θ − a) Sθ−1 ,

and Ψ (x) ≥ 0 for all x ≥ x1.
(2) For σ > 1, we have Ψ′ (x) = σS−1xσ−1 − aSθ−1 and

Ψ′′ (x) = σ (σ − 1) S−1xσ−2 > 0, for all x > 0.

Then, Ψ′ (x̃) = 0, Ψ′ (x) < 0 for y < x̃ and Ψ′ (y) > 0 for x > x̃. Hence, Ψ is a concave
function and

(2.1) min
x≥0

Ψ (x) = Ψ (x̃) = − (σ − 1) S−1
(

a

σ
Sθ
) σ

σ−1
< 0.

Moreover, we have Ψ (x̃) < 0 and lim
x→+∞

Ψ (x) = +∞. Thus, from (2.1) and the
concavity of Ψ, we can conclude that the equation Ψ (x) = 0 has a unique positive
solution x2 > x̃ and Ψ (x) ≥ 0 for all x ≥ x2.

(3) For σ < 1, we have Ψ′ (x̃) = 0, Ψ is increasing for 0 < x < x̃ and Ψ is decreasing
when x > x̃. Moreover, from Ψ (0) = −b < 0, we obtain i), ii) and iii). □

3. Existence of Local Minimizer with Negative/Positive Energy

3.1. With negative energy.

Definition 3.1. We say that u ∈ W 1,p(Rn)\ {0} is a weak solution of equation (1.1)
if (

a ∥u∥(θ−1)p + b
) ∫

Rn
|∇u|p−2∇vdx −

∫
Rn

(
|u|p∗−2u − λf (x)

)
vdx = 0,

for any v ∈ W 1,p(Rn).

Next, we define the energy functional.

Eλ(u) = a

θp
∥u∥θp + b

p
∥u∥p − 1

p∗

∫
Rn

|u|p∗
dx − λ

∫
Rn

f (x) udx,

associated to problem (1.1), for all u ∈ W 1,p(Rn).
Notice that the functional Eλ is well defined in W 1,p(Rn), and belongs to

C1
(
W 1,p(Rn),R

)
,
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and a critical point of Eλ is a weak solution of the problem (1.1). When λ > 0, we
have the following result.

Theorem 3.1. Suppose that f ∈ W ∗\ {0} and assume (H1) or (H2) holds. Then,
there exist constants λ− > 0 such that for any λ ∈ (0, λ−) problem (1.1) has a solution
u− with negative energy.

Remark 3.1. If θ > p∗

p
, a ≥ 0, 0 ≤ b and 0 < a + b or θ = p∗

p
, a = S−θ and 0 < b or

θ = p∗

p
, a > S−θ and 0 ≤ b, then for any λ > 0, we can easily show the existence of

one solution which is a ground state solution.

Using the Ekeland variational principle, we now provide the proof of our first main
result stated in Theorem 3.1.

Proof of Theorem 3.1. Let u ∈ W 1,p(Rn)\ {0} , 0 < b, a ≥ 0 and θ ≤ p∗

p
. By applying

Hölder’s and Sobolev inequalities, we have

Eλ(u) = a

θp
∥u∥θp + b

p
∥u∥p − 1

p∗

∫
Rn

|u|p∗
dx − λ

∫
Rn

f (x) udx

≥ b

p
∥u∥p + a

θp
∥u∥θp − S−p∗/p

p∗ ∥u∥p∗
− λ ∥f∥W ∗ ∥u∥ .

Now, we divide the proof into two cases.
Firstly, assume 0 < b and a ≥ 0. If (H1) or (H2) holds, we get

Eλ(u) ≥ b

p
∥u∥p − S−p∗/p

p∗ ∥u∥p∗
−
(

b

2

)−1
p

λ ∥f∥W ∗

(
b

2

) 1
p

∥u∥ .

It follows from the inequality Xx ≤ Xq

q
+ xq′

q′ for any X, x ≥ 0 and q, q′ > 0, with
1
q

+ 1
q′ = 1, that

Eλ(u) ≥ b

p
∥u∥p − S−p∗/p

p∗ ∥u∥p∗
− p − 1

p

( b

2

)−1
p

λ ∥f∥W ∗


p

p−1

− 1
p

( b

2

) 1
p

∥u∥

p

≥ b

2p
∥u∥p − S−p∗/p

p∗ ∥u∥p∗
− p − 1

p

( b

2

)−1
p

λ ∥f∥W ∗


p

p−1

.

For ρ ≥ 0, let us consider the function h1 ∈ C(R+,R∗), given by

h1 (ρ) = b

2p
ρp − S−p∗/p

p∗ ρp∗
.

The direct calculation shows that

max
ρ≥0

h1 (ρ) = h1 (ρ1) = p∗ − p

pp∗ S
p∗

p∗−p

(
b

2

) p∗
p∗−p

, with ρ1 =
[

b

2Sp∗/p

] 1
p∗−p

,
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and h1 (ρ) ≥ 0 for all ρ ∈ Bρ1 (0) . Consequently,

(3.1) Eλ (u)|Bρ1(0) ≥ −p − 1
p

( b

2

)−1
p

λ ∥f∥W ∗


p

p−1

.

Moreover, for ∥u∥ = ρ1 we have

Eλ(u) ≥ h1 (ρ1) − p − 1
p

( b

2

)−1
p

λ ∥f∥W ∗


p

p−1

≥ 1
p

h1 (ρ1) + p − 1
p

h1 (ρ1) − p − 1
p

( b

2

)−1
p

λ ∥f∥W ∗


p

p−1

≥ 1
p

h1 (ρ1)

= δ1,

for all λ ∈ (0, λ1), with

λ1 =
(

p∗ − p

pp∗ S
p∗

p∗−p

) p−1
p

∥f∥−1
W ∗

(
b

2

) p∗−1
p∗−p

.

We turn to the case where 0 < a and 0 ≤ b. If (H1) holds, we obtain

Eλ(u) ≥ a

θp
∥u∥θp − S−p∗/p

p∗ ∥u∥p∗
−
((

a

2

)−1
θp

λ ∥f∥W ∗

)((
a

2

) 1
θp

∥u∥
)

≥ a

θp
∥u∥θp − S−p∗/p

p∗ ∥u∥p∗
− θp − 1

θp

((
a

2

)−1
θp

λ ∥f∥W ∗

) θp
θp−1

− 1
θp

((
a

2

) 1
θp

∥u∥
)θp

≥ a

2θp
∥u∥θp − S−p∗/p

p∗ ρp∗ − θp − 1
θp

((
a

2

)−1
θp

λ ∥f∥W ∗

) θp
θp−1

.

Now, we define the function h2 ∈ (R+,R∗) as follows

h2 (ρ) = a

2θp
ρθp − S−p∗/p

p∗ ρp∗
.

Then,

max
ρ≥0

h2 (ρ) = h2 (ρ2) =
(

1
θp

− 1
p∗

)
S−p∗/p

[
a

2Sp∗/p
] p∗

p∗−θp

, with ρ2 =
[
a

2Sp∗/p
] 1

p∗−θp

,

and h2 (ρ) ≥ 0 for all ρ ∈ Bρ2 (0) . Consequently,

Eλ (u)|Bρ2 (0) ≥ −θp − 1
θp

((
a

2

)−1
θp

λ ∥f∥W ∗

) θp
θp−1

.
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Moreover, for ∥u∥ = ρ2 we have

Eλ(u) ≥ h2 (ρ2) − θp − 1
θp

((
a

2

)−1
θp

λ ∥f∥W ∗

) θp
θp−1

≥ θp − 1
θp

h2 (ρ2) + 1
θp

h2 (ρ2) − θp − 1
θp

((
a

2

)−1
θp

λ ∥f∥W ∗

) θp
θp−1

≥ 1
θp

h2 (ρ2)

= δ2,

for all λ ∈ (0, λ2), with

λ2 =
(

p∗ − θp

θpp∗ S
θp∗

p∗−θp

) θp−1
θp (

a

2

) p∗−1
p∗−θp

∥f∥−1
W ∗ .

We choose δ∗, ρ∗ and λ− such that

(3.2) (δ∗, ρ∗, λ−) =
{

(δ1, ρ1, λ1) , if (H2) or (H1) satisfies with 0 < b,
(δ2, ρ2, λ2) , if (H1) satisfies with 0 < a.

Then, for all λ ∈ (0, λ−), we have

(3.3) Eλ (u)|∂Bρ∗ (0) ≥ δ∗

and

(3.4) Eλ (u)|Bρ∗ (0) ≥ −Cλ,

with
(3.5)

Cλ :=


p−1

p

((
b
2

)−1
p λ ∥f∥W ∗

) p
p−1

, if (H2) or (H1) is satisfied with 0 < b,

θp−1
θp

((
a
2

)−1
θp λ ∥f∥W ∗

) θp
θp−1

, if (H1) is satisfied with 0 < a.

Now, we define

(3.6) c− = inf
{
Eλ (u) , u ∈ Bρ∗ (0)

}
.

As f ∈ W ∗\ {0} we can choose φ ∈ W 1,p(Rn) such that
∫
Rn f (x) φdx > 0. Then, for

a fixed λ ∈ (0, λ−), there exists t0 > 0 such that ∥t0φ∥ < ρ∗ and

c− ≤ Eλ(t0φ) < 0, for t ∈ (0, t0) .

Hence, c− < Eλ(0) = 0. Using the Ekeland variational principle, for the complete
metric space Bρ∗ (0) with respect to the norm of W 1,p(Rn), we obtain the result that
there exists a Palais Smale sequence un ∈ Bρ∗ (0) at level c−. By Lemma 2.1, there
exists u− ∈ Bρ∗ (0) such that un ⇀ u− in W 1,p(Rn) and E ′

λ (u−) = 0.



1454 H. BENCHIRA, A. MATALLAH, A. BENAISSA, S. G. GEORGIEV, AND KH. ZENNIR

Now, we shall show that un → u− in W 1,p. Suppose otherwise. Then, ∥u−∥ <
lim inf
n→+∞

∥un∥ , which implies that

c− ≤ Eλ (u−)

= Eλ (u−) − 1
p∗ ⟨E ′

λ (u−) , u−⟩

= a
p∗ − θp

θpp∗ ∥u−∥θp + b
p∗ − p

pp∗ ∥u−∥p − λ
p∗ − 1

p∗

∫
Rn

f (x) u−dx

< lim inf
n→+∞

[
a

p∗ − θp

θpp∗ ∥un∥θp + b
p∗ − p

pp∗ ∥un∥p − λ
p∗ − 1

p∗

∫
Rn

f (x) undx

]

= lim inf
n→+∞

[
Eλ (un) − 1

p∗ ⟨E ′
λ (un) , un⟩

]
= c−.

This is a contradiction. We conclude that un → u− strongly in W 1,p(Rn). Therefore,
E ′

λ (u−) = 0 and Eλ (u−) = c− < 0 = Eλ (0) . Hence, u− is a nonzero solution of (1.1)
with negative energy. □

3.2. Existence of a mountain pass type solution. The next theorem guarantees
a second solution of (1.1) of mountain pass type.

Theorem 3.2. Suppose that f ∈ W ∗\ {0} such that
∫
Rn f (x) vε,x0dx ̸= 0. Assume

that (H1) or (H3) holds. Then, there exists a constant λ+ ∈ (0, λ−] such that for any
λ ∈ (0, λ+) the problem (1.1) has a second solution u+ with positive energy.

Notice that the assumption
∫
Rn f (x) vε,x0dx ̸= 0 certainly holds if f ∈ W ∗\ {0} does

not change its sign. Also, we have f ∈ L
p∗

p∗−1 (Rn) since f ∈ W ∗\ {0} and u−, u+ ≥ 0 if
f ≥ 0. Furthermore, in Remark 1.2 [11], the authors mentioned that it is not easy
to obtain the second solution for the case p < n, 0 < a and 0 < b. For the special
dimension n = 3p/2, this case is studied in [12]. In our work, we have overcome these
difficulties and we give the results for general θ ∈

(
1, p∗

p

]
. Moreover, for θ = 2, the

condition θ ≤ p∗

p
is equivalent to n ∈ ]p, 2p] and n ∈ {3, 4} for p = 2. Our results

imply that suitable real θ can release the restriction on the spatial dimension n, for
example. If θ = 1 + ε with ε > 0 is small enough, we have θ ≤ p∗

p
for a large range

of n.
First, to ensure the local compactness of the Palais Smale sequence for Eλ, we have

to prove an important result.
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For i ∈ {1, 2}, let xi be defined as in Lemma 2.2 and let

Ci =a

(
1
θp

− 1
p∗

)(
Sx

1
θ−1
i

)θ

+ b

(
1
p

− 1
p∗

)
Sx

1
θ−1
i ,

C∗ =
{

C1, if θ = p∗

p
, S−θ > a ≥ 0, 0 < b,

C2, if θ < p∗

p
, a ≥ 0, 0 ≤ b, a + 0 < b.(3.7)

Lemma 3.1. Suppose that f ∈ W ∗\ {0} and (H1) or (H3) hold. Let (un) ⊂ W 1,p(Rn)
be a Palais Smale sequence for Eλ for some c ∈ R. Then, either un → u or c ≥
Eλ (u) + C∗.

Proof. From the proof of Lemma 2.1, we have that (un) is a bounded sequence
in W 1,p(Rn) and un ⇀ u in W 1,p(Rn) for some u ∈ W 1,p(Rn) with E ′

λ (u) = 0.
Furthermore, if we write vn = un − u, we derive

(3.8)


vn ⇀ 0 in W 1,p(Rn) and in Lp∗ (Rn) ,
vn → 0 a.e. in Rn,∫
Rn f (x) vndx → 0.

On the one hand, by using Brézis-Lieb’s lemma [17], one has

(3.9)
{ ∥u∥p = ∥vn∥p + ∥u∥p + on (1) ,∫

Rn |un|p∗
dx =

∫
Rn |vn|p∗

dx +
∫
Rn |u|p∗

dx + on (1) .

Since ⟨E ′
λ (u) , u⟩ = 0, we obtain by (3.9) that

(3.10) on (1) = ⟨E ′
λ (un) , un⟩ = ∥vn∥p −

∫
Rn

|vn|p∗
dx,

and

c + on (1) =Eλ (un) − 1
p∗ ⟨E ′

λ (un) , un⟩

=a

(
1
θp

− 1
p∗

)
(∥vn∥p + ∥u∥p)θ + b

(
1
p

− 1
p∗

)
(∥vn∥p + ∥u∥p)

+ λ

(
1
p∗ − 1

)∫
Rn

f (x) vndx − λ

(
1
p∗ − 1

)∫
Rn

f (x) udx

≥a

(
1
θp

− 1
p∗

)
∥vn∥θp + b

(
1
p

− 1
p∗

)
∥vn∥p + Eλ(u) − 1

p∗ ⟨E ′
λ (u) , u⟩ .

Consequently,

(3.11) c + on (1) ≥ Eλ(u) +
(

a

θp
− a

p∗

)
∥vn∥θp +

(
b

p
− b

p∗

)
∥vn∥p .

Assume that lim
n→+∞

∥vn∥ = l > 0. Then, by (3.10) and the Sobolev inequality, we
obtain

lp ≥ S
(
blp + alθp

) p
p∗

.
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This implies that

(3.12) S− p∗
p lp∗−p − alp(θ−1) − b ≥ 0.

Let x = S−(θ−1)lp(θ−1) and σ = p∗−p
(θ−1)p . Then, by (3.12), we get

S−1xσ − aSθ−1x − 0 ≤ b.

It is clear that σ ≥ 1 thanks to θ ≤ p∗

p
. Then, by definition of Ψ, we get Ψ (x) ≥ 0.

We are now in a position to discuss two cases.
Case 1. θ = p∗

p
, S−θ > a ≥ 0 and 0 < b. According to Lemma 2.2, we have Ψ (x) ≥ 0

if x ≥ x1, with

x1 = b

(S−θ − a) Sθ−1 ,

which implies that lp ≥ Sx
1

θ−1
1 .

Case 2. θ < p∗

p
, a ≥ 0, 0 ≤ b and a + 0 < b. In this case, it follows from Lemma 2.2

that Ψ (x) ≥ 0 if x ≥ x2, with

x2 >

(
a (θ − 1) p

p∗ − p
Sθ

) (θ−1)p
p∗−θp

,

which implies that lp ≥ Sx
1

θ−1
2 . Then, by (3.11) , one has

c ≥ Eλ(u) +
(

a

θp
− a

p∗

)
lθp +

(
b

p
− b

p∗

)
lp

≥ Eλ(u) +


bp∗−p

pp∗ Sx
1

θ−1
1 , if θ = p∗

p
, S−θ > a ≥ 0 and 0 < b,

ap∗−θp
θpp∗

(
Sx

1
θ−1
2

)θ

+ bp∗−p
pp∗ Sx

1
θ−1
2 , if θ < p∗

p
, 0 ≤ a, b and a < b,

= Eλ (u) + C∗.

The proof of Lemma 3.1 is complete. □

Next, we estimate the level energy.

Lemma 3.2. Assume that all the conditions in Theorem 3.2 are fulfilled. Then, there
exists zε ∈ W 1,p(Rn) and λ∗ > 0 such that

sup
t≥0

Eλ(tzε) < c− + C∗, for all λ ∈ (0, λ∗) ,

where c− and C∗ are given in (3.6) and (3.7), respectively.

Proof. Since
∫
Rn f (x) vε,x0 (x) dx ̸= 0, there exists zε = ±vε,x0 that satisfies∫

Rn
f (x) zε (x) dx > 0.
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Given any λ > 0 and fixed t > 0, using (1.4), we have

Eλ(tzε) = a

θp
tθp ∥zε∥θp + b

p
tp ∥zε∥p − tp∗

p∗

∫
Rn

|zε|p
∗
dx − λt

∫
Rn

f (x) zεdx

= a

θp
tθpS

θp∗
p∗−p + b

p
tpS

p∗
p∗−p − tp∗

p∗ S
p∗

p∗−p − λt
∫
Rn

f (x) zεdx.

Define g, h : ]0, +∞[ → R by g(t) = Eλ(tzε) and

h(t) = a

θp
tθpS

θp∗
p∗−p + b

p
tpS

p∗
p∗−p − tp∗

p∗ S
p∗

p∗−p .

Then,

h′ (t) = −tp−1S
p∗

p∗−p

(
tp∗−p − aS

(θ−1)p∗
p∗−p t(θ−1)p − b

)
.

It follows from h′ (t) = 0 that

(3.13) aS
(θ−1)p∗

p∗−p t(θ−1)p + b − tp∗−p = 0.

So,

(3.14) tp∗ = aS
(θ−1)p∗

p∗−p tθp + btp.

Let x = S
p(θ−1)
p∗−p tp(θ−1), σ = p∗−p

(θ−1)p and

x∗ :=
{

x1, if (H3) holds,
x2, if (H1) holds.

Then, by (3.13) and the definition of Ψ, we get

(3.15) Ψ (x) = S−1xσ − aSθ−1x − b = 0.

By Lemma 2.2, we can conclude that Ψ (x∗) = 0, Ψ (x) < 0 for all x ∈ ]0, x∗[ and
Ψ (x) > 0 for all x ∈ ]x∗, +∞[ . Therefore, h′ (t∗) = 0, h′ (t) > 0 for all t ∈ ]0, t∗[ and
h′ (t) < 0 for all t ∈ ]t∗, +∞[, where

t∗ :=

 S
−1

p∗−p x
1

(θ−1)p

1 , if (H3) holds,
S

−1
p∗−p x

1
(θ−1)p

2 , if (H1) holds.

Moreover, since h (0) = 0 and lim
t→+∞

h (t) = −∞ if (H1) or (H3) holds, then h attains
its maximum at t∗.
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So, from (3.14), we have

max
t≥0

h (t) = h (t∗)

= a

θp
tθp
∗ S

θp∗
p∗−p + b

p
tp
∗S

p∗
p∗−p − tp∗

∗
p∗ S

p∗
p∗−p

= a

θp
tθp
∗ S

θp∗
p∗−p + b

p
tp
∗S

p∗
p∗−p −

(
a

p∗ tθp
∗ S

θp∗
p∗−p + b

p∗ tp
∗S

p∗
p∗−p

)

= a

(
1
θp

− 1
p∗

)
tθp
ε S

θp∗
p∗−p + b

(
1
p

− 1
p∗

)
tp
εS

p∗
p∗−p

= a

(
1
θp

− 1
p∗

)
Sθx

θ
θ−1
∗ + b

(
1
p

− 1
p∗

)
Sx

1
θ−1
∗

= C∗.

By (3.4) and (3.6), we have c− ≥ −Cλ for all λ ∈ (0, λ∗) . So, we can choose λ3 ≤ λ−
such that for any λ ∈ (0, λ3) we have C∗ − c− ≥ C∗ − Cλ > 0. Hence, C∗ − c− > 0 for
all λ ∈ (0, λ3) .

Now, we consider the function g (t) := Eλ(tzε), t ≥ 0. Then, g (t) = h(t) −
λt
∫
Rn f (x) zεdx. So, for all λ ∈ (0, λ3), we have g (0) = 0 < C∗−Cλ. Hence, by the con-

tinuity of g (t) , there exists t1 > 0 small enough such that g (t) < C∗ − Cλ for all t ∈
(0, t1) .

We know also that lim
t→+∞

g (t) = −∞ if (H1) or (H3) holds. Then, for t2 > 0
sufficiently large one hasg (t) < C∗ − Cλ, for all t ∈ (t2, +∞) . On the other hand,
as
∫
Rn f (x) zεdx > 0, we can deduce from the above estimate on h (t) that for all

t ∈ [t1, t2]
g (t) < C∗ − λt1

∫
Rn

f (x) zεdx.

Set

λ4 =


(

p
p−1t1

∫
Rn f (x) zεdx

)p−1
b
2 ∥f∥−p

W ∗ , if (H3) or (H1) with 0 < b holds,(
θp

θp−1t1
∫
Rn f (x) zεdx

)θp−1
a
2 ∥f∥−θp

W ∗ , if (H1) with 0 < a holds.

Then, for any λ ∈ (0, λ4), one has

−λt1

∫
Rn

f (x) zεdx < −Cλ.

Taking λ+ = min {λ−, λ3, λ4}, then we deduce that

sup
t≥0

Eλ(tzε) < C∗ + c−, for all λ ∈ (0, λ+) .

This concludes the proof of Lemma 3.2. □

Now, we are ready to prove the existence of the mountain pass-type solution and
give the proof of Theorems 3.2 with the help of Theorem 3.1.
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Proof of Theorem 3.2. Note that Eλ(0) = 0 and from (3.3), we have Eλ (u)|∂Bρ∗ (0) ≥
δ∗ > 0 for all λ ∈ (0, λ−), where ρ∗, δ∗ are defined in (3.2) . We know also that
limt→∞ Eλ (tzε) = −∞ if (H1) or (H3) holds, then Eλ(Tzε) < 0 for T large enough.
Hence, Eλ satisfies the geometry conditions of the mountain pass theorem [16]. Then,
there exists a Palais Smale sequence (un) at level c+, such that

Eλ (un) → c+ and E ′
λ (un) → 0, as n → +∞,

with

0 < c+ = inf
γ∈Γ

max
t∈[0,1]

Eλ(γ (t)) ≤ sup
t≥0

Eλ(tTzε) < C∗ + c−, for all λ ∈ (0, λ+),

where
Γ =

{
γ ∈ C

(
[0, 1] , W 1,p(Rn)

)
, γ (0) = 0, γ (1) = Tzε

}
.

Using Lemma 2.1, we find that (un) has a subsequence, still denoted by (un), such
that un ⇀ u+ in W 1,p(Rn) as n → +∞. Hence, from Lemma 3.1 if un ↛ u+ in
W 1,p(Rn) as n → +∞, it holds

c+ ≥ Eλ (u+) + C∗ ≥ c− + C∗,

which is in contradiction with Lemma 3.2. Hence, E ′
λ (u+) = 0 and

Eλ (u+) = c+ > 0.

So, since c+ > 0 = Eλ (0), we conclude that u+ is a non-zero solution of (1.1) with
positive energy. This completes the proof of Theorem 3.2. □

4. Results in the Case when λ = 0

Now, in the case when λ = 0, we have the following results.

4.1. Infinitely solutions.

Theorem 4.1. Let λ = 0, 0 < a, 0 ≤ b, 1 < p < n and θ > 1. For vε,x0, given by
(1.3), the following conclusions hold.

(1) If θ = p∗

p
, then under the hypothesis (H3), problem (1.1) for λ = 0 has infinitely

many nonnegative solutions and these solutions are(
b

1 − Sθa

) 1
p∗−p

vε,x0 , for all ε > 0,

and under the hypothesis (H6), the problem (1.1) for λ = 0 has infinitely many positive
solutions δ

1
(θ−1)p vε,x0 (for any δ > 0) if and only if a = S−θ.

(2) If θ ̸= p∗

p
, b = 0 and 0 < a, then problem (1.1) has infinitely many nonnegative

solutions and these solutions are(
aS

p∗(θ−1)
p∗−p

)− 1
θp−p∗

vε,x0 , for all ε > 0.
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(3) If (H0) is satisfied, then there exists δ2 > S−1
(

a(θ−1)p
p∗−p

Sθ
) p∗−p

p∗−θp such that

δ
1

p∗−p

2 vε,x0 are solutions of problem (1.1), for all ε > 0.
(4) If (H7) is satisfied, then problem (1.1) has infinitely many nonnegative solutions

and these solutions are

S− 1
p∗−p

(
p∗ − p

(θ − 1) pa
S−θ

) 1
θp−p∗

vε,x0 , for all ε > 0.

(5) If (H9) is satisfied, then there exist

δ3 ∈

0, S−1
(

p∗ − p

(θ − 1) pa
S−θ

) p∗−p
θp−p∗


and

δ4 ∈

S−1
(

p∗ − p

(θ − 1) pa
S−θ

) p∗−p
θp−p∗

, +∞

 ,

such that δ
1

p∗−p

3 vε,x0 and δ
1

p∗−p

4 vε,x0 are solutions of problem (1.1) for all ε > 0.

Remark 4.1. Ke et al. in [11] have obtained Theorem 4.1 for the case θ = 2.

We give the proof of Theorem 4.1.

Proof of Theorem 4.1. For any δ > 0, we define Vε,δ = δ
1

p∗−p vε,x0 , where vε,x0 is given
in (1.4). Since vε,x0 is a solution of problem (1.2), we have that Vε,δ solves the following
equation

−δdiv
(
|∇Vε,δ|p−2∇Vε,δ

)
= |Vε,δ|p

∗−2Vε,δ.

Moreover, according to (1.4), one has

δ = a ∥Vε,δ∥(θ−1)p + b = aδ
(θ−1)p
p∗−p ∥vε,x0∥(θ−1)p + b = aS

p∗(θ−1)
p∗−p δ

(θ−1)p
p∗−p + b.

Therefore, the positive solution of the problem (1.1) corresponds to the solution of
the following equation with respect to δ > 0

(4.1) δ − aS
p∗(θ−1)

p∗−p δ
(θ−1)p
p∗−p − b = 0.

(1) For θ = p∗

p
, equation (4.1) is equivalent to

δ
(
1 − aSθ

)
− b = 0.

If 0 < b and S−θ > a ≥ 0, we have that

δ0 = b

1 − Sθa
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is a solution of equation (4.1). Hence, Vε,δ0 = δ
1

p∗−p

0 vε,x0 satisfies the following equation
in the weak sense

−
(
a ∥u∥(θ−1)p + b

)
div

(
|∇u|p−2∇u

)
= |u|p∗−2u.

If b = 0 and 0 < a, then equation (4.1) is equivalent to
δ
(
1 − aSθ

)
= 0,

then, for δ > 0, we get 1 − aSθ = 0. Thus, when θ = p∗

p
, problem (1.1) has infinitely

many positive solutions Vε,δ = δ
1

(θ−1)p vε,x0 if and only if a = S−θ.

(2) For θ ̸= p∗

p
, b = 0 and 0 < a it is easy to see that

δ1 =
(

aS
p∗(θ−1)

p∗−p

)− p∗−p
θp−p∗

is a solution of equation (4.1). Then, problem (1.1) for λ = 0 has infinity many
positive solutions Vε,δ1 = δ

1
p∗−p

1 vε,x0 .
(3) Let x = (Sδ)

(θ−1)p
p∗−p , by (4.1) and Lemma 2.2, we get

(4.2) S−1x
p∗−p

(θ−1)p − aSθ−1x − b = 0.

So, Ψ (x) = 0 with σ = p∗−p
(θ−1)p . Hence, for θ < p∗

p
, according to Lemma 2.2, we have

that Ψ (x) = 0 has a unique positive solution

x2 >

(
a (θ − 1) p

p∗ − p
Sθ

) (θ−1)p
p∗−θp

.

Thus, problem (1.1) has infinity many positive solutions

Vε,δ2 = δ
1

p∗−p

2 vε,x0 ,

with

δ2 = S−1x
p∗−p

(θ−1)p

2 > S−1
(

a (θ − 1) p

p∗ − p
Sθ

) p∗−p
p∗−θp

.

For θ > p∗

p
, by using (4.2) and according to Lemma 2.2, we have the following.

If b = b∗, then the equation Ψ (x) = 0 has a unique positive solution

x̃ =
(

p∗ − p

(θ − 1) pa
S−θ

) (θ−1)p
θp−p∗

.

Thus, problem (1.1) has infinity many positive solutions

Vε,δ̃ = δ̃
1

p∗−p vε,x0 ,

with
δ̃ = S−1x̃

p∗−p
(θ−1)p .

This proves (4) .
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If b < b∗, then Ψ has two different zero points x3 and x4 with 0 < x3 < x̃ < x4.
Consequently, problem (1.1) has infinitely many positive solutions

Vε,δ3 = δ
1

p∗−p

3 vε,x0

and
Vε,δ4 = δ

1
p∗−p

4 vε,x0 ,

with

δ3 = S−1x
p∗−p

(θ−1)p

3 ∈

0, S−1
(

p∗ − p

(θ − 1) pa
S−θ

) p∗−p
θp−p∗


and

δ4 = S−1x
p∗−p

(θ−1)p

4 ∈

S−1
(

p∗ − p

(θ − 1) pa
S−θ

) p∗−p
θp−p∗

, +∞

 .

This proves (5) . □

4.2. Non-existence result.

Theorem 4.2. Assume that one of the hypotheses (Hi) holds for i ∈ {4, 5, 8}. Then,
problem (1.1) has no non-trivial solution for λ = 0.

Remark 4.2. For θ = 2, the authors in [11] proved the non-existence of solutions only
in the case p∗ < 2p, while the case p∗ = 2p is considered in our case. From this point
of view, Theorem 4.2 could be viewed as some extension and completeness of the
related results in [11].

We give the proof of Theorem 4.2.

Proof of Theorem 4.2. Suppose that (H4) is satisfied and let u ∈ W 1,p(Rn)\{0} be a
solution of the problem (1.1). Then,

(4.3) a ∥u∥θp =
∫
Rn

|u|p∗
dx.

If θ = p∗

p
, a > S−θ and

∫
Rn |u|p∗

dx ≤ S− p∗
p ∥u∥p∗

, we have, by (4.3),

S−θ ∥u∥θp < a ∥u∥θp =
∫
Rn

|u|p∗
dx ≤ S−θ ∥u∥θp ,

which leds to a contradiction.
Suppose now that (H5) is satisfied and let u ∈ W 1,p(Rn)\{0} be a solution of (1.1).

Then,
a ∥u∥θp + b ∥u∥p =

∫
Rn

|u|p∗
dx.

If θ = p∗

p
, a ≥ S−θ, 0 < b and ∫

Rn
|u|p∗

dx ≤ S− p∗
p ∥u∥p∗

,
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we get

S−θ ∥u∥θp < a ∥u∥θp + b ∥u∥p =
∫
Rn

|u|p∗
dx ≤ S−θ ∥u∥θp ,

which is a contradiction.
In the same way as above, under the condition (H8), suppose that u ∈ W 1,p(Rn)\{0}

is a solution of (P0), that is,

a ∥u∥θp + b ∥u∥p =
∫
Rn

|u|p∗
dx.

Then,∫
Rn

|u|p∗
dx ≤S− p∗

p ∥u∥p∗
= ∥u∥p∗− θp−p∗

θ−1 S− p∗
p ∥u∥

θp−p∗
θ−1

=
(

(θ − 1) p

p∗ − p
a

) p∗−p
(θ−1)p

∥u∥
θ(p∗−p)

θ−1

(
(θ − 1) p

p∗ − p
a

)− p∗−p
(θ−1)p

S− p∗
p ∥u∥

θp−p∗
θ−1

≤ p∗ − p

(θ − 1) p

((θ − 1) p

p∗ − p
a

) p∗−p
(θ−1)p

∥u∥
θ(p∗−p)

θ−1


(θ−1)p
p∗−p

+ θp − p∗

(θ − 1) p

((θ − 1) p

p∗ − p
a

)− p∗−p
(θ−1)p

S− p∗
p ∥u∥

θp−p∗
θ−1


(θ−1)p
θp−p∗

≤a ∥u∥θp + θp − p∗

(θ − 1) p

((θ − 1) p

p∗ − p
a

)− p∗−p
(θ−1)p

S− p∗
p


(θ−1)p
θp−p∗

∥u∥p

=a ∥u∥θp + θp − p∗

(θ − 1) p

(
(θ − 1) p

p∗ − p
a

)− p∗−p
θp−p∗

S− (θ−1)p∗
θp−p∗ ∥u∥p

<a ∥u∥θp + b ∥u∥p

=
∫
Rn

|u|p∗
dx,

which leads to a contradiction (see [18–22]). This completes the proof. □

5. Conclusion

The objective of this article is to investigate contemporary challenges within the field
of non-classical partial differential equations and to explore their practical applications.
Specifically, it seeks to establish the presence or absence of solutions for p-Kirchhoff-
type problems with critical Sobolev exponents in the Euclidean space Rn. These
investigations are pivotal for gaining a deeper understanding of mathematical physics
equations and addressing pertinent issues in this domain. The proposed article is an
expanded discussion of the question of existence and non-existence of solutions. We
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found several new results related to the discussion of the existence of a solution with
negative and positive energy using the latest methods in this field to support the
rapidly developing literature. After that, we discussed different cases depending on
the change in parameters to show that solutions do not exist.
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