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STUDY OF KIRCHHOFF CURVATURE PROBLEM WITH
ψ-HILFER DERIVATIVE AND p(·)-LAPLACIAN OPERATOR

ELHOUSSAIN ARHRRABI1,∗ AND HAMZA EL-HOUARI2

Abstract. The paper focuses on the existence and multiplicity of weak solutions to
nonlinear Kirchhoff-type equations involving ψ-Hilfer derivatives with p(·)-Laplacian
operators and Dirichlet boundary conditions. Through the application of a critical
point approach, along with genus theory and variational techniques, we establish the
existence and multiplicity results within appropriate fractional ψ-Hilfer derivative
spaces. Our novel main results contribute to the advancement of the literature on
differential equations involving fractional ψ-Hilfer generalized curvature phenomena.

1. Introduction

Fractional derivatives go beyond classical derivatives, extending the scope of tra-
ditional differentiation. Initially akin to ordinary differentiation, the concept of frac-
tional differentiation has evolved in recent research, emphasizing its broader applica-
bility. Within mathematical analysis, fractional analysis explores diverse methods of
defining real number powers or complex powers of the differentiation operator and
integration. The study extends to fractional order differential equations, which repre-
sent generalized and non-integer differential equations in both time and space domains.
These equations are characterized by a power-law memory kernel, capturing nonlocal
relationships, as highlighted by Kolma [29]. Several approaches exist for incorporating
fractional integro-differentiation operations, including the Riemann-Liouville, Caputo
and Grunwald-Letnikov methods, along with their modifications. It is crucial to note
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that a significant portion of the literature on fractional differentiation primarily con-
centrates on Riemann-Liouville and Caputo fractional derivatives. However, there are
alternative well-established definitions, such as the fractional derivative of Hadamard,
the fractional derivative of Erdélyi-Kober, and others. Readers interested in delving
further into fractional calculus are referred to additional resources like [47] for more
comprehensive insights.

A fresh look at capillary phenomena in current literature highlights the need for
progress in this area. Capillary action, the movement of liquids through narrow spaces
without relying on external forces, is observed in various situations, like paint moving
between bristles or liquids flowing through thin tubes. This action is powered by the
forces between the liquid and solid surfaces. In small tubes, a combination of surface
tension and adhesive forces moves the liquid. Studying phenomena like water rising
in tubes or the formation of drops and bubbles involves using calculus variations,
providing a unified way to address mathematical questions across different scenarios.
Recently, interest in capillary phenomena has grown, driven by its relevance in fields
like industry, healthcare, and micro-fluids. Given the breadth of the subject, we will
touch on a few instances for those interested [8, 27, 32].

In the context of evolving trends in modern physics and mechanics, it becomes
crucial to consider the dynamic landscape when formulating mathematical models.
Drawing insights from pertinent research, it is essential to narrow our focus on spe-
cific domains in order to gain a deeper understanding of the underlying theory of
the primary research problem. To address this, we employ the generalized ψ-Hilfer
fractional derivative to analyze a nonlinear Kirchhoff equation featuring a positive
parameter. This equation adheres to Dirichlet boundary conditions and is formulated
as follows:

(1.1)
{

− (α + βL(u)) Lγ,κ;ψ
τ(x) (u) = ξ|u|r(x)−2u− h(x)|u|τ(x)−2u, in Ω,

u = 0, on ∂Ω,
with

L(u) :=
∫

Ω

1
τ(x)

(∣∣∣Dγ,κ;ψ
0+ u

∣∣∣τ(x)
+
√

1 +
∣∣∣Dγ,κ;ψ

0+ u
∣∣∣2τ(x)

)
dx

and

Lγ,κ;ψ
τ(x) (u) := Dγ,κ;ψ

T


1 +

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣τ(x)√
1 +

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣2τ(x)

 ∣∣∣Dγ,κ;ψ
0+ u

∣∣∣τ(x)−2
Dγ,κ;ψ

0+ u

 ,
where Ω is a bounded domain in RN , N > 3, with smooth boundary ∂Ω, α, β are
positive constants, h ∈ C(Ω,R), ξ is a positive parameter, τ, r ∈ C+(Ω) such that:

(1.2) 1 < r− ≤ r(x) ≤ r+ < τ− ≤ τ(x) ≤ τ+ < 2τ− < τ ⋆(x) = Nτ(x)
N − γτ(x) ,

for all x ∈ Ω, h satisfies the following hypothesis:
(H0) h : Ω → [0,∞) such that h ∈ L∞(Ω),
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Dγ,κ;ψ
T and Dγ,κ;ψ

0+ are ψ-Hilfer fractional derivatives of order γ ∈ ( 1
τ(x) , 1) and type

κ ∈ [0, 1] defined later, this type of derivative is introduced by Vanterler et al. [39],
by means of the Gronwall inequality. They explored specific cases of the generalized
fractional partial derivative, such as the ψ-Riemann-Liouville and ψ-Caputo fractional
partial derivatives, discussed in detail in [36]. It’s worth noting that when κ tends
toward 1 and ψ(x) = x, our problem (1.1) simplifies to the integer case, elucidated on
page 6 of [38]. This implies that our problem extends the scope of numerous Kirchhoff-
type papers in the literature, especially in the context of fractional integration. Recent
studies have investigated Kirchhoff equations using different operators. For instance,
in [6], the authors employed a variational approach with the mountain pass theorem
to establish the existence and multiplicity of solutions for a specific p(·)-Kirchhoff
type equation

−M
(∫

Ω

1
p(x) |∇u|p(x)dx

)
div(|∇u|p(x)−2 ∇u) = f(x, u), in Ω,

u = 0, on ∂Ω,
(1.3)

where Ω ⊂ RN is a bounded smooth domain, p ∈ C(Ω) with 1 < p(·) < N .
Chung in [7] used the mountain pass theorem combined with the minimum principle,

to obtained at least two non-negative, non-trivial weak solutions for the following
p(x)-Kirchhoff-type equations

−M
(∫

Ω

1
p(x)|∇u|p(x)dx

)
div(|∇u|p(x)−2∇u) = λf(x, u), in Ω,

u = 0, on ∂Ω,
u ≥ 0, in Ω,

(1.4)

where Ω ⊂ RN is a bounded smooth domain, p ∈ C(Ω) with 1 < p(·) < N and λ
is a positive real parameter and f ∈ C(Ω × R,R) is a Caratheodory function that
may change sign. In [25] Shapour et al., used variational methods and critical point
theory to established the existence of multiple solutions for problem (1.3). For more
examples of Kirchhoff-type problem, we refer the reader to [15–18,46].

In the study of curvature problems related to the p(·)-Laplacian, an example can
be found in the work of authors in [26]. They employed Ricceri’s variational principle,
as developed by Bonanno and Molica Bisci, to establish the existence of at least one
weak solution and infinitely many weak solutions for the following Neumann problem.
This problem, originating from capillary phenomena, is a notable illustration in the
context of p(·)-Laplacian analysis


− div

1 + |∇u|p(x)√
1 + |∇u|2p(x)

 |∇u|p(x)−2∇u

+ α(x)|u|p(x)−2u = λf(x, u), in Ω,

∂u

∂v
= 0, on ∂Ω,

(1.5)
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where Ω ⊂ Rn is a bounded domain with boundary of class C1, ν is the outer unit
normal to ∂Ω, α ∈ L∞(Ω), f is an L1-Caratheodory function. Furthermore, in [34], the
authors studied the existence and multiplicity of solutions for the following nonlinear
eigenvalue problems for p(x)-Laplacian-like operators

− div
1 + |∇u|p(x)√

1 + |∇u|2p(x)

 |∇u|p(x)−2∇u

 = λf(x, u), in Ω,

u = 0, on ∂Ω,
(1.6)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω, p ∈ C(Ω) and p(x) > 2,
for all x ∈ Ω, λ > 0 and f satisfies some growth condition and Ambrosetti-Rabinowitz
type condition (AR).

In the context of Kirchhoff-type problem involving tempered fractional derivatives,
we refer to [33]. The authors employed variational methods to establish the existence
of infinitely many solutions to the following:M

(∫
R

|Dα,λ
+ u(t)|2dt

)
Dα,λ

− (Dα,λ
+ u(t)) = f(t, u(t)), t ∈ R,

u ∈ Wα,2
λ (R),

where Dα,λ
± (·) denote the left and right tempered fractional derivatives of order α ∈

(1/2, 1], λ > 0, f ∈ C(R × R,R) and M ∈ C(R+,R+). In [31], the authors studied
the existence and multiplicity of solutions to the following Kirchhoff equation with
singular nonlinearity and Riemann-Liouville fractional derivative:

(
a+ b

∫ T

0
|0Dα

t (u(t))|pdt
)
tD

α
T (Φ(0D

α
t (u(t)))) = λg(t)

uγ(t) + f(t, u(t)), t ∈ (0, T ),

u(0) = u(T ) = 0,

where a ≥ 1, b, λ > 0, p > 1 are constants, 1
p
< λ ≥ 1, 0 < γ < 1, g ∈ C([0, 1]) and f ∈

C1([0, T ] × R,R). Under appropriate assumptions on the function f , they employed
variational methods to show the existence and multiplicity of positive solutions of the
above problem with respect to the parameter λ. All the problems discussed above are
associated to the stationary version of the Kirchhoff problem

ϱ
∂2u

∂γ2 −
(
P0

h
+ E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2)∂2u

∂x2 = 0,(1.7)

presented by Kirchhoff in 1883 [28], which extends d’Alembert’s wave equation. One

notable feature of model (1.7) is that it contains a nonlocal term P0
h

+ E
2L
∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2. The

parameters L, h, E, m, P0 in model (1.7) represent different physical meanings, which
we will not cover here. For an application related to Kirchhoff problems in capillary
phenomena, we refer to [45], where the authors proposed a computational model to
simulate the interaction between a complex fluid and a solid material. The complex
fluid is represented using a diffuse-interface model, governed by the incompressible
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Navier-Stokes-Cahn-Hilliard equations. Preferential-wetting boundary conditions are
applied at the fluid-solid interface. The fluid-solid interaction involves fluid traction on
the interface, incorporating a contribution from capillary stress. The dynamic interface
condition considers the traction exerted by the non-uniform fluid-solid surface tension.
The authors formulated the complex-fluid-solid interaction problem in a weak form,
employing an Arbitrary-Lagrangian-Eulerian approach for the Navier-Stokes-Cahn-
Hilliard equations. They also appropriately reformulated the complex-fluid traction
and the fluid-solid surface tension. To validate their model, further details can be
found in the cited paper [45].

Our approach to proving the existence and multiplicity results for problems (1.1)
relies on the utilization of the critical points theorem together with genus theory and
variational approach.

This work is organized as follows. In Section 2, we provide a brief overview of the
key features of variable exponent Lebesgue spaces and ψ-Hilfer fractional derivative
spaces. Moving on to Section 3, we present the existing solutions to problems (1.1),
along with their corresponding proofs.

2. Preliminary

In this section we collect preliminary concepts of the theory of variable exponent
Lebesgue space, classical and fractional ψ-Hilfer derivative space (see [2, 4, 5, 11–14,
19–24,40–43]).

2.1. Variable exponent Lebesgue space. In the following, we define

C+(RN) =
{
τ ∈ C(RN) : 1 < τ− ≤ τ+ < +∞

}
,

where
τ− := inf

x∈RN
τ(x) and τ+ := sup

x∈RN

τ(x).

Denote by U(RN) the set of all measurable real-valued functions defined in RN . For
any s ∈ C+(RN), we denote the variable exponent Lebesgue space by

Lτ(x)(RN) =
{
u ∈ U(RN) :

∫
RN

|u(x)|τ(x)dx < +∞
}
,

equipped with the Luxemburg norm

∥u∥Lτ(x) = inf
{
ν > 0 :

∫
RN

∣∣∣∣u(x)
ν

∣∣∣∣τ(x)
dx ≤ 1

}
,

then, the variable exponent Lebesgue space
(
Lτ(x)(RN), ∥ · ∥Lτ(x)

)
becomes a Banach

space.
We have the following generalized Holder inequality∣∣∣∣∫

RN
u(x)v(x)dx

∣∣∣∣ ≤ 2∥u∥Lτ(x)∥v∥Lτ ′(x) ,(2.1)

for u ∈ Lτ(x)(RN), v ∈ Lτ
′(x)(RN) such that 1

τ(x) + 1
τ ′(x) = 1.
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At this point, let define the following map στ(x) : Lτ(x)(RN) → R by

στ(x)(u) =
∫
RN

|u(x)|τ(x)dx.

Then, we can see the important relationship between the norm ∥ · ∥Lτ(x) and the
corresponding modular function στ(x)(·) given in the next proposition.

Proposition 2.1. If u and (uk)k∈N ∈ Lτ(x)(RN), we have
∥u∥Lτ(x) < 1 (= 1, > 1) if and only if στ(x)(u) < 1 (= 1, > 1),(2.2)

∥u∥Lτ(x) > 1, then ∥u∥τ−

Lτ(x) ≤ στ(x)(u) ≤ ∥u∥τ+

Lτ(x),(2.3)
∥u∥Lτ(x) < 1, then ∥u∥τ+

Lτ(x) ≤ στ(x)(u) ≤ ∥u∥τ−

Lτ(x),(2.4)
lim

k−→+∞
∥uk − u∥Lτ(x) = 0 if and only if lim

k−→+∞
στ(x)(uk − u) = 0.(2.5)

Remark 2.1. Note that, by (2.3) and (2.4), we can derive the two subsequent inequal-
ities:

∥u∥Lτ(x) ≤στ(x)(u) + 1,(2.6)

στ(x)(u) ≤∥u∥τ+

Lτ(x) + ∥u∥τ−

Lτ(x) .(2.7)

2.2. ψ-Hilfer fractional derivative space. Let A := [c, d], −∞ ≤ c < d ≤ +∞,
n − 1 < γ < n, n ∈ N, f , ψ ∈ Cn(A,R) such that ψ is increasing and ψ′(x) ̸= 0, for
all x ∈ A. We recall the following definitions (see [39]).

• The left-sided fractional ψ-Hilfer integrals of a function f is given by

(2.8) Iγ;ψ
c+ f(x) = 1

Γ(γ)

∫ x

c
ψ′(y)(ψ(x) − ψ(y))γ−1f(y)dy.

• The right-sided fractional ψ-Hilfer integrals of a function f is given by

(2.9) Iγ;ψ
d− f(x) = 1

Γ(γ)

∫ d

x
ψ′(y)(ψ(y) − ψ(x))γ−1f(y)dy.

• The left-sided ψ-Hilfer fractional derivatives for a function f of order γ and type
0 ≤ κ ≤ 1 is defined by

Dγ,κ;ψ
c+ f(x) = Iκ(n−γ);ψ

c+

( 1
ψ′(x) · d

dx

)n
I(1−κ)(n−γ);ψ
c+ f(x).

• The right-sided ψ-Hilfer fractional derivatives for a function f of order γ and type
0 ≤ κ ≤ 1 is defined by

Dγ,κ;ψ
c+ f(x) = Iκ(n−γ);ψ

d−

(
− 1
ψ′(x) · d

dx

)n
I(1−κ)(n−γ);ψ
d− f(x).

Choosing κ → 1, we obtain ψ-Caputo fractional derivatives left-sided and right-sided,
given by

(2.10) Dγ;ψ
c+ f(x) = I(n−γ);ψ

c+

( 1
ψ′(x) · d

dx

)n
f(x),
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(2.11) Dγ;ψ
d− f(x) = I(n−γ);ψ

d−

(
− 1
ψ′(x) · d

dx

)n
f(x).

Remark 2.2. The ψ-Hilfer fractional derivatives defined as above can be written in
the following form

Dγ,κ;ψ
c+ f(x) = Iµ−γ;ψ

c+ Dγ;ψ
c+ f(x)

and
Dγ,κ;ψ
d− f(x) = Iµ−γ;ψ

d− Dγ;ψ
d− f(x),

with µ = γ + κ(n − γ) and Iµ−γ;ψ
c+ , Iµ−γ;ψ

d− , Dγ;ψ
c+ and Dγ;ψ

d− as defined in (2.8), (2.9),
(2.10) and (2.11).

In this paper we take Ω = A1 ×· · ·×AN = [c1, d1]×· · ·× [cN , dN ] where 0 < ci < di
for all i ∈ N, 0 < γ1, . . . , γN < 1.

• The ψ-Riemann-Liouville fractional partial integral of order γ of N -variables
f = (f1, . . . , fN) is defined by

Iγ;ψ
c,x f(x) = 1

Γ(γ)

∫
A1

∫
A2

· · ·
∫
AN

ψ′(y)(ψ(x) − ψ(y))γ−1f(y)dy,

with ψ′(y)(ψ(x)−ψ(y))γ−1 = ψ′(y1)(ψ(x1)−ψ(y1))γ1−1 · · ·ψ′(yN)(ψ(xN)−ψ(yN))γN −1

and Γ(γ) = Γ(γ1)Γ(γ2) · · · Γ(γN), xi = x1x2 · · · xN and dyi = dy1dy2 · · · dyN , for all
i ∈ {1, 2, . . . , N}.

• Dγ,κ;ψ
c,xi

is defined by

Dγ,κ;ψ
c,xi

f(xi) = Iκ(n−γ);ψ
c,xi

( 1
ψ′(xi)

· ∂
N

∂xi

)
I(1−κ)(n−γ);ψ
c,xi

f(xi),

with ∂xi = ∂x1, ∂x2, . . . , ∂xN and ψ′(xi) = ψ′(x1)ψ′(x2) · · · ψ′(xN) for all i ∈
{1, 2, . . . , N}. Analogously, it is defined Dγ,κ;ψ

d,xi
(·).

Now that we have all the necessary tools, we are ready to commence our study. To
facilitate this, we define the ψ-Hilfer fractional derivative space H

γ,κ,ψ
τ(x) (Ω) as follow

H
γ,κ,ψ
τ(x) (Ω) = Hτ(x)(Ω) :=

{
u ∈ Lτ(x)(Ω) : |Dγ,κ;ψ

0+ u| ∈ Lτ(x)(Ω)
}
,

equipped with the norm

∥u∥Hτ(x) = ∥u∥Lτ(x) + ∥Dγ,κ,ψ
0+ u∥Lτ(x) .

Proposition 2.2 ([44]). Let 0 < γ ≤ 1, 0 ≤ κ ≤ 1 and 1 < τ(x). Hτ(x)(Ω) is a
reflexive and separable Banach space.

Remark 2.3. We can define H
γ,κ,ψ
τ(x),0(Ω) := Hτ(x),0(Ω) as the closure of C∞

0 (Ω) in
H
γ,κ,ψ
τ(x) (Ω) which can be renormed by the equivalent norm ∥u∥ :=

∥∥∥Dγ,κ,ψ
0+ u

∥∥∥
Lτ(x)

. This
space is a separable and reflexive Banach space (see [44]).
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Proposition 2.3 ([30]). Let Ω be a Lipschitz bounded domain in RN . Let p ∈ C0(Ω).
If r : Ω → (1,+∞) such that

1 ≤ r(x) < τ ⋆(x) :=


Nτ(x)

N−γτ(x) , if γτ(x) < N,

+∞, if γτ(x) ≥ N,
for all x ∈ Ω,

then, the embedding

Hτ(x),0(Ω) ↪→ Lr(x)(Ω),(2.12)

is compact and there is a constant c0 > 0, such that ∥u∥Lr(x) ≤ c0∥u∥.

2.3. Genus Theory. We introduce fundamental concepts related to Krasnoselskii’s
genus (refer to [9]) which will be employed in the proof of our main results. Let X
be a real Banach space and

R := {A ⊂ X\{0} : A is compact and symmetric} .

Definition 2.1. Let A ∈ R and X = Rk. We define the genus of A as follows:

G(A) := inf
{
k ≥ 1 : exists g ∈ C

(
A,Rk\{0}

)
, g is odd

}
and C(A) = +∞, if does not exist such a map for any k > 0.

Theorem 2.1 ([9]). Let Ω ⊂ RN be bounded symmetric with boundary ∂Ω. Assume
that 0 ∈ Ω, then G(∂Ω) = N .

Corollary 2.1 ([9]). The genus of unit sphere SN−1 of the space RN is N , i.e.,
G(SN−1) = N .

Definition 2.2. Let X be a real Banach space, and Υ ∈ C1(X,R). We say that Υ
satisfies the Palais-Smale condition ((PS) for short) if any sequence {un}n∈N ⊂ X
such that {Υ(un)}n∈N is bounded and Υ′(un) → 0 as n → +∞, admits a convergent
subsequence.

Theorem 2.2 ([10]). Let Υ ∈ C1(X,R) and let it satisfies the (PS) condition. Addi-
tionally, we assume the following conditions.

(i) Υ is bounded from below and even.
(ii) There is a compact set N ∈ R such that G(N) = k and supx∈N Υ(x) < Υ(0).
Then, Υ has at least k pairs of distinct critical points, and their corresponding

critical values are less than Υ(0).

3. Main Result

In this section, we will proving the existence and multiplicity results for problems
(1.1) relies on the utilization of the critical points theorem together with genus theory
and variational approach.
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Definition 3.1. We say that u ∈ Hτ(x),0(Ω) is a weak solution of problem (1.1) if

(
α + βL(u)

) ∫
Ω

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣τ(x)−2
Dγ,κ;ψ

0+ u+

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣2τ(x)−2
Dγ,κ;ψ

0+ u√
1 +

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣2τ(x)

 Dγ,κ;ψ
0+ φ dx

=ξ
∫

Ω
|u|r(x)−2uφdx−

∫
Ω
h(x)|u|τ(x)−2φ dx,

for all φ ∈ Hτ(x),0(Ω).

Let us introduce the energy functional E : Hτ(x),0(Ω) → R associated to problem
(1.1)

E(u) = αL(u) + β

2 (L(u))2 − ξ
∫

Ω

1
r(x) |u|r(x)dx+

∫
Ω

h(x)
τ(x) |u|τ(x)dx,

for all u ∈ Hτ(x),0(Ω).
Observe that E ∈ C1

(
Hτ(x),0(Ω),R

)
and it is noteworthy that the critical points

of E correspond to weak solutions of (1.1) and its Gateaux derivative is

⟨E′(u), v⟩

=
(
α + βL(u)

) ∫
Ω

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣τ(x)−2
Dγ,κ;ψ

0+ u+

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣2τ(x)−2
Dγ,κ;ψ

0+ u√
1 +

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣2τ(x)

 Dγ,κ;ψ
0+ v dx

− ξ
∫

Ω
|u|r(x)−2uvdx+

∫
Ω
h(x)|u|τ(x)−2uv dx,

for all u, v ∈ Hτ(x),0(Ω).
Note that the functional L ∈ C1

(
Hτ(x),0(Ω),R

)
and its derivative operator in weak

sense L′ : Hτ(x),0(Ω) →
(
Hτ(x),0(Ω)

)∗
is such that

⟨L′(u), v⟩ =
∫

Ω

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣τ(x)−2
Dγ,κ;ψ

0+ u+

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣2τ(x)−2
Dγ,κ;ψ

0+ u√
1 +

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣2τ(x)

 Dγ,κ;ψ
0+ v dx,

for all u, v ∈ Hτ(x),0(Ω).

Theorem 3.1. Problem (1.1) admits at least k pairs of different critical points if
(1.2) holds.

Proposition 3.1 ([1]). The functional L is a convex. The mapping L′ : Hτ(x),0(Ω) →
(Hτ(x),0(Ω))∗ is bounded homeomorphism and strictly monotone operator, and is a
mapping of type (S+), i.e., if un ⇀ u in Hτ(x),0(Ω) and limn→+∞⟨L′(un) −L′(u), un −
u⟩ ≤ 0, then un → u in Hτ(x),0(Ω).

Lemma 3.1. The functional E satisfies the (PS) condition.
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Proof. Let show that {un}n∈N is bounded in Hτ(x),0(Ω). Let {un}n∈N ⊂ Hτ(x),0(Ω) be
a (PS) sequence. Employing a proof by contradiction, we assume that, possibly after
considering a sub-sequence, still denote by {un}n∈N, one has ∥un∥ → +∞ as n → +∞.
Let us choose 0 < ω <

{
1
r+ ,

1
τ+ ,

τ−

2(τ+)2

}
. According to Proposition 2.3, for sufficiently

large n, one has
c+ ∥un∥ ≥E(un) − ω ⟨E′ (un) , un⟩

≥α
( 1
τ+ − ω

)∫
Ω

|Dγ,κ;ψ
0+ un|τ(x)dx+ β

(
1

2(τ+)2 − ω

τ−

)(∫
Ω

|Dγ,κ;ψ
0+ ua|τ(x)dx

)2

− ξ
( 1
r− − ω

) ∫
Ω

|un|r(x)dx+
( 1
τ+ − ω

) ∫
Ω
h(x)|un|τ(x)dx

≥α
( 1
τ+ − ω

)
∥un∥τ

−
+ β

(
1

2(τ+)2 − ω

τ−

)
∥un∥2τ− − ξc0

( 1
r− − ω

)
∥un∥ .

Dividing the aforementioned inequality by ∥un∥ and taking the limit as n → +∞, we
arrive at a contradiction. It is implied by (1.2) that the sequence {un}n∈N is bounded
in Hτ(x),0(Ω).

Moreover, based on Proposition 2.3, we can assume that

(3.1)


un → u strongly in Lr(x)(Ω),
un(x) → u(x) a.e in Ω,
un ⇀ u weakly in Hτ(x),0(Ω).

Using Holder’s inequality and (3.1), one has∣∣∣∣ ∫
Ω

|un|τ(x)−2un(un − u)dx
∣∣∣∣ ≤

∫
Ω

|un|τ(x)−1|un − u|dx

≤ ∥un∥τ+−1
τ(x)

τ(x)−1
∥un − u∥τ(x) → 0, as n → +∞.

Therefore,

(3.2)
∫

Ω
|un|τ(x)−2un(un − u)dx → 0, as n → +∞,

and

(3.3)
∫

Ω
|un|r(x)−2un(un − u)dx → 0, as n → ∞.

Then,
⟨E′(un), un − u⟩ → 0, as n → +∞.

This implies that
⟨E′(un), un − u⟩

=(α+ βL(un))
∫

Ω

(∣∣Dγ,κ;ψ
0+ un

∣∣τ(x)−2 Dγ,κ;ψ
0+ un +

∣∣Dγ,κ;ψ
0+ un

∣∣2τ(x)−2 Dγ,κ;ψ
0+ un√

1 +
∣∣Dγ,κ;ψ

0+ un
∣∣2τ(x)

)
Dγ,κ;ψ

0+

(
un − u

)
dx

− ξ

∫
Ω

∣∣un∣∣r(x)−2
un
(
un − u

)
dx+

∫
Ω
h(x)

∣∣un∣∣τ(x)−2
un
(
un − u

)
dx → 0, as n → +∞.
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Thus, we can infer from equations (3.2) and (3.3) that

(α+ βL(un))
∫

Ω

∣∣∣Dγ,κ;ψ
0+ un

∣∣∣τ(x)−2
Dγ,κ;ψ

0+ un +
∣∣Dγ,κ;ψ

0+ un
∣∣2τ(x)−2 Dγ,κ;ψ

0+ un√
1 +

∣∣Dγ,κ;ψ
0+ un

∣∣2τ(x)


×
(
Dγ,κ;ψ

0+ un − Dγ,κ;ψ
0+ u

)
dx → 0, as n → +∞.

Therefore, according to Proposition 3.1, un → u in Hτ(x),0(Ω). Hence, we conclude
the proof. □

Lemma 3.2. The functional E is coercive and bounded from below.

Proof. For any u ∈ Hτ(x),0(Ω), we have

E(u) ≥ α

τ+

∫
Ω

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣τ(x)
+ β

2(τ+)2

(∫
Ω

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣τ(x)
dx
)2

− ξ

r−

∫
Ω

|u|r(x)dx

+ 1
τ+

∫
h(x)|u|τ(x)dx.

Using Propositions 2.1 and 2.3, we have two cases.
Case 1. If ∥u∥Lτ(x) > 1, then

E(u) ≥ α

τ+ ∥u∥τ− + β

2(τ+)2 ∥u∥2τ− − ξc0

r− ∥u∥r+
.

According to (1.2), E is coercive and bounded from below.

Case 2. If ∥u∥Lτ(x) < 1, then

E(u) ≥ α

τ+ ∥u∥τ+ + β

2(τ+)2 ∥u∥2τ+ − ξc0

r− ∥u∥r−
.

Since 2τ+ > τ+ and 2τ+ > τ−, this implies that E is coercive and bounded from
below. □

Proof of Theorem 3.1. Let (sn)∞
n=1 be a Schauder basis for the space Hτ+,0(Ω) and

Yk = span{s1, s2, . . . , sk}, the subspace of Hτ+,0(Ω) generated by s1, s2, . . . , sk. Clearly,
Yk is subspace of Hτ+,0(Ω). Then, since Hτ+,0(Ω) ⊂ Hτ(x),0(Ω) ⊂ Lr(x)(Ω) we have
Yk ⊂ Lr(x)(Ω). Also, since Yk is a finite-dimensional space, the norms ∥ ·∥ and ∥ ·∥Lr(x)

are equivalent on Yk. Therefore, there exists a positive constant ck such that
∥u∥Lr(x) ≥ ck∥u∥, for all u ∈ Yk.

Note that since
√

1 +
∣∣∣Dγ,κ;ψ

0+ u
∣∣∣2τ(x)

< 2
∣∣∣Dγ,κ;ψ

0+ u
∣∣∣τ(x)

, we have

(3.4) L(u) ≤ 3
τ−

∫
Ω

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣τ(x)
dx.

Let u ∈ Yk such that ∥u∥ < 1, then using (3.4) and (H0) one has

E(u) =αL(u) + β

2 (L(u))2 − ξ
∫

Ω

1
r(x) |u|r(x)dx+

∫
Ω

h(x)
τ(x) |u|τ(x)dx



1364 E. ARHRRABI AND H. EL-HOUARI

≤3α
τ−

∫
Ω

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣τ(x)
dx+ 9β

2(τ−)2

∫
Ω

∣∣∣Dγ,κ;ψ
0+ u

∣∣∣2τ(x)
dx

− ξ

r+

∫
Ω

|u|r(x)dx+ 1
τ−

∫
Ω
h(x)|u|τ(x)dx

≤c1

(
∥u∥τ− + ∥u∥2τ−

)
− c2∥u∥r+

Lr(x) + 1
τ− ∥h∥L∞∥u∥τ−

≤c3

(
∥u∥τ− + ∥u∥2τ−

)
− c4∥u∥r+

=∥u∥r+
[
c3

(
∥u∥τ−−r+ + ∥u∥2τ−−r+

)
− c4

]
.

There exists λ ∈ (0, 1) sufficiently small such that λr+
< 1 and c3λ

τ−−r+ +c3λ
2τ−−r+ ≤

c4
2 . Let consider Skλ := {u ∈ Yk : ∥u∥ = λ}. We have

E(u) ≤ λτ
+ (
c3λ

τ−−r+ + c3λ
2τ−−r+ − c4

)
,

for all u ∈ Skλ. Thus,

sup
u∈Sk

λ

E(u) ≤
(
c4

2 − c4

)
= −c4

2 < 0 = E(0).

Since Yk and Rk are isomorphic, Skλ and Sk−1 are homeomorphic, thus G
(
Skλ
)

= k.
According to Theorem 2.2, E has at least k pairs of different critical points. □
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