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PERFECT NILPOTENT GRAPHS

M. J. NIKMEHR1 AND A. AZADI1

Abstract. Let R be a commutative ring with identity. The nilpotent graph of R,
denoted by ΓN (R), is a graph with vertex set ZN (R)∗, and two vertices x and y
are adjacent if and only if xy is nilpotent, where ZN (R) = {x ∈ R | xy is nilpotent,
for some y ∈ R∗}. A perfect graph is a graph in which the chromatic number of
every induced subgraph equals the size of the largest clique of that subgraph. In this
paper, we characterize all rings whose ΓN (R) is perfect. In addition, it is shown that
for a ring R, if R is Artinian, then ω(ΓN (R)) = χ(ΓN (R)) = |Nil(R)∗|+ |Max(R)|.

1. Introduction

The theory of graphs associated with rings was started by Beck [4] in 1981 and has
grown a lot since then. Anderson and Livingston [2] modified Beck,s definition and
introduced the notion of zero-divisor graph. Surely, this is the most important graph
associated with a ring and not only zero-divisor graphs but also various generalizations
of it have attracted many researchers, see for instance [9,11] and [10]. The zero-divisor
graph of a ring R, denoted by Γ(R), is a graph with the vertex set Z(R)∗ and two
distinct vertices x and y are joined by an edge if and only if xy = 0, where Z(R)
is set of zero-divisors of R. In [6], Chen defined a kind of graph structure of rings.
He let all the elements of ring R be the vertices of the graph and two vertices x
and y are adjacent if and only if xy is nilpotent. However, in 2010, Li and Li [10]
modified and studied the nilpotent graph ΓN(R) of R is a graph with vertex set
ZN(R)∗, and two vertices x and y are adjacent if and only if xy is nilpotent, where
ZN(R) = {x ∈ R | xy is nilpotent, for some y ∈ R∗}. Note that the usual zero-divisor
graph Γ(R) is a subgraph of the graph ΓN(R). B. Smith determine all values of n
for which zero-divisor graph of Zn is perfect [13]. Also, Patil et al. [12] characterize
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various algebraic and order structures whose zero-divisor graphs are perfect graph.
Therefore, this paper is devoted to study the perfect of a super graph of zero-divisor
graphs. First let us recall some necessary notation and terminology from ring theory
and graph theory.

Throughout this paper, all rings are assumed to be commutative with identity. We
denote by Z(R), U(R), Max(R) and Nil(R), the set of all zero-divisors, the set of
all unit elements of R, the set of all maximal ideals of R and the set of all nilpotent
elements of R, respectively. For a subset A of a ring R, we let A∗ = A \ {0}. The
ring R is said to be reduced if it has no non-zero nilpotent element. Some more
definitions about commutative rings can be find in [3, 5, 15].

We use the standard terminology of graphs following [7, 14]. Let G = (V,E) be a
graph, where V = V (G) is the set of vertices and E = E(G) is the set of edges. By
Ḡ, we mean the complement graph of G. We write u − v, to denote an edge with
ends u, v. A graph H = (V0, E0) is called a subgraph of G if V0 ⊆ V and E0 ⊆ E.
Moreover, H is called an induced subgraph by V0, denoted by G[V0], if V0 ⊆ V and
E0 = {u, v ∈ E|u, v ∈ V0}. Also G is called a null graph if it has no edge. A complete
graph of n vertices is denoted by Kn. An n-partite graph is one whose vertex set can
be partitioned into n subsets, so that no edge has both ends in any one subset. A
complete n-partite graph is one in which each vertex is jointed to every vertex that is
not in the same subset. A clique of G is a maximal complete subgraph of G and the
number of vertices in the largest clique of G, denoted by ω(G), is called the clique
number of G. For a graph G, let χ(G) denote the chromatic number of G, i.e., the
minimal number of colors which can be assigned to the vertices of G in such a way
that every two adjacent vertices have different colors. Note that for every graph G,
ω(G) ≤ χ(G). A graph G is said to be weakly perfect if ω(G) = χ(G). A perfect graph
G is a graph in which the chromatic number of every induced subgraph equals the
size of the largest clique of that subgraph.

Using the Strong Perfect Graph Theorem, in Section 2 we completely determine
all Artinian rings for which the nilpotent graph of R is perfect, leading to our main
theorem. In Section 3 for an Artinian ring R, it is shown that the graph ΓN(R) is
weakly perfect. Moreover, the exact value of the χ(ΓN(R)) is given.

2. On Perfect Graph

We start with some properties of the nilpotent elements of a ring. The following
remark is useful in our proofs.

Remark 2.1. ([10, Remark 2, 3]). Let R be a non-reduced ring. Then the following
statements hold.

(1) For every x ∈ Nil(R)∗, x is adjacent to all non-zero elements of R and so
ZN(R) = R.

(2) ΓN(R)[Nil(R)∗] is a (induced) complete subgraph of ΓN(R).

To prove our main results we need the following celebrate theorem.



PERFECT NILPOTENT GRAPHS 523

Theorem 2.1 (The Strong Perfect Graph Theorem [7]). A graph G is perfect if and
only if neither G nor G contains an induced odd cycle of length at least 5.

The following result, which is proved in [1, Corollary 2.2], will be helpful in our
main results and used frequently in the sequel.

Corollary 2.1. Let G be a graph and {V1, V2} be a partition of V (G). If G[Vi] is a
complete graph, for every 1 ≤ i ≤ 2, then G is a perfect graph.

The following lemmas have a key role in this paper.

Lemma 2.1. Let n be a positive integer and R ∼= R1 ×R2 × · · · ×Rn, where Ri is a
ring, for every 1 ≤ i ≤ n. If ΓN(R) contains no induced odd cycle of length at least 5,
then n ≤ 4.

Proof. Suppose that n ≥ 5. Then we can easily get
(1, 0, 0, 1, 0, 0, . . . , 0)− (0, 1, 0, 0, 1, 0, . . . , 0)− (1, 0, 1, 0, 0, 0, . . . , 0)
− (0, 0, 0, 1, 1, 0, . . . , 0)− (0, 1, 1, 0, 0, 0, . . . , 0)− (1, 0, 0, 1, 0, 0, . . . , 0)

is a cycle of length 5. Thus, Theorem 2.1 lead to a contradiction. So, n ≤ 4. �

Before proving first main result of this paper, we bring the following remark, which
shows that Artinian rings share the following nice property.

Remark 2.2. Let R ∼= R1 × · · · × Rn, a = (x1, x2, . . . , xn) and b = (y1, y2, . . . , yn),
where n is a positive integer, every Ri is an Artinian local ring and xi, yi ∈ Ri for
every 1 ≤ i ≤ n. Then

(1) a is adjacent to b in ΓN(R) if and only if xiyi ∈ Nil(Ri) for all 1 ≤ i ≤ n;
(2) a is not adjacent to b in ΓN(R) if and only if xjyj ∈ U(Rj) for some 1 ≤ j ≤ n;
(3) a is adjacent to b in ΓN(R) if and only if xiyi ∈ U(Ri) for some 1 ≤ i ≤ n;
(4) a is not adjacent to b in ΓN(R) if and only if xjyj ∈ Nil(Rj) for all 1 ≤ j ≤ n.

By using a similar way as used in the proof of [1, Lemma 2.3], one can prove the
following result.

Lemma 2.2. Let S1, S2, S3, S4 be rings such that S1 ∼= R1, S2 ∼= R1 × R2, S3 ∼=
R1×R2×R3 and S4 ∼= R1×R2×R3×R4, where Ri is a ring for every 1 ≤ i ≤ 4. Then,
if ΓN(S4) is a perfect graph, then ΓN(S3), ΓN(S2) and ΓN(S1) are perfect graphs.

We are now in a position to state our first main result in this section.

Theorem 2.2. Let R be a non-reduced Artinian ring. Then ΓN(R) is a perfect graph
if and only if |Max(R)| ≤ 4.

Proof. For one direction assume that |Max(R)| ≤ 4. This together with [3, Theorem
8.7] implies that there exists a positive integer n such that R ∼= R1 × · · · ×Rn, where
Ri is an Artinian local ring, for every 1 ≤ i ≤ n and n ≤ 4. By Theorem 2.1, it is
enough to show that ΓN(R) and ΓN(R) contains no induced odd cycle of length at
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least 5. By Lemma 2.2, we need to prove the case n = 4. So let R ∼= R1×R2×R3×R4,
where Ri is an Artinian local ring. We have the following two claims.

Claim 1. ΓN(R) contains no induced odd cycle of length at least 5. Note that
if R is an Artinian non-reduced ring, then ZN(R) = R = U(R) ∪ Z(R), where
U(R) = U(R1) × · · · × U(R4). We consider the following partition for non-zero
zero-divisors of R:

A = {{(x1, x2, x3, x4) | xi ∈ Nil(Ri) for all i}\{(0, 0, 0, 0)}},
B = {(x1, x2, x3, x4) | for some i, xi 6∈ Nil(Ri)}.

Thus A ∩ B = ∅, A ∩ U(R) = ∅, B ∩ U(R) = ∅ and V (ΓN(R)) = A ∪ B ∪ U(R).
Also we consider the following partition for B:

B1 ={(x, y, z, w) ∈ B | x ∈ U(R1)},
B2 ={(x, y, z, w) ∈ B | x ∈ Nil(R1) and y ∈ U(R2)},
B3 ={(x, y, z, w) ∈ B | x ∈ Nil(R1), y ∈ Nil(R2) and z ∈ U(R3)},
B4 ={(x, y, z, w) ∈ B | x ∈ Nil(R1), y ∈ Nil(R2), z ∈ Nil(R3) and w ∈ U(R4)}.

It is easy to see that B = ∪4
i=1Bi and Bi ∩ Bj = ∅ for every i 6= j. The elements of

V (ΓN(R)) have form ai = (xi, yi, zi, wi), where xi ∈ R1, yi ∈ R2, zi ∈ R3 and wi ∈ R4
for each i ∈ N. Now, assume to the contrary that a1− a2−· · ·− an− a1 is an induced
odd cycle of length at least 5 in ΓN(R). We have the following cases.

Case 1. {a1, . . . , an} ∩ U(R) = ∅. Assume to the contrary and with no loss of
generality that a1 = (x1, y1, z1, w1) ∈ U(R). Then a2 and an must be in Nil(R)∗.
Therefore, an is adjacent to a2, which is a contradiction.

Case 2. {a1, . . . , an} ∩ A = ∅. Let ai ∈ {a1, . . . , an} ∩ A, for some 1 ≤ i ≤ n.
Then by Remark 2.1, ai is adjacent to all other vertices, a contradiction. Thus,
{a1, . . . , an} ∩ A = ∅.

Case 3. {a1, . . . , an} ∩ B4 = ∅. To show this, for a contradiction assume that
a1 = (x1, y1, z1, w1) ∈ B4. Since a2 and an are adjacent to a1 and

a1 ∈ Nil(R1)× Nil(R2)× Nil(R3)× U(R4),

we see that the fourth components of a2 and an must be in Nil(R4). Now since
x3x1, y1y3 and z1z3 are nilpotent elements and a3 is not adjacent to a1, by Part (2) of
Remark 2.2, we conclude that the fourth component of a3 must be in U(R4). This
together with the fact that a4 is adjacent to a3 imply that the fourth component of
a4 is nilpotent element and so a4a1 ∈ Nil(R). Therefore, a4 is adjacent to a1, which
is a contradiction. So the assertion is proved.

Case 4. {a1, . . . , an} ∩ B1 = ∅. Assume to the contrary and with no loss of
generality, a1 = (x1, y1, z1, w1) ∈ B1. It is easy to see that for every 1 ≤ i ≤ 4, there
is no edge between any two vertices of Bi. This together with the above cases imply
that an and a2 are in B2 ∪B3. We distinguish the following three subcases.
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Subcase 4.1. {an, a2} ⊂ B3. In this case, we have
{an, a2} ⊂ Nil(R1)× Nil(R2)× U(R3)×R4.

Then the third components of a1 and a3 must be in Nil(R3). Also, since an is not
adjacent to a3, by Part (2) of Remark 2.2, the fourth components of an and a3 must
be in U(R4). This yields

a1 ∈U(R1)×R2 × Nil(R3)×R4,

a3 ∈R1 ×R2 × Nil(R3)× U(R4),
an ∈Nil(R1)× Nil(R2)× U(R3)× U(R4).

Then the fourth components of a1 and a2 must be in Nil(R4). Hence, we find that
a1 ∈U(R1)×R2 × Nil(R3)× Nil(R4),
a2 ∈Nil(R1)× Nil(R2)× U(R3)× Nil(R4).

Now, since a2 is not adjacent to a4, the third components of a4 must be in U(R3).
This implies that a4 is not adjacent to an and so n ≥ 7. It is easy to see that the
third component of a5 must be in Nil(R3) and so a5a2 ∈ Nil(R). This implies that
a5 − a2, a contradiction. So, in this case the assertion is proved.

Subcase 4.2. {an, a2} ⊂ B2. By a similar way as used in Subcase (4.1), we get a
contradiction.

Subcase 4.3. an ∈ B2 and a2 ∈ B3. By a similar way as used in Subcase (4.1), we
get a contradiction. Thus {a1, . . . , an} ∩B1 = ∅.

By the above cases, {a1, . . . , an} ⊆ B2 ∪ B3, but this is contradicts the fact
ΓN(R)[B2 ∪B3] is a bipartite graph, and thus, ΓN(R) contains no induced odd cycle
of length at least 5.

In Claim 2, U(R), A, B and Bi are sets that mentioned in Claim 1.
Claim 2. ΓN(R) contains no induced odd cycle of length at least 5. We show

that ΓN(R) contains no induced odd cycle at least 5. Assume to the contrary that
a1 − a2 − · · · − an − a1

is an induced odd cycle of length at least 5 in ΓN(R). It is clear that ΓN(R)[A] is a
null graph and so {a1, . . . , an} ∩ A = ∅. Also, we show that

{a1, . . . , an} ∩ U(R) = ∅.

Assume to the contrary and with no loss of generality that a1 ∈ U(R). Obviously,
a1 is just adjacent to all of vertices of ZN(R) \ Nil(R). This together with the fact
that {a1, . . . , an} ⊂ ZN(R) \ Nil(R) imply that a1 is adjacent to all other vertices, a
contradiction. Thus {a1, . . . , an} ∩ U(R) = ∅. We claim that

{a1, . . . , an} ∩B4 = ∅.

Indeed, if not, there would exist an ai ∈ B4. Without loss of generality, we may assume
that a1 = (x1, y1, z1, w1) ∈ B4. Then a1 ∈ Nil(R1)×Nil(R2)×Nil(R3)×U(R4). This
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together with Part (3) of Remark 2.2 implies that the forth components of a2 and an

must be in U(R4) and so we have

an ∈ R1 ×R2 ×R3 × U(R4),
a2 ∈ R1 ×R2 ×R3 × U(R4).

It is easy to see that a2 is adjacent to an, a contradiction, and so,

{a1, . . . , an} ∩B4 = ∅.

Finally to complete the proof, we prove that {a1, . . . , an} ∩ B3 = ∅. To get a
contradiction, let a1 = (x1, y1, z1, w1) ∈ B3. Then

a1 ∈ Nil(R1)× Nil(R2)× U(R3)×R4.

Since a1 − an, a1 − a2 and a2 is not adjacent to an, we consider the following two
cases.

Case 1.

a1 ∈Nil(R1)× Nil(R2)× U(R3)× U(R4),
a2 ∈R1 ×R2 × U(R3)× Nil(R4),
an ∈R1 ×R2 × Nil(R3)× U(R4).

Since a3 is not adjacent to a1, the third and the fourth components a3 must be
nilpotent. On the other hand, a3 is adjacent to a2. This implies that x3x2 ∈ U(R1)
or y2y3 ∈ U(R2).

First suppose that x3x2 ∈ U(R1). Now, we know that

a3 ∈U(R1)×R2 × Nil(R3)× Nil(R4),
a2 ∈U(R1)×R2 × U(R3)× Nil(R4).

This together with that a3 is adjacent to a4 implies that x3x4 ∈ U(R1) or y3y4 ∈ U(R2).
If x3x4 ∈ U(R1), then we have x2x4 ∈ U(R1). Therefore, a4 is adjacent to a2, which
is a contradiction. Thus, we conclude that y3y4 ∈ U(R2). This yields

a3 ∈U(R1)× U(R2)× Nil(R3)× Nil(R4),
a4 ∈Nil(R1)× U(R2)×R3 ×R4.

Since a4 is not adjacent to a1, we have

a4 ∈ Nil(R1)× U(R2)× Nil(R3)× Nil(R4).

Thus a4 is not adjacent to an and so n ≥ 7. On the other hand, since a4 − a5,
the second components of a5 must be unit and so a5 is adjacent to a2, which is a
contradiction.

So, suppose that y2y3 ∈ U(R2). Similarly, we get a contradiction. Thus in this case
the assertion is proved.
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Case 2.
a1 ∈Nil(R1)× Nil(R2)× U(R3)× U(R4),
a2 ∈R1 ×R2 × Nil(R3)× U(R4),
an ∈R1 ×R2 × U(R3)× Nil(R4).

By similar argument that of Case 1, we get a contradiction.
This means that {a1, . . . , an} ⊆ B2 ∪ B1. Clearly, ΓN(R)[B1], ΓN(R)[B2] are

complete, and thus by Corollary 2.1, ΓN(R)[B1∪B2] is a perfect graph, a contradiction.
Hence ΓN(R) contain no induced odd cycle of length at least 5. Therefore, by Claim
1, Claim 2 and Theorem 2.1, ΓN(R) is a perfect graph.

For the other direction, since R ∼= R1×· · ·×Rn, where Ri is an Artinian local ring,
for every 1 ≤ i ≤ n, then by Theorem 2.1 and Lemma 2.1, n ≤ 4, as desired. �

3. The Nilpotent Graph of an Artinian Ring is Weakly Perfect

The main goal of this section is to study the coloring of the nilpotent graphs of
Artinian rings. For an Artinian ring R, it is shown that the graph ΓN(R) is weakly
perfect. Moreover, the exact value of the χ(ΓN(R)) is given.
Theorem 3.1. Let R be an Artinian ring. Then

ω(ΓN(R)) = χ(ΓN(R)) = |Nil(R)∗|+ |Max(R)|.
Proof. First let R be an Artinian local ring. One may easily check that V (ΓN(R)) =
Nil(R)∪U(R) and so {Nil(R),U(R)} is a partition of V (ΓN(R)). By Remark 2.1, we
have ΓN(R)[Nil(R)∗] is a complete subgraph of ΓN(R) and every vertex x ∈ Nil(R)∗ is
adjacent to all other vertices. This together with this fact that there is no adjacency
between two vertices of U(R) imply that ΓN(R) = ΓN(R)[Nil(R)∗] ∨ ΓN(R)[U(R)]
and so
ω(ΓN(R)) =χ(ΓN(R)) = ω(ΓN(R)[Nil(R)∗]) + ω(ΓN(R)[U(R)]) = |Nil(R)∗|+ 1.

Now, let R be an Artinian non-local ring. By [3, Theorem 8.7], one can deduce that
there exists a positive integer n such that R ∼= R1× · · · ×Rn, where Ri is an Artinian
local ring, for every 1 ≤ i ≤ n. We put:

A ={{(x1, . . . , xn) | xi ∈ Nil(Ri) for all 1 ≤ i ≤ n}\{(0, 0, 0, 0)}},
B ={(x1, . . . , xn) | for some i, xi 6∈ Nil(Ri)},

U(R) ={(x1, . . . , xn) | xi ∈ U(Ri) for all 1 ≤ i ≤ n}.
One may easily check that V (ΓN(R)) = A ∪ B ∪ U(R), A ∩ B = ∅, A ∩ U(R) =

∅, B ∩ U(R) = ∅ and so {A,B,U(R)} is a partition of V (ΓN(R)). It is clear that
ΓN(R)[U(R)] = K|U(R)| and there is no adjacency between two vertices of B and U(R).
To complete the proof, we prove that

ΓN(R)[A ∪B] =ΓN(R)[A] ∨ ΓN(R)[B],
ΓN(R)[A ∪ U(R)] =ΓN(R)[A] ∨ ΓN(R)[U(R)],
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where ΓN(R)[A] is a complete subgraph of ΓN(R) and ΓN(R)[B] is an n-partite
subgraph of ΓN(R), which is not an (n− 1)-partite subgraph of ΓN(R). To see this,
by Part (1) of Remark 2.1, we have ΓN(R)[A] is a complete subgraph of ΓN(R) and
every vertex x ∈ A is adjacent to all other vertices.

Now, for every 1 ≤ i ≤ n, let Bi = {(x1, . . . , xn) ∈ B | xi ∈ U(Ri) and xj ∈ Nil(Rj)
for every 1 ≤ j ≤ i}. It is easy to see that for every 1 ≤ i ≤ n, there is no
adjacency between two vertices of Bi. This together with this fact that the set
{(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1)} is a clique of ΓN(R)[B] imply that
ΓN(R)[B] is an n-partite subgraph of ΓN(R), which is not an (n−1)-partite subgraph
of ΓN(R). Therefore,

ΓN(R)[A ∪B] =ΓN(R)[A] ∨ ΓN(R)[B],
ΓN(R)[A ∪ U(R)] =ΓN(R)[A] ∨ ΓN(R)[U(R)]

and so
ω(ΓN(R)) = χ(ΓN(R)) = ω(ΓN(R)[A]) + ω(ΓN(R)[B]) = |Nil(R)∗|+ |Max(R)|

and the proof is complete. �

We close this paper with the following result.

Theorem 3.2. Let R be a non-reduced ring. Then the following statements are
equivalent:

(1) ω(ΓN(R)) = 2;
(2) χ(ΓN(R)) = 2;
(3) either ΓN(R) ∼= K1,2 or ΓN(R) ∼= K1 ∨K∞.

Proof. (3) ⇒ (1), (2) are clear. (2) ⇒ (3) is obtained by similar argument to that
proof of (1)⇒ (3). (1)⇒ (3) is only thing to prove.

(1)⇒ (3). Suppose that ω(ΓN(R)) = 2. First we show that |Nil(R)∗| = 1. To see
this, consider A = {a, b, c} where a, b ∈ Nil(R)∗ and c ∈ U(R). Then the subgraph
induced by A is isomorphic to K3, a contradiction. Thus, |Nil(R)∗| = 1.

Now, we have two following cases.
Case 1. Z(R) = Nil(R). Since |Z(R)∗| = 1 < ∞, R is an Artinian (indeed R is

finite). By [3, Theorem 8.7] there exists a positive integer n such that R ∼= R1×· · ·×Rn,
where each Ri, 1 ≤ i ≤ n, is an Artinian local ring. If n ≥ 2, then Z(R)∗ ≥ 2, a
contradiction. So we may assume that R is an Artinian local ring. This, together [8,
Example 1.5], implies that R ∼= Z4 or Z2[x]

<x2>
and so ΓN(R) ∼= K1,2.

Case 2. Z(R) 6= Nil(R). Since ω(ΓN(R)) = 2 and by Remark 2.1, every x ∈
Nil(R)∗, x is adjacent to all non-zero elements of R, we have only to show that
|Z(R)| =∞. To get a contradiction, let |Z(R)| <∞. Then by [3, Theorem 8.7], we
may write R ∼= R1 × · · · ×Rn, where Ri is an Artinian local ring, for every 1 ≤ i ≤ n.
Since Z(R) 6= Nil(R), we have n ≥ 2. Also, since R is non-reduced, without loss
of generality, we can suppose that a ∈ Nil(R1)∗. Consider φ = {x, y, z}, where
x = (a, 0, . . . , 0), y = (1, 0, . . . , 0), z = (0, 1, 0, . . . , 0). Then the subgraph induced
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by φ in ΓN(R) is isomorphic to K3, a contradiction. Thus, |Z(R)| = ∞ and so
ΓN(R) ∼= K1 ∨K∞ and the proof is complete. �
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