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STUDY OF DOUBLE PHASE-CHOQUARD PROBLEM IN
GENERALIZED ψ-HILFER FRACTIONAL DERIVATIVE SPACES

WITH p-LAPLACIAN OPERATOR

ELHOUSSAIN ARHRRABI1 AND HAMZA EL-HOUARI2,∗

Abstract. In this paper, our focus is on a specific class of non-linear ψ-Hilfer
fractional generalized double phase-Choquard differential equations involving the
p-Laplacian operator with Dirichlet boundary conditions. The equation is given by:Lγ,β;ψu =

(∫
Ω

G
(
u(x)

)
|x− y|λ

dx

)
g
(
u(y)

)
, in Ω,

u = 0, on ∂Ω,

with Lγ,β;ψ is defined as:
Lγ,β;ψu := Dγ,β;ψ

T

(
|Dγ,β;ψ

0+ u|p−2 Dγ,β;ψ
0+ u+ a(x)|Dγ,β;ψ

0+ u|q−2 Dγ,β;ψ
0+ u

)
,

where Dγ,β;ψ
T and Dγ,β;ψ

0+ are ψ-Hilfer fractional derivatives of order 1
p < γ < 1

and type 0 ≤ β ≤ 1 and a(·) is non-negative weight function, and G(·) represents
Choquard nonlinearities satisfying a certain growth conditions. By employing the
mountain pass theorem without the Palais-Smale condition, along with the Hardy-
Littlewood-Sobolev inequality, we establish the existence of a weak solution to the
aforementioned problem. Our main results are novel and contribute to the literature
on problems involving ψ-Hilfer derivatives with the p-Laplacian operator. This
investigation enhances the scope of understanding in this specific class of problems.

Key words and phrases. Generalized ψ-Hilfer derivative, double phase-Choquard equation, moun-
tain pass theorem, Hardy-Littlewood-Sobolev inequality.
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1. Introduction

The equation known as the Choquard equation, given by

(1.1) −∆u+ u =
(∫

R3

u2(y)
|x− y|

dy

)
u, u ∈ H1(R3),

was initially introduced by Choquard in 1976 and has since captured considerable
attention in the realms of physics and mathematical analysis [35]. This equation
serves as an approximation to the Hartree-Fock theory of a one-component plasma,
providing insights into intricate interactions between particles. Lion in [33] studied
the normalized solutions of the following problem

(1.2) −∆u+ λu =
(∫

R3
u2(y)V (|x− y|)dy

)
u(x), in R3,

where V is some given positive function. In the special case where V = 1/|x|,
equation (1.2) returns to equation (1.1). Furthermore, Penrose proposed it as a model
for elucidating the self-gravitational collapse of a quantum mechanical wave function,
underscoring its significance in comprehending essential quantum phenomena [36].

In the context of Choquard equations driven by a p-Laplacian operator, P. Le in
[32], established the existence of weak solutions to the following semilinear Choquard
equation, which appears as a model in quantum mechanics,

−∆pu =
(

1
|x|n−α ∗ |u|q

)
|u|q−2u, u ∈ Rn,

where 2 ≤ p < q ≤ n and max{0, n − 2p} < α < n. In [1], the authors studied the
existence of semiclassical ground state solutions to the following generalized Choquard
equation

−∆pu+ |u|p−2 =
(∫

R3

F (u(y))
|x− y|

dy

)
f(u(x)), in Rn.

Alternatively, the fractional diffusion integrodifferential equation problems are as
follows a

2 ∂
2

∂x2T (x, t) =
∫ t

0

T (x, τ)(t− τ)−(λ+1)

Γ(−λ) dτ, x ∈ R+, a > 0, 0 < λ ≤ 1,

T (x, 0) = θ(x), T (0, t) = 0, t > 0.
(1.3)

The authors in [46] discuss the exactly solution and the asymptotic behavior of the
problem (1.3) for different values of λ, i.e., for λ = 1 and 0 < λ < 1. The authors in [31]
solved exactly the following fractional diffusion equation based on Riemann-Liouville
fractional derivatives

Dα
0+f(r, t) = Cα∆f(r, t),

where f(r, t) denotes the unknown field and Cα denotes the fractional diffusion con-
stant with dimensions [cm/sα] and Dα

0+ is the Riemann-Liouville derivative of order α.
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Numerous researchers have suggested employing fractional time derivatives to ad-
dress problems involving linear or non-linear differential equations. The essential
question is whether there exists a connection between fractional derivatives and gra-
dient terms. The answer is provided in [45], where the authors extend gradient
elasticity models to characterize materials exhibiting fractional non-locality and frac-
tality. They derive a generalization of three-dimensional continuum gradient elasticity
theory, starting from integral relations and assuming a weak non-locality of power-law
(fractional) type. This results in constitutive relations featuring fractional Laplacian
terms, achieved through the application of fractional Taylor series in wave-vector
space. Subsequently, the authors explore non-linear field equations with fractional
derivatives of non-integer order to describe nonlinear elastic effects in gradient materi-
als with power-law long-range interactions within the framework of weak non-locality
approximation. The specific constitutive relationship detailed in this study could
serve as the foundation for developing a fractional extension of deformation theory
in gradient plasticity. On the other hand, related to the double phase problem, the
stationary general reaction diffusion double-phase is given by the form

(1.4) ut = div[A(x)∇u] + b(x, u), with A(x) = |∇u|p−2 + |∇u|q−2,

where the function u represents a concentration, and div[A(x)∇u] relates to diffusion
with diffusion coefficient A(x). The term b(x, u) corresponds to sources and loss
processes, and this type of problem has applications in physics and allied fields such
as biophysics, plasma physics, solid state physics, and chemical reaction design. For
more information, refer to [4,7]. One example of this type of problem is the following
equation:

−∆pu− ∆qu+ |u|p−2u+ |u|q−2u = f(x, u) in Rn, 1 < p ≤ q < +∞,

which is connected with the general reaction-diffusion system (1.4). The equation
involves two distinct materials with power-hardening exponents p and q. Many authors
have established existence, multiplicity, and regularity results for this type of problem
in bounded or unbounded domains, as discussed in [23, 24, 30] and the references
therein.

In the context of fractional differential equation boundary-value problems with
p-Laplacian operator, for the existence and non-existence of weak solutions to the
nonlinear examination of solution existence and stability can be found in [39], the
equation as the formD

α,β;ψ
T

(
|Dα,β;ψ

0+ u(x)|p−2 Dα,β;ψ
0+ u(x)

)
= λ|u(x)|p−2u(x) + b(x)|u(x)|q−1u(x),

Iβ(β−1);ψ
0+ u(0) = Iβ(β−1);ψ

T u(T ) = 0,

where Dα,β;ψ
0+ , Dα,β;ψ

T are ψ-Hilfer fractional derivatives left-sided and right-sided of
order 1

p
< α < 1, type 0 ≤ β ≤ 1, 1 < q < p − 1 < +∞, b ∈ L∞(Ω) and Iβ(β−1);ψ

0+ ,
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Iβ(β−1);ψ
T are ψ-Riemann-Liouville fractional integrals left-sided and right-sided, for all
x ∈ Ω = [0, T ].

In 2023, Sousa et al. [44], discussed the existence and regularity of weak solutions for
ψ-Hilfer fractional boundary value problem by using an extension of the Lax-Milgram
theorem to the following nonlinear boundary value problem Dα,β;ψ

T

(
|Dα,β;ψ

0+ u(x)|p−2 Dα,β;ψ
0+ u(x)

)
+ u(x) = λΦ(t, u(x)), t ∈ (0, T ),

Iβ(β−1);ψ
0+ u(0) = Iβ(β−1);ψ

T u(T ) = 0,

where Dα,β;ψ
T , Dα,β;ψ

0+ are ψ-Hilfer fractional derivatives left-sided and right-sided of
order 1

2 < α < 1, type 0 ≤ β ≤ 1, respectively, Iβ(β−1);ψ
0+ , Iβ(β−1);ψ

T are ψ-Riemann-
Liouville fractional integrals left-sided and right-sided of order β(β − 1), respectively,
λ is a parameter and Φ : [0, T ] × R → R is a continuous function.

In [38], the authors established the existence of solutions to the following new class
of singular double phase p-Laplacian equation problems with a ψ-Hilfer fractional
operator combined from a parametric term, namely:

Dα,β;ψ
T

(
|Dα,β;ψ

0+ u|p−2 Dα;β;ψ
0+ u+ µ(x)|Dα,β;ψ

0+ u|q−2 Dα,β;ψ
0+ u

)
= ξ(x)u−σ + λur−1, in Ω = [0, T ] × [0, T ],
u = 0, on ∂Ω.

We can not quote all reference in the existence of solution for fractional equation, for
that we refer for interesting reader to [2, 3, 5, 8–22,25–29,40–45].

Motivated by these results, we turn our attention to the exploration of the exis-
tence solution in a suitable fractional ψ-Hilfer derivative space for the double phase-
Choquard problem with p-Laplacian operator presented in this paper, namely

(1.5)


Lγ,β;ψu =

(∫
Ω

G(u(x))
|x− y|λ

dx

)
g(u(y)), in Ω,

u = 0, on ∂Ω,
with

Lγ,β;ψu := Dγ,β;ψ
T

(
|Dγ,β;ψ

0+ u|p−2 Dγ,β;ψ
0+ u+ a(x)|Dγ,β;ψ

0+ u|q−2 Dγ,β;ψ
0+ u

)
,

where Dγ,β;ψ
T and Dγ,β;ψ

0+ are ψ-Hilfer fractional derivatives of order 1
p
< γ < 1 and

type 0 ≤ β ≤ 1 and a(x) is non-negative weight function with compact support in Ω
and g : RN → R is a continuous function satisfying:

(g1) N ≥ 2, 1 < p < N , p < q < p+ αp
N

and a(·) ∈ C∞
0 (Ω) with 0 < α ≤ 1;

(g2) the growth condition, i.e.,

|g(ξ)| ≤ c1
(
|ξ|r1−1 + |ξ|r2−1

)
, for all ξ ∈ RN and c1 > 0,

where
(1.6) p < τr1 ≤ τr2 < p∗,
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and τ = 2N/(2N − λ) > 1 and p∗ being the critical Sobolev exponent to p;
(g3) there is α > q such that

0 < αG(ξ) ≤ 2g(ξ)ξ, where G(ξ) :=
∫ ξ

0
g(τ)dτ.

To our surprise, these results represent the first contributions available in the
literature for the ψ-Hilfer fractional generalized double phase-Choquard differential
equations involving the p-Laplacian operator with Dirichlet boundary conditions
within the framework of ψ-fractional derivative space Hγ,β,ψ

0,H (Ω). Our approach to
establishing existence results for problem (1.5) hinges on utilizing the mountain pass
theorem without the Palais-Smale condition [6]. Initially, we demonstrate that the
energy functional E connected to the problem (1.5) adheres to the mountain pass
geometry. We establish the boundedness of a sequence {uk}k∈N in Hγ,β,ψ

0,H (Ω) that
does not satisfy the Palais-Smale condition. Ultimately, we leverage the properties of
the transformed sequence along with technical skills to achieve the existence result
for problem (1.5). One of the key challenges in this approach lies in utilizing the
Hardy-Littlewood-Sobolev inequality for nonlinearities involving ψ-Hilfer fractional
derivative.

This work is organized as follows. In Section 2, we provide a brief overview of
the key features of Musielak spaces and ψ-fractional derivative spaces. Moving on
to Section 3, we present the existing solutions to problems (1.5), along with their
corresponding proofs.

2. Preliminary

In this section we refer to [38]. Consider the nonlinear function H : Ω × R+ → R+

defined by
H(x, u) = up + a(x)uq.

Let M (Ω) be the space of all measurable functions u : Ω → R. Then, Musielak space
LH
(
Ω
)

is given by

LH (Ω) =
{
u ∈ M (Ω) : ϱH(u) :=

∫
Ω
H(x, |u|)dx < +∞

}
,

equipped with the Luxemburg norm

∥u∥H = inf
{
δ > 0 : ϱH

(
u

δ

)
≤ 1

}
.

Moreover, we define the weighted space

Lqa(Ω) =
{

f ∈ M
(
Ω
)

:
∫

Ω
a(x)|f |qdx < +∞

}
,

with the seminorm

∥f∥a,q =
(∫

Ω
a(x)|f |q

) 1
q

.
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ψ-fractional derivative space. Let A := [c, d], −∞ ≤ c < d ≤ +∞, n− 1 < γ < n,
n ∈ N, f , ψ ∈ Cn(I,R) such that ψ is increasing and ψ′(x) ̸= 0, for all u ∈ A.

• The left-sided fractional ψ-Hilfer integrals of a function f is given by

(2.1) Iγ;ψ
c f(x) = 1

Γ(γ)

∫ x

0
ψ′(y)(ψ(x) − ψ(y))γ−1f(y)dv.

• The right-sided fractional ψ-Hilfer integrals of a function f is given by

(2.2) Iγ;ψ
d f(x) = 1

Γ(γ)

∫ d

x
ψ′(y)(ψ(y) − ψ(x))γ−1f(y)dv.

• The left-sided ψ-Hilfer fractional derivatives for a function f of order γ and type
0 ≤ β ≤ 1 is defined by

Dγ,β;ψ
c f(x) = Iβ(n−γ);ψ

c

( 1
ψ′(x) · d

dx

)n
I(1−β)(n−γ);ψ
c f(x).

• The right-sided ψ-Hilfer fractional derivatives for a function f of order γ and type
0 ≤ β ≤ 1 is defined by

Dγ,β;ψ
c f(x) = Iβ(n−γ);ψ

d

(
− 1
ψ′(x) · d

dx

)n
I(1−β)(n−γ);ψ
d f(x).

Choosing β → 1, we obtain ψ-Caputo fractional derivatives left-sided and right-sided,
given by

Dγ;ψ
c f(x) =I(n−γ);ψ

c

( 1
ψ′(x) · d

dx

)n
f(x),(2.3)

Dγ;ψ
d f(x) =I(n−γ);ψ

d

(
− 1
ψ′(x) · d

dx

)n
f(x).(2.4)

Remark 2.1. The ψ-Hilfer fractional derivatives defined as above can be written in
the following form

Dγ,β;ψ
c f(x) = Iµ−γ;ψ

c Dγ;ψ
c f(x)

and
Dγ,β;ψ
d f(x) = Iµ−γ;ψ

d Dγ;ψ
d f(x),

with µ = γ + β(n − γ) and Iµ−γ;ψ
c , Iµ−γ;ψ

d , Dγ;ψ
c and Dγ;ψ

d as defined in (2.1), (2.2),
(2.3) and (2.4).

In this paper, we take Ω = A1 ×· · ·×AN = [c1, d1]×· · ·× [cN , dN ] where 0 < ci < di
for all i ∈ N, 0 < γ1, . . . , γN < 1. Consider also ψ(·) to be an increasing and positive
monotone function on (c1, d1), . . . , (cN , dN), having a continuous derivative ψ′(·) on
(c1, d1], . . . , (cN , dN ].

• The ψ-Riemann-Liouville fractional partial integral of order γ of N-variables
f = (f1, . . . , fN) is defined by

Iγ;ψ
c,x f(x) = 1

Γ(γ)

∫
A1

∫
A2

· · ·
∫
AN

ψ′(y)(ψ(x) − ψ(y))γ−1f(y)dv,
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with ψ′(y)(ψ(x)−ψ(y))γ−1 = ψ′(v1)(ψ(x1)−ψ(v1))γ1−1 · · ·ψ′(vN)(ψ(xN)−ψ(vN))γN−1

and Γ(γ) = Γ(γ1)Γ(γ2) · · · Γ(γN), ui = u1u2 · · ·uN and dvi = dv1dv2 · · · dvN , for all
i ∈ {1, 2, . . . , N}.

• The ψ-Hilfer fractional partial derivative of N-variables of order γ and type β
(0 ≤ β ≤ 1) is defined by

Dγ,β;ψ
c,xi

f(xi) = Iβ(n−γ);ψ
c,xi

( 1
ψ′(xi)

· ∂
N

∂xi

)
I(1−β)(n−γ);ψ
c,xi

f(xi),

with ∂xi = ∂x1, ∂x2, . . . , ∂xN and ψ′(xi) = ψ′(x1)ψ′(x2) · · · ψ′(xN) for all i ∈
{1, 2, . . . , N}. Analogously, it is defined Dγ,β;ψ

d,xi
(·).

• The left-sided ψ-fractional derivative space Hγ,β,ψ
0,H (Ω) is defined by

Hγ,β,ψ
0,H (Ω) =

{
u ∈ LH(Ω) : |Dγ,β;ψ

0+ u| ∈ LH(Ω);u = 0 a.e Ω \ 0
}
,

equipped with the norm
∥u∥0,H = ∥Dγ,β;ψ

0+ u∥H + ∥u∥H,

where ∥Dγ,β;ψ
0+ u∥H = ∥|Dγ,β;ψ

0+ u|∥H.

Remark 2.2. Note that Hγ,β,ψ
0,H (Ω) := C∞

0 (Ω)H
γ,β,ψ
0,H (Ω), and the equivalent norm on

Hγ,β;ψ
0,H (Ω) is given by ∥u∥0,H = ∥Dγ,β;ψ

0+ u∥H.

The results below will be needed for our purposes.

Proposition 2.1 ([39]). Let (g1) be satisfied. Then, the following embeddings hold:
(i) LH(Ω) ↪→ Lr(Ω) and W 1,H(Ω) ↪→ W 1,r(Ω) are continuous for all r ∈ [1, p];
(ii) W 1,H(Ω) ↪→ Lr(Ω) is continuous for all r ∈ [1, p∗];
(iii) W 1,H(Ω) ↪→ Lr(Ω) is compact for all r ∈ [1, p∗);
(iy) LH(Ω) ↪→ Lqa(Ω) is continuous;
(vi) Lq(Ω) ↪→ LH(Ω) is continuous.

Proposition 2.2 ([39]). Let (g1) be satisfied, v ∈ LH(Ω), c > 0 and ϱH previously
defined. Then, the following hold:

(i) if v ̸= 0, then ∥v∥H = c if and only if ϱH
(
v
c

)
= 1;

(ii) ∥v∥H < 1 (resp. > 1,= 1) if and only if ϱH(v) < 1 (resp. > 1,= 1);
(iii) if ∥v∥H < 1, then ∥v∥qH ≤ ϱH(v) ≤ ∥v∥pH;
(iy) if ∥v∥H > 1, then ∥v∥pH ≤ ϱH(v) ≤ ∥y∥qH;
(y) ∥v∥H → 0 if and only if ϱH(v) → 0;
(vi) ∥v∥H → +∞ if and only if ϱH(v) → +∞.

Proposition 2.3 ([39]). Let (g1) be satisfied. Then, the embedding Hγ,β,ψ
0,H (Ω) ↪→ Lr(Ω)

is continuous for all r ∈ [p, p∗].

Remark 2.3. From (1.6) and Proposition 2.3, we have
(2.5) Hγ,β,ψ

0,H (Ω) ↪→ Lτri(Ω), with ri ∈ [p, p∗], i = 1, 2.
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Proposition 2.4 (Hardy-Littlewood-Sobolev inequality). Let p, q > 1 and 0 < λ < N
with 1/p + λ/N + 1/q = 2, f ∈ Lp(Ω) and g ∈ Lq(Ω). Then, there exists a sharp
constant C(p,N, λ, q), independent of f, g, such that

(2.6)

∣∣∣∣∣∣
∫

Ω×Ω

f(x)g(y)
|x− y|λ

dxdy

∣∣∣∣∣∣ ≤ C(p,N, λ, q)||f ||Lp(Ω)||g||Lq(Ω).

3. Main Result

Our first main result is the following.

Theorem 3.1. The problem (1.5) has a nontrivial solution under the conditions
(g1)-(g3).

In the proof of Theorem 3.1 we will use variational methods. The energy functional
E : Hγ,β,ψ

0,H (Ω) → R associated with (1.5) is given by

E(u) = 1
p

∥Dγ,β;ψ
0+ u∥pp + 1

q
∥Dγ,β;ψ

0+ u∥qa,q − Ψ(u),

where
Ψ(u) = 1

2

∫
Ω

∫
Ω

G(u(x))G(u(y))
|x− y|λ

dxdy.

Theorem 3.1 is proved in several steps.
Step 1. The energy functional E satisfies the mountain pass geometry, i.e., satisfies

the following lemma.

Lemma 3.1. The functional E exhibits the following characteristics.
(i) For sufficiently small ρ > 0, E(u) ≥ η holds for u ∈ Hγ,β,ψ

0,H (Ω) with ∥u∥0,H = ρ,
where η > 0.

(ii) There exists an element e ∈ Hγ,β,ψ
0,H (Ω) such that ∥e∥0,H > ρ and E(e) < 0.

First, we need to demonstrate the following useful property.

Proposition 3.1. For each v ∈ Hγ,β,ψ
0,H (Ω), we have the following property: G and gv

are belong to Lτ (Ω).

Proof. Due to (g2), if u ∈ R and u(x) ̸= 0, then
|g(u(x))| ≤ c1

(
|u(x)|r1−1 + |u(x)|r2−1

)
.(3.1)

Also, from the last inequality, we deduce

|G(v)| =
∣∣∣∣ ∫ v

0
g(x)dx

∣∣∣∣ ≤ c1

∫ v

0

(
|u|r1−1 + |u|r2−1

)
dx ≤ c1

(
|v|r1 + |v|r2

)
.

Hence,
(3.2) |G(v)|τ ≤ c2

(
|v|τr1 + |v|τr2

)
,

where c2 = cτ1. Now, utilizing (2.5), we deduce that G ∈ Lτ (Ω). By a similar argument
as above, which applies to g(u)v, we deduce that gv ∈ Lτ (Ω). □
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Lemma 3.2. For each u ∈ Hγ,β,ψ
0,H (Ω). We have the following properties:

(i) ∫
Ω×Ω

|G(u(x))g(u(y))v(y)|
|x− y|λ

dxdy < +∞, for all v ∈ C∞
0 (Ω);

(ii)∫
Ω×Ω

|G(u(x))g(u(y))v(y)|
|x− y|λ

dxdy ≤ C∥G(u)∥Lτ∥g(u)v∥Lτ , for all v ∈ C∞
0 (Ω).

Proof. Taking into account Proposition 3.1, equations (2.5), (3.1), and the fact that
(a+ b)p ≤ 2p−1(ap+ bp), for every a, b ≥ 0 and 1 ≤ p < +∞, as well as Proposition 2.4,
we arrive at the proof of Lemma 3.2. □

Corollary 3.1. For each v ∈ Hγ,β,ψ
0,H (Ω), with ||v||0,H ≤ 1, the sequence

{||g(uk)v||Lτ} k ∈ N is bounded.

Proof. Due to (3.1) and (2.5), we obtain∫
Ω

|g(uk(y))v(y)|τdy ≤c2

∫
Ω

(
|uk(y)|τ(r1−1) + |uk(y)|τ(r2−1)

)
|v(y)|τdy

≤c2

( ∫
Ω

|uk|τr1dy
) r1−1

r1
( ∫

Ω
|v(y)|τr1dy

) 1
r1 +

(∫
Ω

|uk|τr2dy

) r2−1
r2

×
( ∫

Ω
|v(y)|τr2dy

) 1
r2


=c2

(
||uk(y)||τ(r1−1)

Lτr1 ||v(y)||τLτr1 + ||uk(y)||τ(r2−1)
Lτr2 ||v(y)||τLτr2

)
≤c2

(
||uk(y)||τ(r1−1)

Lτr1 + ||uk(y)||τ(r2−1)
Lτr2

)
< +∞.(3.3)

□

Corollary 3.2. The function E belongs to C1
(
Hγ,β,ψ

0,H (Ω),R
)
, and we can express it

as follows:

E′(u)v =
∫

Ω

(
|Dγ,β;ψ

0+ u|p−2 Dγ,β;ψ
0+ u+ a(x)|Dγ,β;ψ

0+ u|q−2 Dγ,β;ψ
0+ u

)
Dγ,β;ψ

0+ vdx

−
∫

Ω

∫
Ω

G(u(x))g(u(y))v(y)
|x− y|λ

dxdy,(3.4)

for all u, v ∈ Hγ,β,ψ
0,H (Ω).

Proof. Using the analysis presented earlier, along with a similar approach as in
Lemma 3.2 of [1], we confirm the validity of this corollary. □
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Proof of the main Lemma 3.1. Let prove (i). Applying Propositions 3.1, Lemma 3.4
and Proposition 2.4, we have∣∣∣∣ ∫

Ω×Ω

G(u(x))G(u(y))
|x− y|λ

dxdy
∣∣∣∣ ≤ c3∥G(u)∥2

Lτ (Ω),

for all u ∈ Hγ,β,ψ
0,H (Ω). Due to (3.1) and (3.2), we have

∥G(u)∥Lτ (Ω) ≤ c4

(
∥u∥r1

Lτr1 + ∥u∥r2
Lτr2

)
≤ c5

(
∥u∥r1

0,H + ∥u∥r2
0,H

)
,(3.5)

where c5 is a constant that does not depend on u ∈ Hγ,β,ψ
0,H (Ω) with ∥u∥0,H =

∥Dγ,β;ψ
0+ u∥H + ∥u∥H < 1 we get that

E(u) ≥ 1
p

∥Dγ,β;ψ
0+ u∥pp + 1

q
∥Dγ,β;ψ

0+ u∥qa,q − c6

(
∥u∥r1

0,H + ∥u∥r2
0,H

)
≥ c6∥u∥p0,H − c7

(
∥u∥r1

0,H + ∥u∥r2
0,H

)
,

where c6 and c7 are constants that do not depend on u. The fact that r2 > p/2, then
the result follows by fixing ∥u∥0,H = ρ with ρ > 0 small enough.

Let prove (ii). Let us fix u0 ∈ Hγ,β,ψ
0,H (Ω)\{0} with u0 > 0 and define

J(t) = G
(
x,

tu0

∥u0∥0,H

)
, for t > 0, u ∈ Ω,

The condition (g2) implies that
J ′(t)
J(t) ≥ α

2t , for t > 0,

Integrating this over [1, s∥u0∥0,H] with s > 1
∥u0∥0,H

, we get

G(x, su0) ≥ G
(
x,

u0

∥u0∥0,H

)(
s∥u0∥0,H

)α/2
.

With this, we are able to compose

E(su0) ≤sp

p
∥Dγ,β;ψ

0+ u0∥pp + sq

q
∥Dγ,β;ψ

0+ u0∥qa,q

−
sα∥u0∥α0,H

2

∫
Ω

∫
Ω

G
(
v, u0

∥u0∥

)
|x− y|λ

dy

G(x, u0

∥u0∥

)
dx.

Since α > q > p we can choose s > 1
∥u0∥0,H

large enough such that e = su0 with
∥e∥0,H > ρ and E(e) < 0. This finishes the proof of the main Lemma 3.1. □

Step 2. The sequence {uk}k∈N, which does not satisfy the (PS)-condition, is a
bounded sequence in Hγ,β,ψ

0,H (Ω). Recalling that the mountain pass theorem without the
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Palais-Smale condition (refer to [6], Theorem 5.4.1) states the existence of a sequence
{uk}k∈N ⊂ Hγ,β,ψ

0,H (Ω) such that:
(3.6) E(uk) → θ

and
(3.7) E′(uk) → 0,
where θ > 0 is the mountain pass level defined by

θ := inf
γ∈Γ

sup
t∈[0,1]

E(γ(t)),

with
Γ :=

{
γ ∈ C

(
Hγ,β,ψ

0,H (Ω),Hγ,β,ψ
0,H (Ω)

)
: γ(0) = 0, γ(1) = e

}
.

Concerning the sequence mentioned earlier, we observe the following auxiliary
characteristic.

Lemma 3.3. The sequence {uk}k∈N is bounded in Hγ,β,ψ
0,H (Ω).

Proof. Note that

(3.8) E(uk) − E′(uk)uk
α

≤ θ + 1 + ∥uk∥0,H,

for k large enough. Moreover, from Proposition 2.2 and (g3) we have for ∥uk∥0,H ≥ 1
that

E(uk) − E′(uk)uk
α

=
(1
p

− 1
α

)
∥Dγ,β;ψ

0+ uk∥pp +
(1
q

− 1
α

)
∥Dγ,β;ψ

0+ uk∥qa,q

+
∫

Ω

∫
Ω

G(x, uk(x))
|x− y|λ

(
g(v, uk(y))uk(y)

α
− G(v, uk(y))

2

)
dxdy

≥
(1
q

− 1
α

)
∥uk∥0,H.(3.9)

Hence, (3.8) and (3.9) owing to the boundedness of {uk}k∈N in Hγ,β,ψ
0,H (Ω). □

Step 3. Existence of solution, i.e., critical point of E.
First, we need the following two lemmas.

Lemma 3.4. The following limits hold for a subsequence:
(i)∫

Ω×Ω

G(x, uk(x))g(v, u(y))v(y)
|x− y|λ

dxdv →
∫

Ω×Ω

G(x, u(x))g(v, u(y))v(y)
|x− y|λ

dxdv,

for all v ∈ C∞
c (Ω);

(ii) ∫
Ω

∫
Ω

G(x, uk(x))
(
g(v, uk(y))v(y) − g(v, u(y))v(y)

)
|x− y|λ

dxdy → 0,
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for all v ∈ C∞
c (Ω);

(iii) ∫
Ω

∫
Ω

G(uk(x))g(uk(y))v(y)
|x− y|λ

dxdy →
∫

Ω

∫
Ω

G(u(x))g(u(y))v(y)
|x− y|λ

dxdv,

for all v ∈ C∞
c (Ω).

Proof. (i) Lemma 3.3, (2.5), and Proposition 3.1 collectively establish that {G(uk)}k∈N
forms a bounded sequence in Lτ (Rn). Leveraging the continuity of G, along with the
previously mentioned information and the pointwise convergence G(uk(x)) → G(u(x))
almost everywhere in Rn, we deduce that G(uk) ⇀ G(u) in Lτ (Rn). By virtue of
Proposition 2.4, it follows that the function

H(w) :=
∫

Ω

∫
Ω

w(x)g(u(y))v(y)
|x− y|λ

, w ∈ Lτ (Ω),

defines a continuous linear functional. Since G(uk) ⇀ G(u) in Lτ (Ω), it follows that∫
Ω

∫
Ω

G(uk(x))g(uk(y))v(y)
|x− y|λ

dxdy →
∫

Ω

∫
Ω

G(u(x))g(u(y))v(y)
|x− y|λ

dxdy,

which proves (i).
For (ii), since {G(uk)}k∈N is bounded in Lτ (Ω), we have∣∣∣∣∣∣

∫
Ω×Ω

G(uk(x))(g(uk(y))v(y) − g(u(y))v(y))
|x− y|λ

dxdy

∣∣∣∣∣∣
≤c8

∥∥∥G(uk)
∥∥∥
Lτ (Ω)

∥∥∥g(uk)v − g(u)v
∥∥∥
Lτ (Ω)

≤c9

∥∥∥g(uk)v − g(u)v
∥∥∥
Lτ (Ω)

.

Let v ∈ C∞
c (Ω). Since Ω is bounded the compactness of the embeddings

Hγ,β,ψ
0,H (Ω) ↪→ Lτr2(Ω), implies that there exist h ∈ Lτr1(Ω) and w ∈ Lτr2(Ω) such

that
(3.10) uk(x) → u(x) a.e in Ω, |uk(x)| ≤ h(x) and |uk(x)| ≤ w(x) a.e in Ω.
Combining (3.10) with Lebesgue’s dominated convergence theorem, we infer that

∥g(uk)v − g(u)v∥Lτ (Ω) = ∥g(uk)v − g(u)v∥Lτ (Ω) → 0.
The proof for (ii) is now complete, and (iii) directly follows from both (i) and (ii). □

Proposition 3.2. Let hypotheses (g1)-(g3) be satisfied. For a subsequence of {uk}k∈N,
we have

Dγ,β,ψ
0+ uk → Dγ,β,ψ

0+ u, pointwise a.e. in Ω.
Consequently, it holds∣∣∣Dγ,β,ψ

0+ uk
∣∣∣p−2

Dγ,β,ψ
0+ uk ⇀

∣∣∣Dγ,β,ψ
0+ u

∣∣∣p−2
Dγ,β,ψ

0+ u, in
[
L

p
p−1 (Ω)

]N
,(3.11)
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∣∣∣Dγ,β,ψ
0+ uk

∣∣∣q−2
Dγ,β,ψ

0+ uk ⇀
∣∣∣Dγ,β,ψ

0+ u
∣∣∣q−2

Dγ,β,ψ
0+ u, in

[
L

q
q−1 (Ω)

]N
.(3.12)

Proof. We refer to the proof of Lemma 13 in [37]. □

Lemma 3.5. The function u is a critical point of E.

Proof. First of all, we claim that

E′(uk)v → E′(u)v, for all v ∈ C∞
c (Ω).

To verify such limit, note that

E′(u)v =
∫

Ω

(
|Dγ,β;ψ

0+ u|p−2 Dγ,β;ψ
0+ u+ a(x)|Dγ,β;ψ

0+ u|q−2 Dγ,β;ψ
0+ u

)
· Dγ,β;ψ

0+ vdx

−
∫

Ω

∫
Ω

G(u(x))g(u(y))v(y)
|x− y|λ

dxdy,

Lemma 3.4, Proposition 3.2 owing to

(3.13)
∫

Ω×Ω

G(uk(x))g(uk(y))v(y)
|x− y|λ

dxdy →
∫

Ω×Ω

G(u(x))g(u(y))v(y)
|x− y|λ

dxdy

and

|Dγ,β;ψ
0+ uk|p−2 Dγ,β;ψ

0+ uk + a(x) |Dγ,β;ψ
0+ uk|q−2 Dγ,β;ψ

0+ uk

→|Dγ,β;ψ
0+ u|p−2 Dγ,β;ψ

0+ u+ a(x)| Dγ,β;ψ
0+ u|q−2 Dγ,β;ψ

0+ u.(3.14)

From relations (3.13) and (3.14), the claim follows. As E′(uk)v → 0, this claim implies
that E′(u)v = 0 for all v ∈ C∞

c (Rn). With the knowledge that C∞
c (Rn) is dense in

Hγ,β,ψ
0,H (Ω), the lemma follows. □

Proof of Theorem 3.1. If u ̸= 0, then u serves as a nontrivial solution, concluding the
theorem. However, if u = 0, the task is to locate another solution v ∈ Hγ,β,ψ

0,H (Ω)\{0}
for equation (1.5). In pursuit of this objective, the assertion presented below plays a
pivotal role in our reasoning.

Claim. There exist s > 0, ϑ > 0 and a sequence (vn)n ⊂ Ω such that

(3.15) lim inf
n→+∞

∫
Bs(vn)

|uk(x)|pdx ≥ ϑ > 0.

Proof. In fact, if the above claim does not hold, by Lions’s lemma ([34], Lemmma
I.1), one has

(3.16) uk → 0, in Lτ (Ω).

Moreover, Proposition 2.4 owing to,∣∣∣∣∣∣
∫

Ω

∫
Ω

G(uk(x))g(uk(y))uk(y)
|x− y|λ

dxdy

∣∣∣∣∣∣ ≤ C∥G(uk(x))∥Lr(Ω)∥g(uk(y))uk(y)∥Lr(Ω).
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By (3.3), (3.5), and 3.16, we obtain that∫
Ω

|G(uk(x))|τdx → 0 and
∫

Ω
|g(uk(y))uk(y)|τdy → 0.

Therefore,

(3.17)
∫

Ω

G(uk(x))g(uk(y))uk(y)
|x− y|λ

dxdy → 0.

Using (3.7) together with (3.17) give∫
Ω

(
|Dγ,β;ψ

0+ u|p−2 Dγ,β;ψ
0+ u+ a(x) |Dγ,β;ψ

0+ u|q−2 Dγ,β;ψ
0+ u

)
Dγ,β;ψ

0+ vdx → 0.

This limit leads to E(uk) → 0, which contradicts (3.6). □

Due to the next lemma, we finish the prove of Theorem 3.1.

Lemma 3.6. Let {uk}k∈N ⊂ Hγ,β,ψ
0,H (Ω) be such that E → θ. Then, there exists

{ỹk}k∈N ⊂ Ω such that the translated sequence
ṽ := uk(x+ ỹk)

has a subsequence which converges in Hγ,β,ψ
0,H (Ω).

Proof. By utilizing the fact that E′(uk)uk → 0 and E(uk) → θ, we can employ the
same reasoning as in the proof of Lemma 3.3 to demonstrate that the sequence {uk}k∈N

is bounded in Hγ,β,ψ
0,H (Ω). Then, considering ũk(x) = uk(x+ ỹk) and a subsequence, we

can find ũ ∈ Hγ,β,ψ
0,H (Ω) such that ũk ⇀ ũ in Hγ,β,ψ

0,H (Ω) and ũ ̸= 0 according to (3.15).
Furthermore, for (tk)k∈N > 0, we can construct ṽk = tkũk ∈ Hγ,β,ψ

0,H (Ω). Then,
E(ṽk) ≤ max

t≥0
E(tuk) = E(uk),

and so
(3.18) E(ṽk) → θ.

Since (3.18) holds, we have that {ṽk}k∈N is bounded in Hγ,β,ψ
0,H (Ω), which implies that

we can assume ṽk ⇀ ṽ in Hγ,β,ψ
0,H (Ω). Moreover, (tk)k∈N is bounded and converges to

t0 > 0. Suppose for contradiction that t0 = 0. Then, by the boundedness of {ũk}k∈N,
we have ∥ṽk∥0,H = tk∥ũk∥0,H → 0, which contradicts E(ṽk) → θ > 0. Hence, t0 > 0.
Since the weak limit is unique, we have ṽ = t0ũ and ũ ̸= 0. Thus, ṽk → ṽ in Hγ,β,ψ

0,H (Ω),
and consequently ũk → ũ in Hγ,β,ψ

0,H (Ω). □
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