Kragujevac Journal of Mathematics Volume 51(4) (2027), Pages 547–556.

EQUIDISTANT DIMENSION OF JOHNSON AND KNESER GRAPHS

JOZEF KRATICA¹, MIRJANA ČANGALOVIĆ², AND VERA KOVAČEVIĆ-VUJČIĆ²

ABSTRACT. In this paper the recently introduced concept of equidistant dimension $\operatorname{eqdim}(G)$ of graph G is considered. Useful property of distance-equalizer set of arbitrary graph G has been established. For Johnson graphs $J_{n,2}$ and Kneser graphs $K_{n,2}$ exact values for $\operatorname{eqdim}(J_{n,2})$ and $\operatorname{eqdim}(K_{n,2})$ have been derived, while for Johnson graphs $J_{n,3}$ it is proved that $\operatorname{eqdim}(J_{n,3}) \leq n-2$. Finally, the exact value of $\operatorname{eqdim}(J_{2k,k})$ for odd k has been presented.

1. Introduction and Previous Work

The set of vertices S is a resolving (or locating) set of graph G if all other vertices are uniquely determined by their distances to the vertices in S. The metric dimension of G is the minimum cardinality of resolving sets of G. Resolving sets for graphs and the metric dimension were introduced by Slater [9] and, independently, by Harary and Melter [7]. The concept of doubly resolving set for G has been introduced by Caceres et al. [3].

However, recently, several authors have turned their attention in the opposite direction from resolvability, thus trying to study anonymization problems in networks instead of location aspects. A subset of vertices A is a 2-antiresolving set for G if, for every vertex $v \notin A$, there exists another different vertex $w \notin A$ such that v and w have the same vector of distances to the vertices of A [10]. The 2-metric antidimension of a graph is the minimum cardinality of 2-antiresolving sets for G. More about this topic can be found in [4,8].

DOI

Received: April 26, 2025. Accepted: October 28, 2025.

Key words and phrases. Distance-equalizer set, equidistant dimension, Johnson graphs, Kneser graphs.

²⁰²⁰ Mathematics Subject Classification. Primary: 05C12. Secondary: 05C69.

In the same spirit, paper [6] introduces new graph concepts that can also be applied to anonymization problems in networks: distance-equalizer set and equidistant dimension. The authors study the equidistant dimension of several classes of graphs, proving that in the case of paths and cycles this invariant is related to a classical problem of number theory. They also show that distance-equalizer sets can be used for constructing doubly resolving sets, and obtain a new bound for the minimum cardinality of doubly resolving sets of G in terms of the metric dimension and the equidistant dimension of G. In [5] it is proved that the equidistant dimension problem is NP-hard in the general case, and equidistant dimension of lexicographic product of graphs is considered.

1.1. **Definitions and basic properties.** All graphs considered in this paper are connected, undirected, simple, and finite. The vertex set and the edge set of a graph G are denoted by V(G) and E(G), respectively. The order of G is |V(G)|. For any vertex $v \in V(G)$, its open neighborhood is the set $N(v) = \{w \in V(G) \mid vw \in E(G)\}$ and its closed neighborhood is $N[v] = N(v) \cup \{v\}$.

The degree of a vertex v, denoted by $\deg(v)$, is defined as the cardinality of N(v). If $\deg(v)=1$, then we say that v is a leaf, in which case the only vertex adjacent to v is called its support vertex. When $\deg(v)=|V(G)|-1$, we say that v is universal. The maximum degree of G is $\Delta(G)=\max\{\deg(v)\mid v\in V(G)\}$ and its minimum degree is $\delta(G)=\min\{\deg(v)\mid v\in V(G)\}$. If all vertices of G have the same degree r, i.e., $\Delta(G)=\delta(G)=r$, we say that graph G is r-regular. The distance between two vertices $v,w\in V(G)$, denoted by d(v,w), is the leghth of a shortest u-v path, and the diameter of G is $\mathrm{Diam}(G)=\max\{d(v,w)\mid v,w\in V(G)\}$. The set of vertices on equal distances from adjacent vertices u and v is denoted in the literature by uW_v ([2]). In general, the same notation can be used also for non-adjacent vertices, i.e. $uW_v=\{x\in V(G)\mid d(u,x)=d(v,x)\}$.

Let n and k be positive integers (n > k) and $[n] = \{1, 2, ..., n\}$. Then k-subsets are subsets of [n] which have cardinality equal to k. The Johnson graph $J_{n,k}$ is an undirected graph defined on all k-subsets of set [n] as vertices, where two k-subsets are adjacent if their intersection has cardinality equal to k-1. Mathematically, $V(J_{n,k}) = \{A \mid A \subset [n], |A| = k\}$ and $E(J_{n,k}) = \{AB \mid A, B \subset [n], |A| = |B| = k, |A \cap B| = k-1\}$.

It is easy to see that $J_{n,k}$ and $J_{n,n-k}$ are isomorphic, so we shall only consider Johnson graphs with $n \geq 2k$. The distance between two vertices A and B in $J_{n,k}$ can be computed by Remark 1.1.

Remark 1.1. For
$$A, B \in V(J_{n,k})$$
 it holds $d(A, B) = |A \setminus B| = |B \setminus A| = k - |A \cap B|$.

In the special case when n=2k the distance between $\overline{A}=[n]\setminus A$ and B can be computed by Remark 1.2.

Remark 1.2. For $A, B \in V(J_{2k,k})$ it holds $d(\overline{A}, B) = k - d(A, B) = |A \cap B|$.

Considering Remark 1.1, it is easy to see that Johnson graph $J_{n,k}$ is a k(n-k)-regular graph of diameter k.

The Kneser graph $K_{n,k}$ is an undirected graph also defined on all k-subsets of set [n] as vertices, where two k-subsets are adjacent if their intersection is empty set. Mathematically, $V(K_{n,k}) = \{A \mid A \subset [n], |A| = k\}$ and $E(K_{n,k}) = \{AB \mid A, B \subset [n], |A| = |B| = k, A \cap B = \emptyset\}.$

Kneser graph is connected only if n > 2k, it is also $\binom{n-k}{k}$ -regular graph. Specially, for k = 2, Kneser graph $K_{n,2}$ is the complement of the corresponding Johnson graph $J_{n,2}$, and both graphs have diameter 2. Hence, if $d_{K_{n,2}}(A,B) = 1$, then $d_{J_{n,2}}(A,B) = 2$, and vice versa. Therefore, for $A \neq B$ it holds $d_{K_{n,2}}(A,B) = 3 - d_{J_{n,2}}(A,B)$.

Definition 1.1 ([6]). Let $u, v, x \in V(G)$. We say that x is equidistant from u and v if d(u, x) = d(v, x).

Definition 1.2 ([6]). A subset S of vertices is called a distance-equalizer set for G if for every two distinct vertices $u, v \in V(G) \setminus S$ there exists a vertex $x \in S$ equidistant from u and v.

Definition 1.3 ([6]). The equidistant dimension of G, denoted by eqdim(G), is the minimum cardinality of a distance-equalizer set of G

Remark 1.3 ([6]). If v is a universal vertex of a graph G, then $S = \{v\}$ is a minimum distance-equalizer set of G, and so eqdim(G) = 1.

Lemma 1.1 ([6]). Let G be a graph. If S is a distance-equalizer set of G and v is a support vertex of G, then S contains v or all leaves adjacent to v.

Consequently, the following corollary holds.

Corollary 1.1 ([6]). eqdim $(G) \ge |\{v \in V(G) \mid v \text{ is a support vertex}\}|$.

Theorem 1.1 ([6]). For every graph G of order $n \geq 2$, the following statements hold:

- eqdim(G) = 1 if and only if $\Delta(G) = n 1$;
- eqdim(G) = 2 if and only if $\Delta(G) = n 2$.

Corollary 1.2 ([6]). If G is a graph of order n with $\Delta(G) < n-2$, then eqdim $(G) \ge 3$.

Theorem 1.2 ([6]). For every graph G of order n, the following statements hold.

- If $n \geq 2$, then $\operatorname{eqdim}(G) = n 1$ if and only if G is a path of order 2.
- If $n \geq 3$, then eqdim(G) = n 2 if and only if $G \in \{P_3, P_4, P_5, P_6, C_3, C_4, C_5\}$.

Corollary 1.3 ([6]). If G is a graph of order $n \geq 7$, then $1 \leq \operatorname{eqdim}(G) \leq n - 3$.

Proposition 1.1 ([6]). For any positive integer k, it holds that eqdim $(J_{n,k}) \leq n$ whenever $n \in \{2k-1, 2k+1\}$ or $n > 2k^2$.

In [1] the exact value of metric dimension for $J_{n,2}$ for $n \ge 6$ and an upper bound of metric dimension for $J_{n,k}$ for $k \ge 3$ are given.

2. New Results

This section gives new results:

- an useful property of distance-equalizer set of arbitrary graph G;
- the equidistant dimension of $J_{n,2}$, $K_{n,2}$ and $J_{2k,k}$ for odd k;
- a tight upper bound for eqdim $(J_{n,3})$.

In order to illustrate the structure of Johnson and Kneser graphs, Figure 1 and Figure 2 display graphs $J_{5,2}$ and $K_{5,2}$. It should be noted that $K_{5,2}$ is isomorphic to the well-known Petersen graph. By Remark 2.1 in Subsection 2.2 and Theorem 2.4 in Subsection 2.5, the equidistant dimension of both $J_{5,2}$ and $K_{5,2}$ is equal to 3, with the corresponding minimal distance-equalizer set $S = \{\{1,2\},\{1,3\},\{2,3\}\}$.

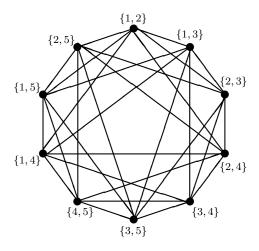


FIGURE 1. Johnson graph $J_{5,2}$

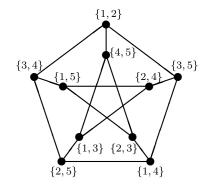


FIGURE 2. Kneser graph $K_{5,2}$

2.1. Some properties of distance-equalizer set of graph G.

Lemma 2.1. Let G be a graph. Set S is a distance-equalizer set of G if and only if $(\forall u, v \in V(G))$ S $\cap (\{u, v\} \cup_u W_v) \neq \emptyset$.

Proof. (\Rightarrow) Case 1: $u \in S$.

Since $u \in S$ and $u \in \{u, v\} \cup {}_{u}W_{v}$, then u is also member of their intersection, i.e., $u \in S \cap (\{u, v\} \cup {}_{u}W_{v}) \neq \emptyset$.

Case 2: $v \in S$.

Similarly as in Case 1, since $v \in S$ and $v \in \{u, v\} \cup {}_{u}W_{v}$, then v is also member of their intersection, i.e., $v \in S \cap (\{u, v\} \cup {}_{u}W_{v}) \neq \emptyset$.

Case 3: $u, v \notin S$.

Since S is a distance-equalizer set of G, and $u, v \in V(G) \setminus S$, then $(\exists x \in S) d(u, x) = d(v, x)$. Therefore, $x \in S$ and $x \in {}_{u}W_{v}$ so $S \cap {}_{u}W_{v}$ is not empty (since it contains x) implying $S \cap (\{u, v\} \cup {}_{u}W_{v}) \neq \emptyset$.

(⇐) Let $S \subset V(G)$ and $(\forall u, v \in V(G))$ $S \cap (\{u, v\} \cup_u W_v) \neq \emptyset$. Suppose that $u, v \in V(G) \setminus S$. From $\emptyset \neq S \cap (\{u, v\} \cup_u W_v) = (S \cap (\{u, v\}) \cup (S \cap_u W_v) = S \cap_u W_v$. It follows that there exists $x \in S$ such that d(u, x) = d(v, x), i.e., S is a distance-equalizer set of G.

Corollary 2.1. Let G be a graph, and u and v any vertices from V(G). If S is a distance-equalizer set of G and $_{u}W_{v} = \emptyset$, then $u \in S$ or $v \in S$.

It should be noted that Lemma 1.1 from [6] is a consequence of Corollary 2.1. Indeed, if v is a support vertex of G and u is one of leaves adjacent to v, it is obvious that

$$(\forall x \in V(G) \setminus \{u\}) \ d(u, x) = d(v, x) + 1$$

and 1 = d(u, v) = d(u, u) + 1, and, therefore, ${}_{u}W_{v} = \emptyset$. If S is a distance-equalizer set of G, by Corollary 2.1, S contains v or all leaves adjacent to v.

2.2. Equidistant dimension of $J_{n,2}$. The exact value of eqdim $(J_{n,2})$ for $n \geq 4$ is given by Remark 2.1 and Theorem 2.1.

Remark 2.1. By a total enumeration, it is found that

- eqdim $(J_{4,2}) = 2$ with distance-equalizer set $S = \{\{1, 2\}, \{3, 4\}\};$
- eqdim $(J_{5,2}) = 3$ with distance-equalizer set $S = \{\{1,2\},\{1,3\},\{2,3\}\}.$

Theorem 2.1. For $n \geq 6$ it holds eqdim $(J_{n,2}) = 3$.

Proof. Step 1: eqdim $(J_{n,2}) \geq 3$.

Since $J_{n,k}$ is k(n-k)-regular graph, so $\Delta(J_{n,k}) = \delta(J_{n,k}) = k(n-k)$. For k=2 it follows that $\Delta(J_{n,2}) = 2(n-2)$. Since $|V(J_{n,2})| = \binom{n}{2} = \frac{n(n-1)}{2}$ it is obvious that for $n \geq 5$ it holds $\Delta(J_{n,2}) = 2(n-2) < |J_{n,2}| - 2 = \frac{n(n-1)}{2} - 2$, so by Corollary 1.2, it follows that eqdim $(J_n) \geq 3$.

Step 2: eqdim $(J_{n,2}) \leq 3$.

Let $S = \{\{1,2\}, \{1,3\}, \{2,3\}\}$. We will prove that set S is a distance-equalizer set by checking all pairs of vertices X and Y from $V(J_{n,2}) \setminus S$.

Case 1: $\{1, 2, 3\} \cap X = \emptyset$ and $\{1, 2, 3\} \cap Y = \emptyset$.

Let $Z = \{1, 2\}$. Then, $d(X, Z) = 2 - |X \cap Z| = 2 = 2 - |Y \cap Z| = d(Y, Z)$.

Case 2: $\{1, 2, 3\} \cap X = \emptyset$ and $\{1, 2, 3\} \cap Y \neq \emptyset$.

Since $Y \notin S$, then $|Y \cap \{1, 2, 3\}| = 1$. Let $Z = \{1, 2, 3\} \setminus Y$. It is obvious that $Z \subset \{1, 2, 3\}$ and |Z| = 2 implying $Z \in S$. Since $\{1, 2, 3\} \cap X = \emptyset$ and $Y \cap Z = \emptyset$ then $d(X, Z) = 2 - |X \cap Z| = 2 = 2 - |Y \cap Z| = d(Y, Z)$.

Case 3: $\{1, 2, 3\} \cap X \neq \emptyset$ and $\{1, 2, 3\} \cap Y = \emptyset$.

This case is analogous as Case 2, only swap sets X and Y.

Case 4: $\{1, 2, 3\} \cap X \neq \emptyset$ and $\{1, 2, 3\} \cap Y \neq \emptyset$ and $X \cap Y \cap \{1, 2, 3\} = \emptyset$.

Let $Z = \{1, 2, 3\} \cap (X \cup Y)$. It is obvious that $Z \subseteq \{1, 2, 3\}$. Since $X, Y \notin S$ then $|X \cap \{1, 2, 3\}| = 1$ and $|Y \cap \{1, 2, 3\}| = 1$ it holds |Z| = 2 so, $Z \in S$. Therefore, $d(X, Z) = 2 - |X \cap Z| = 1 = 2 - |Y \cap Z| = d(Y, Z)$.

Case 5: $\{1,2,3\} \cap X \neq \emptyset$ and $\{1,2,3\} \cap Y \neq \emptyset$ and $X \cap Y \cap \{1,2,3\} \neq \emptyset$.

Since $X, Y \notin S$ it holds $|X \cap Y \cap \{1, 2, 3\}| = 1$. Let $Z = \{1, 2, 3\} \setminus X$. It is obvious that $Z = \{1, 2, 3\} \setminus Y$ and $X \cap Z = Y \cap Z = \emptyset$. Therefore, $d(X, Z) = 2 - |X \cap Z| = 2 = 2 - |Y \cap Z| = d(Y, Z)$.

Since

$$(\forall X, Y \in V(J_{n,2}) \setminus S)(\exists Z \in S)d(X, Z) = d(Y, Z),$$

then S is a distance-equalizer set for $J_{n,2}$ and thus eqdim $(J_{n,2}) \leq |S| = 3$. From Step 1 and Step 2 it holds eqdim $(J_{n,2}) = 3$ for all $n \geq 6$.

2.3. An upper bound of equidistant dimension of $J_{n,3}$. The next theorem gives a tight upper bound of eqdim $(J_{n,3})$ for $n \geq 9$. The remaining cases when $n \in \{6,7,8\}$ are resolved by Theorem 2.3 for n = 6 and Table 1 for n = 7 and n = 8.

Theorem 2.2. For $n \geq 9$ it holds $\operatorname{eqdim}(J_{n,3}) \leq n - 2$.

Proof. Let $S = \{\{1, 2, j\} \mid 3 \leq j \leq n\}$. It can be proved that set S is a distance-equalizer set for $J_{n,3}$, i.e., for each two vertices X and Y from $V(J_{n,3}) \setminus S$, there exists a vertex $Z = \{1, 2, l\}$ from S, such that d(X, Z) = d(Y, Z). We will consider four cases:

Case 1: $\{1,2\} \cap X = \emptyset$ and $\{1,2\} \cap Y = \emptyset$.

It is easy to see that $|\{1,2\} \cup X \cup Y| \le 8$. As $n \ge 9$, then there exists $l \in \{3,4,\ldots,n\}$ such that $l \notin X \cup Y$. Now, for vertex $Z = \{1,2,l\}$ from $S, d(X,Z) = 3 - |X \cap Z| = 3 = 3 - |Y \cap Z| = d(Y,Z)$.

Case 2: $\{1,2\} \cap X \neq \emptyset$ and $\{1,2\} \cap Y \neq \emptyset$.

As $X \notin S$ and $Y \notin S$, then $|\{1,2\} \cap X| = 1$ and $|\{1,2\} \cap Y| = 1$ and, consequently, $|\{1,2\} \cup X \cup Y| \le 6$. As $n \ge 9$, then there exists $l \in \{3,4,\ldots,n\}$ such that $l \notin X \cup Y$. Now, for vertex $Z = \{1,2,l\}$ from S, $d(X,Z) = 3 - |X \cap Z| = 2 = 3 - |Y \cap Z| = d(Y,Z)$.

Case 3: $\{1,2\} \cap X \neq \emptyset$ and $\{1,2\} \cap Y = \emptyset$.

As $X \notin S$, then $|\{1,2\} \cap X| = 1$ and, consequently, $(Y \setminus X) \cap \{1,2\} = \emptyset$ and $|Y \setminus X| \ge 1$. It means that there exists $l \in \{3,4,\ldots,n\}$ such that $l \notin Y \setminus X$. Now, for vertex $Z = \{1,2,l\}$ from S, $d(X,Z) = 3 - |X \cap Z| = 2 = 3 - |Y \cap Z| = d(Y,Z)$.

Case 4: $\{1, 2\} \cap X = \emptyset$ and $\{1, 2\} \cap Y \neq \emptyset$.

This case can be reduced to Case 3.

Based on all previous cases, for each pair of vertices from $V(J_{n,3}) \setminus S$ there exists a vertex $Z \in S$ such that d(X, Z) = d(Y, Z). Therefore, set S is a distance-equalizer set for $J_{n,3}$. As |S| = n - 2, then $\operatorname{eqdim}(J_{n,3}) \leq |S| = n - 2$.

2.4. Equidistant dimension of $J_{2k,k}$, for odd k. Since $\binom{2k}{k}$ is even, then it is possible to make a partitition (P_1, P_2) of $V(J_{2k,k})$, such that $P_1 \cap P_2 = \emptyset$, $P_1 \cup P_2 = V(J_{2k,k})$ and $|P_1| = |P_2| = \frac{1}{2} \binom{2k}{k}$. In the sequel we will use the following partition: $P_1 = \{X \in V(J_{2k,k}) \mid |X \cap \{1,2,\ldots,k\}| > |X \cap \{k+1,k+2,\ldots,2k\}|\}$, and $P_2 = V(J_{2k,k}) \setminus P_1$. It should be noted that for odd k it holds

$$|X \cap \{1, 2, \dots, k\}| \neq |X \cap \{k + 1, k + 2, \dots, 2k\}|,$$

so $P_2 = \{X \in V(J_{2k,k}) \mid |X \cap \{1, 2, \dots, k\}| < |X \cap \{k+1, k+2, \dots, 2k\}| \}$ and, consequently, $|P_1| = |P_2| = \frac{1}{2} {2k \choose k}$.

Theorem 2.3. For any odd $k \geq 3$ it holds $\operatorname{eqdim}(J_{2k,k}) = \frac{1}{2} {2k \choose k}$.

Proof. Step 1: eqdim $(J_{2k,k}) \ge \frac{1}{2} {2k \choose k}$.

Let us consider $\frac{1}{2} \binom{2k}{k}$ pairs of vertices (X,Y) from $V(J_{2k,k})$, such that $X \in P_1$ and $Y = [2k] \setminus X \in P_2$. For any vertex $Z \in V(J_{2k,k})$ it holds $|Z \cap X| + |Z \cap Y| = k$. Since k is odd, $|Z \cap X|$ is odd and $|Z \cap Y|$ is even, or vice versa. Therefore, $|Z \cap X| \neq |Z \cap Y|$ implying $d(X,Z) = k - |Z \cap X| \neq k - |Z \cap Y| = d(Y,Z)$, so ${}_XW_Y = \emptyset$. According to Corollary 2.1, if S is a distance-equalizer set for graph $J_{2k,k}$ then either $X \in S$ or $Y \in S$, for each pair (X,Y). Since the number of pairs is $\frac{1}{2} \binom{2k}{k}$, then $|S| \geq \frac{1}{2} \binom{2k}{k}$.

Step 2: eqdim $(J_{2k,k}) \leq \frac{1}{2} {2k \choose k}$.

We shall prove that P_1 is a distance-equalizer set for $J_{2k,k}$. For any two vertices Y and Z from $P_2 = V(J_{2k,k}) \setminus P_1$, let us construct $X \in P_1$ such that d(Y,X) = d(Z,X). Since |Y| = |Z| = k it follows that $|Y \setminus Z| = |Y| - |Y \cap Z| = |Z| - |Y \cap Z| = |Z \setminus Y|$. Additionally, as $Y, Z \in V(J_{2k,k})$ then $|Y \cap Z| = |\overline{Y} \cap \overline{Z}|$. Let $U_1 = (Y \cap Z) \cup (\overline{Y} \cap \overline{Z})$. It is easy to see that $U_1 \cap Y = U_1 \cap Z$ and $|U_1|$ is even so $k + 1 - |U_1|$ is also even.

Case 1. If $|U_1| < k$, let $a \in U_1$ be an arbitrary index and $U_2 = U_1 \setminus \{a\}$. Let W_1 and W_2 be any subsets of $Y \setminus Z$ and $Z \setminus Y$ of cardinality $\frac{k+1-|U_1|}{2}$ elements, respectively. Now let $U_3 = U_2 \cup W_1 \cup W_2$. It is obvious that $W_1 \subset Y$, $W_1 \cap Z = \emptyset$, $W_2 \subset Z$, $W_2 \cap Y = \emptyset$. Moreover, $|W_1| = |W_2|$, and therefore $|U_3 \cap Y| = |U_2 \cap Y| + |W_1 \cap Y| = |U_2 \cap Y| + |W_1| = |U_2 \cap Z| + |W_2| = |U_2 \cap Z| + |W_2 \cap Z| = |U_3 \cap Z|$.

Case 2. If $|U_1| > k$, let U_3 be any subset of U_1 of cardinality k. It is obvious that $U_3 \subset (Y \cap Z) \cup (\overline{Y} \cap \overline{Z})$ so $|U_3 \cap Y| = |U_3 \cap Z|$.

In both cases $|U_3| = k$ so $U_3 \in V(J_{2k,k})$. Therefore, in both cases $|U_3 \cap Y| = |U_3 \cap Z|$ and hence $d(U_3, Y) = k - |U_3 \cap Y| = k - |U_3 \cap Z| = d(U_3, Z)$.

Finally, we construct X as follows. If $U_3 \in P_1$, then $X = U_3$. Otherwise, if $U_3 \in P_2$, then $X = \overline{U_3} \in P_1$, and by Remark 1.2 it holds $d(\overline{U_3}, Y) = k - d(U_3, Y) = |U_3 \cap Y| = |U_3 \cap Z| = k - d(U_3, Z) = d(\overline{U_3}, Z)$. As, d(Y, X) = d(Z, X) and $X \in P_1$, it follows that P_1 is a distance-equalizer set for graph $J_{2k,k}$. Therefore, eqdim $(J_{2k,k}) \leq |P_1| = \frac{1}{2} {2k \choose k}$.

2.5. Equidistant dimension of $K_{n,2}$. The exact value for eqdim $(K_{n,2})$ is given in Theorem 2.4, and it is equal to eqdim $(J_{n,2}) = 3$.

Theorem 2.4. eqdim $(K_{n,2}) = 3$.

Proof. Step 1: eqdim $(K_{n,2}) \geq 3$.

As stated in Section 1, Kneser graph $K_{n,k}$ is connected only for n > 2k implying that for k = 2 all Kneser graphs $K_{n,2}$ satisfy $n \ge 5$. Similarly as for Johnson graphs, Kneser graph $K_{n,k}$ is $\binom{n-k}{k}$ -regular graph, so $\Delta(K_{n,k}) = \delta(K_{n,k}) = \binom{n-k}{k}$. For k = 2 it follows that $\Delta(K_{n,2}) = \frac{(n-2)(n-3)}{2}$. Since $|K_{n,2}| = \binom{n}{2} = \frac{n(n-1)}{2}$ it is obvious that for $n \ge 5$ it holds 4n > 10 so $(n-2)(n-3) = n^2 - 5n + 6 < n^2 - n - 4 = n(n-1) - 4$ implying $\binom{n-2}{2} < \binom{n}{2} - 2$ which means $\Delta(K_{n,2}) = \binom{n-2}{2} < |K_{n,2}| - 2 = \binom{n}{2} - 2$, so by Corollary 1.2 it follows that eqdim $(K_{n,2}) \ge 3$.

Step 2: eqdim $(J_{n,2}) \leq 3$.

As already noticed $\overline{J_{n,2}} = K_{n,2}$ and $\operatorname{Diam}(J_{n,2}) = \operatorname{Diam}(K_{n,2}) = 2$, so $V(J_{n,2}) = V(K_{n,2})$ and for each two vertices $A, B \in V(K_{n,2})$ with $A \neq B$ it holds $d(A, B) = 3 - d_{J_{n,2}}(A, B)$, where d(A, B) and $d_{J_{n,2}}(A, B)$ are distances between A and B in Kneser graph $K_{n,2}$ and Johnson graph $J_{n,2}$, respectively.

Let $S = \{\{1,2\},\{1,3\},\{2,3\}\}$, and X and Y are any vertices from $V(K_{n,2}) \setminus S$. Since $V(J_{n,2}) = V(K_{n,2})$, and by Theorem 2.1, the same set $S = \{\{1,2\},\{1,3\},\{2,3\}\}$ is proved to be a distance-equalizer set for graph $J_{n,2}$, then

$$(\forall X, Y \in V(J_{n,2}) \setminus S)(\exists Z \in S) d_{J_{n,2}}(X, Z) = d_{J_{n,2}}(Y, Z).$$

It follows that $d(X, Z) = 3 - d_{J_{n,2}}(X, Z) = 3 - d_{J_{n,2}}(Y, Z) = d(Y, Z)$. Therefore, the same set S is also a distance-equalizer set for graph $K_{n,2}$. From Step 1 and Step 2 it holds eqdim $(K_{n,2}) = 3$.

2.6. Some other individual exact values. It is interesting to examine values of eqdim $(J_{n,k})$ and eqdim $(K_{n,k})$ in cases that are not covered by the obtained theoretical results presented above. Table 1 contains such values for Johnson and Kneser graphs up to 84 vertices obtained by a total enumeration. Since Kneser graphs are not connected for n = 2k, graph $K_{8,4}$ is not connected, which is denoted by "-".

n	k	$\operatorname{eqdim}(J_{n,k})$	$\operatorname{eqdim}(K_{n,k})$
7	3	5	5
8	3	8	3
8	4	7	-
9	3	7	3

Table 1. eqdim $(J_{n,k})$ and eqdim $(K_{n,k})$ for $k \geq 3$

3. Conclusions

In this paper, equidistant dimensions of Johnson and Kneser graphs are considered. Exact values eqdim $(J_{n,2}) = 3$, eqdim $(J_{2k,k}) = \frac{1}{2} {2k \choose k}$ for odd k and eqdim $(K_{n,2}) = 3$ are found. Moreover, it is proved that n-2 is a tight upper bound for eqdim $(J_{n,3})$.

Further work can be directed to finding the equidistant dimension of other interesting classes of graphs. Also, it would be interesting to develop exact and/or heuristic approaches for solving the equidistant dimension problem.

References

- [1] R. F. Bailey, J. Cáceres, D. Garioc, A. González, A. Márquez, K. Meagher and M. L. Puertas, Resolving sets for Johnson and Kneser graphs, European J. Combin. **34**(4) (2013), 736–751. https://doi.org/10.1016/j.ejc.2012.10.008
- [2] K. Balakrishnan, M. Changat, I. Peterin, S. Špacapan, P. Šparl and A. R. Subhamathi, Strongly distance-balanced graphs and graph products, European J. Combin. 30(5) (2009), 1048–1053. https://doi.org/10.1016/j.ejc.2008.09.018
- [3] J. Cáceres, C. Hernando, M. Mora, I. Pelayo, M. Puertas, C. Seara and D. Wood, On the metric dimension of Cartesian products of graphs, SIAM J. Discrete Math. 21(2) (2007), 423–441. https://doi.org/10.1137/050641867
- [4] E. Fernández, D. Kuziak, M. Munoz-Marquez and I. G. Yero, On the (k, l)-anonymity of networks via their k-metric antidimension, Sci. Rep. 13 (2023), Article Number 19090. https://doi.org/10.1038/s41598-023-40165-x
- [5] A. Gispert-Fernández and J. A. Rodriguez-Velázquez, The equidistant dimension of graphs: NP-completeness and the case of lexicographic product graphs, AIMS Math. 9(6) (2024), 15325–15345. https://doi.org/10.3934/math.2024744
- [6] A. González, C. Hernando and M. Mora, The equidistant dimension of graphs, Bull. Malays. Math. Sci. Soc. 45(4) (2022), 1757–1775. https://doi.org/10.1007/s40840-022-01295-z
- [7] F. Harary and R. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191–195.
- [8] J. Kratica, V. Kovačević-Vujčić and M. Čangalović, k-metric antidimension of some generalized Petersen graphs, Filomat 33(13) (2019), 4085–4093. https://doi.org/10.2298/FIL1913085K
- [9] P. J. Slater, Leaves of trees, Congr. Numer. 14 (1975), 549–559
- [10] R. Trujillo-Rasua and I. Yero, k-metric antidimension: A privacy measure for social graphs, Inform. Sci. 328 (2016), 403–417. https://doi.org/10.1016/j.ins.2015.08.048

 $^1\mathrm{Mathematical}$ Institute, Serbian Academy of Sciences and Arts, , Kneza Mihaila 36/III, 11 000 Belgrade, Serbia

Email address: jkratica@mi.sanu.ac.rs

ORCID iD: https://orcid.org/0000-0002-9752-0971

²FACULTY OF ORGANIZATIONAL SCIENCES, UNIVERSITY OF BELGRADE, JOVE ILIĆA 154, 11000 BELGRADE, SERBIA *Email address*: mirjana.cangalovic@alumni.fon.bg.ac.rs

ORCID iD: https://orcid.org/0009-0006-1183-6171

Email address: vera.vujcic@alumni.fon.bg.ac.rs

ORCID iD: https://orcid.org/0009-0002-1519-2749