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A NEW METHOD TO SOLVE DUAL SYSTEMS OF FRACTIONAL
INTEGRO-DIFFERENTIAL EQUATIONS BY LEGENDRE
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ABSTRACT. The method that will be presented, is numerical solution based on
the Legendre wavelets for solving dual systems of fractional integro-differential
equations (FIDEs). First of all we make the operational matrix of fractional order
integration. The application of this matrix is transforming FIDEs to a system of
algebric equations. By this changing, we are able to solve it by a simple solution. In
this way, the Legendre wavelets and their operator matrix are the most important
keys of our solution. After explaining the method we test on some illustrative
examples which numerical solutions of these examples demonstrate the validity and
applicability of suggested method.

1. INTRODUCTION

Nowadays using fractional calculus has valuable usages in some fields of science
and engineering. The study of dual systems of FIDEs have many applications in
engineering, biomechanice and other scientific divisions. Dual systems of FIDEs also
appear in modeling some of chemical and material engineering processes [8, 13, 15].
In most cases obtaining an analytical solution of FIDEs is impossible or so difficult.
Thus, various procedures for obtaining approximate solutions of this kind of equations
have attracted the attentions of many researchers.

In recent years, several numerical methods have been devoted for solving FIDEs
but they are not properly applied to solve dual systems of FIDEs [1,4,18]. The
greatest information that we can obtain from this case, is studing of papers that have
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been presented by various methods to arrive to an approximate solution. One of
these methods is wavelet method [20]. Wavelets are generally a family of oscillatory
functions which can be used to obtain approximate solutions of unknown functions
[12]. There are many methods for solving FIDEs, by helping of wavelets; for instance
take a look at [2,9,11,22]. The application of wavelets is significant in many scientific
disciplines, such as time-frequency analysis, signal processing and numerical analysis
3].

This paper is based on Legendre wavelets that are a special type of wavelets
that successfully have passed the exams in system analysis, system identification,
optimal control and numerical solutions of differential and integral equations. Legendre
wavelets are based on Legendre polynomials. From numerical point of view, wavelets
have a closer and more accurate approximation than Legendre polynomials [17]. In
the study of various methods for numerical solution of systems of FIDEs, we find that
the wavelets method has been used less. Therefore, we have chosen the method of
the Legendre wavelets for numerical solution of systems of FIDEs. We now apply the
Legendre wavelets method to solve the following dual system [21]:

{Drf(:v) = u(w, f(2), 9(x)) + Jy u2(t, £(2), 9(1))dt,
Dsg(m) = Ul(xa f(l'),g(l‘)) + f()aj v2(t7 f<t>7g(t))dt:

where z,t € [0,1], r,s € (0,1], and D", D* display the Caputo derivative operator.

2. LEGENDRE WAVELETS AND THEIR FUNCTIONAL PROPERTIES

2.1. Legendre wavelets. Legendre wavelets are defined on [0,1) as [10]:

1 n—1 n+1
G ST o

2
wnm(x) ==
0, otherwise,
wheren =1,2,..., 2 a=2n—1,m=0,1,2,...,M—1, k, M € N, m is the degree
of the Legendre polynomials and L,,(z) are the well-known Legendre polynomials of

order m that are defined on the interval [—1,1] and satisfy the following recursive
formula

Lo(x) =1, Lyi(z)=rx,

2m +1 m
Lm-i—l(x) = ( m+1 >me(x) - (W)Lm—l(m)a m = 1727 s

2.2. Function approximation. The Legendre wavelet series representation of the
function f(z) defined over [0,1) is given by

(2.1) f(z) = fj i U () = AT (),

n=1m=0
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where a,,, = (f(x), Ynm(x)) and (-, -) denotes the inner product. If the infinite series
n (2.1) is finited, (2.1) can be written as

2k=1 pr—q

(2.2) F@) = Y > umtum(x) = ATU(2),

n=1 m=0
where A and ¥(x) are 2871 M x 1 matrices given by

T
a10,A11y -+ - al(M_l), a20, A21, .« - - ,GQ(M_l), ceey Qok—10, Aok—171, . . . ,a2k—1(M71)

V(@) =[ta0(e). V0 @), Vrqaro (), (o) Vn (@), ar- 2,

A:

T
Vor-19(), Yor—11(2), . .. 7¢2k1(M—1)(55)] .
For simplicity, (2.2) can be rewritten as

o~

f(x) ~ ﬁ:laiwm — AT () = (o),

where a; = Upm, Y5 = U, ' = 28"TM i = M(n—1)+m+1. Obtain the collocation
points as
1—0.5
n/
We define the Legendre wavelets matrix as

o =[9 (55) () v () v (5) ]

3. OPERATIONAL MATRIX OF THE INTEGRATION FOR LEGENDRE WAVELETS

. i=1,2,--- 2810

xT; =

3.1. Preliminaries and natations. In this section, we first present some definitions
and basic concepts that have the most applications in this paper [19].

Definition 3.1. The Reimann-Liouville fractional integral operator of order v > 0 is
a function defined as

1 e -
- Lt | @t v >0
f(l’), v =0,

where I'() is the gamma function as
[(y) = / e tdt.
0
Definition 3.2. The Caputo fractional derivative of order v > 0 is defined as

1 T
[ (z =) (), v>0,n—1<vy<n,
D) = § 4l 1) /

=n
d;[‘n ) ’y )
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where z € [0,00), and n = 1,2,3,. ..

For = > 0 the Caputo derivative and Reimann-Liouville integral operator have the
following relationships

DT (@) = (),
§ 10

(3.1) "D f(z -> 2" o n—1<y<n.

m=0

3.2. Operational matrix of the fractional integration. Here the main goal is to
get the fractional-order Legendre wavelets operational matrix of integration. For this
purpose, we have to define the set of Block puls functions (BPFs) as follows [16]

;

< —
bZ<I>: ) o _l'<n/7
0, otherwise,

where i = 1,2,...,n/, and n’ = 2F"1 /.
The BPFs have two properties which will be used later

0, i # 7,
1 .
T E? =17,
/ bi(2)b;(2)dz =
0
0, i

Definition 3.3. Let C = [c1,¢o,...,cv]T and D = [dy, da, . .., d,]T be two matrices
n’ x n', then we define that C ® D = [c1dy, cady, . . ., cd,y]T.

Lemma 3.1. Suppose that g(z) and h(zx) are two functions defined on L*[0,1] as
we have g(x) = GT B, (z) and h(z) = H' By/(x), where GT = [g1, 99, ..., 9|, H' =
[hi, ha, ..., hy] and Bu(x) = [by, by, ..., by]T, then we have

(3.2) g(x)h(z) =GT Byy(z)H" By (z) = (G @ H) B,y (),
(3.3) 9(2)* =(G" By(x))* = (G")* B (x).

Proof. By using the properties of BPFs, the proof is obvious. [l

The fractional integration of order v in Reimann-Liouvill concept can be expressed
as [5]

(3.4) I"B,/(z) ~ R"B(x),
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where R” is the BPFs operational matrix with

1 & & - &w]
01 & - &Swoo
11 |00 1 - &g

RV = — =
n” T'(y+2) 00 0 - &Gual|>
00 0 - 1|

and & = (k+ 1) =2k (k-1 k=1,2,....n/ — 1.
We now derive the Legendre wavelets operational matrix of the fractional integration.
The integration of Legendre wavelets U, (z) can be obtained as

(35) I\Ijn/ (.Z') = /x \Ifn/<7'>d7' ~ qn/Xn/\I/n/<l’),
0

where the n/-square matrix ¢, is called Legendre wavelets operational matrix and

Q) is called Legendre wavelets fractional integral operational matrix and achived
by

(3.6) I () R Gy (@)
the Legendre wavelets can be expanded into n’-set BPFs as
(3.7) Wy (1) % Gutset B (),
we get [6] from (3.4), (3.6) and (3.7)
G Wt (2) AT W (2) % Tt Bar () = Gutoe T Bt (2) & Gy B B (1)
R s B Gt ().

Finally, we conclude from (3.6) ¢}, & ¢nxn R7V L .

In general, the matrix ¢,/ «,s counted in the below form
L 0 0 -+ 0
0O L 0 - 0
¢n’><n’ =100 L - 0 )
00 0 --- L

where L is a M x M matrix given by [7]

() w0

L= Y (anf) (G (;;,) - <Z —n9.5)

’ 1 . 3 . . 71— 0.5
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The six basis functions are by
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2Plo(ﬂﬂ) = \/57

w11($)—\/6(43§'—1), 0§3§'<%,
Y1a(z) = V10(2422 — 122 + 1),

¢20($) = \/57

o1 () = V6(4r — 1), %§x<1,
Voo () = /10(2422 — 362 4 13).

Here, we present the matrices R”, ¢« and ¢” for k = 2, M = 3, n = 1,2,
m = 0,1,2, v = 0.6 and using the collocation points z; = i’ng'f’, i=1,2,...,n,
n' = 2k=1M. Clearly, we have:

[0.23872  0.24622 0.17586 0.14847 0.13201 0.12061]
0 0.23872 0.24622 0.17586 0.14847 0.13201
06 _ 0 0 0.23872 0.24622 0.17586 0.14847
0 0 0 0.23872 0.24622 0.17586| "’
0 0 0 0 0.23872 0.24622
0 0 0 0 0 0.23872
[ 1.41421  1.41421 1.41421 0 0 0 |
—1.63299 0 1.63299 0 0 0
~ | 0.52705 —1.58114 0.52705 0 0 0
Poxo = 0 0 0 1.41421  1.41421 1.41421}°
0 0 0 —1.63299 0 1.63299
0 0 0 0.52705 —1.58114 0.52705
[0.45856  0.18277 —0.02360 0.47845 —0.07337 0.01977 ]
—0.14723 0.15079  0.12261  0.06705 —0.03495 0.01469
06 | —0.05571 —0.09082 0.10681 —0.04913 0.00096  0.00190
= 0 0 0 0.45856  0.18277 —0.02360] -
0 0 0 —0.14723 0.15079  0.12261
0 0 0 —0.05571 —0.09082  0.10681 |

3.3. Error analysis. The following theorem presents the error analysis of the Le-
gendre wavelets approximation function. By increasing values of k and M the error
gets closer to zero. As you will see, solved examples confirm this sentence. So, we
say surely the mentioned method and its approximation function will be successfully

responsive for solving examples of the discussed subject.

Theorem 3.1 ([14]). Suppose f(z) € C2[0,1] and f(z) is the best approzimation of
f(z), then we have for these two functions defined in (2.1) and (2.2):

~

lefllz = llerror(f(2))ll2 = 1/ (z) = f()[l2 = o

c

:W>O ask—)oo,]\/[—>oo.
: c

1
(M!2Mk> ’
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4. NUMERICAL EXAMPLES

In this section, we are going to solve two numerical examples by using the proposed
method in Section 3, Also, we will compare their approximate and exact solution from
graphical and numerical point of view. The numerical results show these performance
of the mentioned method.

Example 4.1 ([21]).

1, 1 e
wy PO = 3@ g+ 5= [Le0roR o<,
Dg(x) = g*(a) + f*(x) = [ glt)dt, 0<s<1,

with the initial conditions f(0) = 1 and ¢g(0) = 0. Exact solutions for the above
coupled systems when r = s = 1 are obtained by f(x) = cosz and g(x) = sinz, the
exact solutions of f(z) and g(x) for r,s € (0,1) are unknown.

Let

D" f(z) = Ay W (x),
(4.2) i o
Dég(z) = E, )V, (),
where AL, = [ay,a9,a3,...,a,] and EL, = [e},eq,€3,...,ey]. By using the initial

conditions and (3.1), (3.6), (3.7) and (4.2), we have

fl@) = I"D"f(z) + f(0) & Angr s Vo () + 1
(4.3) ~ AT o B (@) + (L, o e
g9(x) = I'Dg(x) + 9(0) & Ep V() R B @y G s B ().
Then, by using (3.2), (3.3), (3.5) and (4.3), we obtain
P2 (@) R A @y sens b s ) B (€) + 245 @ s b s B () + [1, 1 L
9°(@) (B On o) B (),

| 90t~ [ Bl V() & EL 1 b Buo(e),
9(@) (&) =BG s Or et Br (2)) (ARG s Gr e B () + 1)
(E Gyt sent Pt et @ Al Gt st Ot et ) Brr () + EL Qo st O et Bt (),

905 @0t~ [ (BLinbwon © ALgirsusr) Bur (t)d
+/ BTG ursens B (1)t
(En’qn xn! ¢n rxn! & An’Qn xn! n’Xn’)/O Bn'<t>dt

’qn><n¢n><n / B
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(45) (En’qn xn' ¢n 'xn! & An’qn xn' ¢n ><n / ¢n xn' ( )dt

+ ( ’qn xn' ¢7’b xn/ / an xn' (t)dt
(E ’qn xn'/ an’ n’ & A ’qn xn'/ Cbn’xn ) n Xn’Qn’Xn ¢TL X”'Bn/( )
+ B bn s B ().

By replacing (3.7), (4.2)—(4.4) and (4.5) into (4.1), and also according to the
properties of BPFs, we conclude

AZ’QSN’XTL’ = _7(14 ’qn’Xn’¢n’Xn’)2 n’qn xn! ¢n xn/
’qn ><n’¢n xn/ ( 'n/qTSL'XTL an 'xn! & An’qn xn' ¢n’><n’
(46) /qn xn' an xn/ )(bn Xn’qn xn'/ ¢n xn'
E77;/¢n/><n/ = ( /qn xn/ ¢n ><n) ( ’qn xn/ ¢n ><n) +2A ’qn xn/ ¢n/xn/
ETLerL—tfn ¢n’><n’ _l_ [1717 71]1><n’~

(4.6) is now a system of nonlinear algebric equations which is a transformed type
of (4.1). It has 2n’ unknown coefficients, A; and E;, which we can find them and the
numerical solutions of f(x) and g(x) by solving this system by presented numerical
method.

The approximate solutions obtained by using the proposed method and also absolute
error value for different values k, M, r, s and x in the Tables 1 — 3 have been shown.
From Tables 1-3 and Figures 1-5 we can see that by increasing k£ and M the numerical
solutions converge to the exact solutions, specially when r, s — 1.

TABLE 1. Numerical results of the Example 4.1 for k = 2, M = 6,
'=2F1NM =12,i=1,2,3,...,n, and different values r and s.

T, = 1_73‘5 r=0.7,s=07 r=0.8,5s=028 r=09,s=09 |r=1,s=1 Ecact solution
f(=), g(x) f (@), g(x) I (@), g(x) f(x), 9(=) f(=), g(z)

z1 = 0.04167 | 0.98729,0.11185 | 0.99339,0.08097 | 0.99660,0.05817 | 0.99827,0.41546 | 0.99913,0.04166
x2 = 0.12500 | 0.95593,0.24847 | 0.97390,0.19959 | 0.98486,0.15830 | 0.99136,0.12435 | 0.99220,0.12467
x3 = 0.20833 | 0.91290,0.34846 | 0.94327,0.29703 | 0.96398,0.24904 | 0.97758,0.20629 | 0.97838,0.20683
x4 = 0.29167 | 0.86384,0.42851 | 0.90475,0.38190 | 0.93530,0.33342 | 0.95704,0.28680 | 0.95777,0.28755
x5 = 0.37500 | 0.81126,0.49298 | 0.86008,0.45627 | 0.89968,0.41195 | 0.92988,0.36531 | 0.93051,0.36627
ze¢ = 0.45833 | 0.75698,0.54381 | 0.81063,0.52091 | 0.85786,0.48458 | 0.89628,0.44128 | 0.89679,0.44245
x7 = 0.54167 | 0.70249,0.58196 | 0.75760,0.57604 | 0.81054,0.55109 | 0.85648,0.51418 | 0.85685,0.51556
xg = 0.62500 | 0.64909,0.60799 | 0.70209,0.62168 | 0.75844,0.61113 | 0.81076,0.58351 | 0.81096,0.58510
x9 = 0.70833 | 0.59794,0.62222 | 0.64516,0.65768 | 0.70224,0.66435 | 0.75944,0.64878 | 0.75945,0.65057
z10 = 0.79167 | 0.55009,0.62485 | 0.58783,0.68380 | 0.64269,0.71035 | 0.70287,0.70954 | 0.70266,0.71153
11 = 0.87500 | 0.50650,0.61613 | 0.53112,0.69978 | 0.58050,0.74871 | 0.64145,0.76535 | 0.64100,0.76754
12 = 0.95833 | 0.46802,0.59639 | 0.47601,0.70530 | 0.51646,0.77900 | 0.57560,0.81583 | 0.57488,0.81823
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TABLE 2. Numerical results of the Example 4.1 for k = 6, M = 3,
n =21M =96,i=1,2,3,...,n, and different values r and s

i—0.5

T = 7 r=0.85,s=085|r=09,s=09 r=095s5s=09 |r=1,s=1 Ecact solution
f(=), g(x) f(=), g(x) f(z), g(@) f(=), g(x) f(@), g(x)

rg = 0.07813 | 0.99150,0.12072 0.99393,0.10459 | 0.99568,0.09043 0.99694,0.07804 | 0.99695,0.07805
z16 = 0.16146 | 0.97100,0.22197 0.97769,0.19983 | 0.98292,0.17943 0.98698,0.16075 | 0.98699,0.16076
x24 = 0.24479 | 0.94160, 0.31225 0.95307,0.28786 | 0.96250,0.26449 0.97018,0.24234 | 0.97019,0.24235
x32 = 0.32813 | 0.90481,0.39397 0.22105,0.36986 | 0.93492,0.34583 0.94664, 0.32226 | 0.94665,0.32227
x40 = 0.41146 | 0.86177,0.46779 0.88241,0.44602 | 0.90064,0.42322 0.91653,0.39993 | 0.91654,0.39995
x48 = 0.49479 | 0.81349,0.53383 0.83787,0.51619 | 0.86010,0.49628 0.88006,0.47483 | 0.88007,0.47485
z56 = 0.57813 | 0.76090,0.59198 0.78813,0.58007 | 0.81378,0.56461 0.83748,0.54643 | 0.83749,0.54645
ze4 = 0.66146 | 0.70490, 0.64202 0.73389,0.63733 | 0.76217,0.62776 0.78910,0.61424 | 0.78910,0.61427
x72 = 0.74479 | 0.64638,0.68365 0.67585,0.68758 | 0.70579,0.68530 0.73523,0.67779 | 0.73523,0.67782
xgo = 0.82813 | 0.58625,0.71652 0.61477,0.73042 | 0.64520,0.73680 0.67626,0.73663 | 0.67626,0.73666
xgg = 0.91146 | 0.52539,0.74023 0.55138,0.76544 | 0.58097,0.78185 0.61260,0.79036 | 0.61259,0.79040
z96 = 0.99979 | 0.46474,0.75438 0.48647,0.79219 | 0.51373,0.82002 0.54469, 0.83861 | 0.54468,0.83865

959

TABLE 3. Absolute error relevant to Tables 1 and 2 whenr =s =1

[z | e 2 EE & |
r1 | 8.6311e — 04 | 1.0824e — 04 || zg | 1.3409e — 05 | 3.1776e — 06
Ty | 8.4048e — 04 | 3.2442¢ — 04 || 14 | 1.2897¢ — 05 | 6.5587e — 06
r3 | 7.9451e — 04 | 5.3968e — 04 || x94 | 1.2015e — 05 | 9.9213e — 06
Ty | 7.2457e — 04 | 7.5337e — 04 || 32 | 1.0753e — 05 | 1.3255e¢ — 05
x5 | 6.3022e — 04 | 9.6491e — 04 || 49 | 9.1071e — 06 | 1.6552e — 05
g | 5.1122e — 04 | 1.1739e — 03 || 248 | 7.0736e — 06 | 1.9807e¢ — 05
x7 | 3.6749e¢ — 04 | 1.3801e — 03 || 56 | 4.6529¢ — 06 | 2.3020e — 05
rg | 1.9913e — 04 | 1.5838e — 03 || wg4 | 1.8473e — 06 | 2.6198e — 05
Tg |6.3200e — 06 | 1.7858e — 03 || w72 | 1.3399e — 06 | 2.9357e¢ — 05
210 | 2.1069e — 04 | 1.9875e — 03 || wgo | 4.9047e — 06 | 3.2527e¢ — 05
x11 | 4.9169e — 04 | 2.1913e — 03 || xgg | 8.8442¢ — 06 | 3.5751e — 05
12 | 7.1658¢ — 04 | 2.4006e — 03 || wgg | 1.3158e — 05 | 3.9088e — 05

Ezxample 4.2 ([21]).

D" f(x)
D?g(x)

(4.7)

1

?

3

2

= 9(@)f(2) — gla) + 1 — [3Tglt) — 20 (D).
— 9@ f(@) + 3 (@) + 2/ () — [Tlg0) + F(B)t

0<r<,

0<s< 1,

with the initial conditions f(0) = 0 and ¢g(0) = 0, exact solutions for the above coupled
systems when r = s = 1 are obtained by f(x) = z and g(x) = 2%. The exact solutions



960

0.9

0.8

0.7

0.6

0.5

a9

0.4

0.3

0.2

0.1

—O— Exact f(x)
—*%—s=1

—¥*—s=0.9
——s=0.8
—8—s=0.7

0.4

0.6

0.8 1

0.9

0.8

0.6

0.5

0.4

R. KAVEHSARCHOGHA, R. EZZATI, N. KARAMIKABIR, AND F. M. YAGHOBBI

—O6— Exact g(x)
—%—r=1

—*%—r=0.9
—0—r=08
—8—1r=0.7

0.2

0.4

F1GURE 1. Numerical solution for different values of r and s when
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FIGURE 4. Numerical solution for different values of r and s

k=3, M =4 and n = 16.
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FiGUurRE 5. Numerical solution for different values of r and s when
k=4, M =5 and n' = 40.

of f(z) and g(x) for r,s € (0,1) are unknown. Let

D f(x) ~ AL W, (z
Doy(a) ~ LW (x).
where AL, = [ay, as,a3,...,a,] and EL = [e, ea, €3, ..., eu].

By using the initial conditions and (3.2), (3.6), (3.7) and (4.8) we have

(4.9) f(:L’) = ITDrf(x) + f( ) ~ T/QZ xn'an’( ) Al /Gt sen (bn’xn’Bn’(x)v
9(x) = I°D*g(x) + g(0) = ELq5r s Vo (2) R Bl G Ot s B ().

So, by using (3.2), (3.3), (3.5) and (4.9), we obtain

g(l’)f(l’) z(E'n,’Q'rz’Xn’gbn ><n’B ( ))(An’Qn’Xn’¢n’Xn’Bn’(l’))

(4.10) (E Gy sy Pt et ® AJ) w2 @t Pt st ) Brr (),
(411> fZ(x) (A ’qn ><n/¢n’><n’B ( )) - ( n’qn xn' ¢n xn) n/(ZL’),
/1- F(t)dt ~ / AL, W (1) dt = qnn/ U, (1) dt
0
(412) NA ’qn Xn’qn Xn’\II( ) A ’q'rlztznn’(bn'Xn'Bn/( )7

(4.13) / £)dt ~ /E,qmn w(£)dt 2 ELGLES 6 B ().
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By replacing (3.7) and (4.8)—(4.13) into (4.7), we obtain

(4.14)

AL ¢ B () =

T _
En/¢n’><n’ -

1
g(En’qz/xn’¢n’Xn’ ® Ag/q;'xn'gﬁn’Xn’)Bn’

E ’qn xn/ ¢n’xn’Bn’< )

ET 1+s

n' Q! xxn!

¢n/><n/Bn ( ) + 2AL
1
~(BL s Onrnt @ ALy G ) B

3 1
+7( ’qn xn' ¢n ><n)
BTG b B () —

1,1,1,.
1+r

()

71]1><n’Bn’(x>
A/ sxn/ ¢n/><n/Bn/<:U)7

()

n’ ( ) + 2A /qn xn/ ¢H'XH'BH'(m)

AL g Gt Bt ().
According to the properties of BPFs and (4.14) we have

AL bnrsen = ;(E B Pt @ AL Prrent) = By @i e Pt
FL L i = Bty bt + 2475405 b

Ebnrsn = ;(Eg;qz/xn@n’xn’ @ AL Qs Prrsenr) + 1( Tt rr et )
A2AL G s st — B brrscns — AT/qifm O e -

TABLE 4. Numerical results of the Example 4.2 for k = 2, M = 6,
"= 12 and different values r and s.

r=0.7,s=07
f(z), g(z)

r=0.8,s=0.8
f(x), g(x)

r=0.9,s=09
f(z), g(z)

r=1,s=1
f(=), g(=)

Ecact solution

f(=), g(x)

0.11157,0.02570

0.08101,0.01331

0.05826,0.00681

0.04162,0.00345

0.04167,0.00174

0.24734,0.08992

0.19985, 0.05289

0.15887,0.03048

0.12485,0.01729

0.12500,0.01563

0.34747,0.17865

0.29849,0.11560

0.25105,0.07284

0.20808, 0.04499

0.20833, 0.04340

0.43049, 0.28039

0.38662,0.19511

0.33858,0.13148

0.29130, 0.08656

0.29167,0.0851

0.50203,0.39010

0.46725,0.28816

0.42265, 0.20501

0.37452,0.14198

0.37500, 0.14063

0.56500, 0.50429

0.54192,0.39228

0.50386, 0.29232

0.45773,0.21126

0.45833,0.21007

0.62123,0.62019

0.61160, 0.50541

0.58259, 0.39247

0.54094, 0.29439

0.54167,0.29340

0.67207,0.73553

0.67698,0.62570

0.65908, 0.50455

0.62415,0.39137

0.62500, 0.39063

0.71856, 0.84840

0.73855,0.75142

0.73351,0.62770

0.70736, 0.50221

0.70833,0.50174

0.76163,0.95723

0.79675,0.88091

0.80600, 0.76104

0.79057,0.62689

0.79167,0.62674

0.80212,1.06071

0.85194,1.01260

0.87667,0.90368

0.87377,0.76541

0.87500, 0.76563

2 = i:LO/.B
1 = 0.04167
zo = 0.12500
z3 = 0.20833
x4 = 0.29167
x5 = 0.37500
ze = 0.45833
x7 = 0.54167
xg = 0.62500
xg = 0.70833
o = 0.79167
z11 = 0.87500
z12 = 0.95833

0.84082,1.15789

0.90445,1.14498

0.94558,1.05471

0.95697,0.91778

0.95833,0.91840




964 R. KAVEHSARCHOGHA, R. EZZATI, N. KARAMIKABIR, AND F. M. YAGHOBBI
TABLE 5. Numerical results of the Example 4.2 for k = 6, M = 3,
n' = 96, for i = 8,16, 24,...,96, and different values r and s.
r=0.85 r = 0.90 r =0.95 r=1
T; = Z:lo,'s s =0.85 s =0.90 s=0.95 s=1 Exact solution
f(@), g(x) f(x), g(x) f(x), g(x) f(@), g(z) f(x), g(x)
xg = 0.07813 | 0.12072,0.01712 | 0.10466,0.01221 | 0.09051,0.00867 | 0.07812,0.00613 | 0.07813,0.00610
x16 = 0.16146 | 0.22252,0.05872 | 0.20055,,0.45011 | 0.18013,0.03434 | 0.16146,0.02609 | 0.16146,0.02607
w94 = 0.24479 | 0.31477,0.11879 | 0.29056,0.09507 | 0.26714,0.07568 | 0.24479,0.05995 | 0.24479,0.05992
z32 = 0.32813 | 0.40070,0.19461 | 0.37657,0.16072 | 0.35221,0.13191 | 0.32812,0.10769 | 0.32813,0.10767
x40 = 0.41146 | 0.48172,0.28420 | 0.45943,0.24076 | 0.43578,0.20252 | 0.41145,0.16932 | 0.41146,0.16930
x4 = 0.49479 | 0.55863,0.38597 | 0.53961,0.33418 | 0.51805,0.28702 | 0.49478,0.24484 | 0.49479,0.24482
w56 = 0.57813 | 0.63198,0.49845 | 0.61741,0.44006 | 0.59916,0.38499 | 0.57811,0.33424 | 0.57813,0.33423
x64 = 0.66146 | 0.70212,0.62030 | 0.69306,0.55752 | 0.67920,0.49602 | 0.66144,0.43754 | 0.66146,0.43753
@72 = 0.74479 | 0.76936,0.75018 | 0.76670,0.68568 | 0.78823,0.61968 | 0.74478,0.55472 | 0.74479,0.55471
zs0 = 0.82813 | 0.83390,0.88680 | 0.83845,0.82367 | 0.83628,0.75556 | 0.82811,0.68579 | 0.82813,0.68579
xgg = 0.91146 | 0.89595,1.02884 | 0.90839,0.97059 | 0.91339,0.90321 | 0.91144,0.83075 | 0.91146,0.83076
w96 = 0.99479 | 0.95568,1.17499 | 0.97659,1.12551 | 0.98958,1.06215 | 0.99477,0.98960 | 0.99479,0.98961

TABLE 6. Absolute error relevant to Tables 4 and 5 when r = s =1

2 |e < [EE & |
x1 | 4.9582¢ — 05 | 1.7179e — 03 || xg | 1.4528e — 06 | 2.6604e — 05
g9 | 1.5141e — 04 | 1.6686e — 03 || w16 | 3.0835e¢ — 06 | 2.5657e — 05
3 | 2.5823e — 04 | 1.5927e¢ — 03 || wo4 | 4.7883e — 06 | 2.4283¢ — 05
x4 | 3.6945e — 04 | 1.4885¢ — 03 || 32 | 6.5581e — 06 | 2.2451e — 05
x5 |4.8451e — 04 | 1.3539¢ — 03 || x40 | 8.3847e¢ — 06 | 2.0132e — 05
g | 6.0291e — 04 | 1.1872e — 03 || w4g | 1.0261e — 05 | 1.7294e — 05
x7 | 7.2421e — 04 | 9.8598e — 04 || 56 | 1.2179e¢ — 05 | 1.3901e — 05
g | 8.4799¢ — 04 | 7.4813e — 04 || weq | 1.4134e — 05 | 9.9173e — 06
Tg | 9.7387e — 04 | 4.7122e — 04 || 272 | 1.6120e — 05 | 5.3045e — 06
210 | 1.1015e — 03 | 1.5269e — 04 || xgo | 1.8131e — 05 | 2.1047e — 08
211 | 1.2305e — 03 | 2.1017e — 04 || xgg | 2.0162e¢ — 05 | 5.9769¢ — 06
212 | 1.3606e — 03 | 6.2023e — 04 || w96 | 2.2208¢ — 05 | 1.2736e — 05
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FIGURE 6. Numerical solution for different values of r and s, when
k=2 M =6 and n = 12.
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FIGURE 7. Numerical solution for different values of » and s when
=6, M =3 and n' = 96.
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FIGURE 8. Numerical solution for different values of r and s when
k=3, M =4 and n' = 16.
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FIGURE 9. Numerical solution for different values of » and s when
k=3, M =4 and n' = 16.
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—©6— Exact g(x) —©6— Exact f(x)
—>%—s=1

—%—s=0.98
—4—5=0.96

—8—s=0.94

Ficurge 10. Numerical solution for different values of r and s when
k=4, M =5 and n' = 40.

5. CONCLUSION

The main purpose of the presented article is introducing Legendre wavelets method

for resolving coupled systems of FIDEs. As you saw, the numerical results obtained
here, confirm its high accuracy degree.

The most noticeable profit of the mentioned method is converting complicated

equations to simple ones, like we performed on examples. One of the best benefits
of this procedure is having high exactness that you may have been recognized it
according to the tables and figures.
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