Kragujevac Journal of Mathematics Volume 47(5) (2023), Pages 801–815.

ON A GENERALIZED DRYGAS FUNCTIONAL EQUATION AND ITS APPROXIMATE SOLUTIONS IN 2-BANACH SPACES

MUSTAPHA ESSEGHYR HRYROU¹ AND SAMIR KABBAJ¹

ABSTRACT. In this paper, we introduce and solve the following generalized Drygas functional equation

$$f(x + ky) + f(x - ky) = 2f(x) + k^2 f(y) + k^2 f(-y),$$

where $k \in \mathbb{N}$. Also, we discuss some stability and hyperstability results for the considered equation in 2-Banach spaces by using the fixed point approach.

1. Introduction and preliminaries

We begin this paper by some notations and symbols. We will denote the set of natural numbers by \mathbb{N} , the set of real numbers by \mathbb{R} , $\mathbb{R}_+ = [0, \infty)$ and the set of all natural numbers greater than or equal to m will be denoted by \mathbb{N}_m , $m \in \mathbb{N}$. We write B^A to mean the family of all functions mapping from a nonempty set A into a nonempty set B.

S. Gähler [23, 24] introduced the basic concept of linear 2-normed spaces. He gave some important facts concerning 2-normed spaces and some preliminary results as follows.

Definition 1.1. Let X be a real linear space with dim X > 1 and $\|\cdot, \cdot\| : X \times X \to [0, \infty)$ be a function satisfying the following properties:

- (a) ||x,y|| = 0 if and only if x and y are linearly dependent;
- (b) ||x,y|| = ||y,x||;
- (c) $\|\lambda x, y\| = |\lambda| \|x, y\|;$

 $2010\ Mathematics\ Subject\ Classification.$ Primary: 39B52. Secondary: 54E50, 39B82, 47H10. DOI

Received: August 18, 2020. Accepted: December 02, 2020.

Key words and phrases. Stability, hyperstability, Drygas functional equation, fixed point method, 2-Banach space.

(d) $||x, y + z|| \le ||x, y|| + ||x, z||$,

for all $x, y, z \in X$ and $\lambda \in \mathbb{R}$. Then the function $\|\cdot, \cdot\|$ is called the 2-norm on X and the pair $(X, \|\cdot, \cdot\|)$ is called the linear 2-normed space. Sometimes the condition (d) is called the triangle inequality.

Example 1.1. For $x=(x_1,x_2), y=(y_1,y_2)\in X=\mathbb{R}^2$, the Euclidean 2-norm $||x,y||_{\mathbb{R}^2}$ is defined by

$$||x,y||_{\mathbb{R}^2} = |x_1y_2 - x_2y_1|.$$

Lemma 1.1. Let $(X, \|\cdot, \cdot\|)$ be a 2-normed space. If $x \in X$ and $\|x, y\| = 0$ for all $y \in X$, then x = 0.

Definition 1.2. A sequence $\{x_k\}$ in a 2-normed space X is called a *convergent* sequence if there is an $x \in X$ such that

$$\lim_{k \to \infty} ||x_k - x, y|| = 0,$$

for all $y \in X$. If $\{x_k\}$ converges to x, write $x_k \to x$ with $k \to \infty$ and call x the limit of $\{x_k\}$. In this case, we also write $\lim_{k\to\infty} x_k = x$.

Definition 1.3. A sequence $\{x_k\}$ in a 2-normed space X is said to be a *Cauchy sequence* with respect to the 2-norm if

$$\lim_{k,l\to\infty} ||x_k - x_l, y|| = 0,$$

for all $y \in X$. If every Cauchy sequence in X converges to some $x \in X$, then X is said to be *complete* with respect to the 2-norm. Any complete 2-normed space is said to be a 2-Banach space.

The following lemma is one of the tools whose we need in our main results.

Lemma 1.2 ([31]). Let X be a 2-normed space. Then

- (a) $||x, z|| ||y, z|| \le ||x y, z||$ for all $x, y, z \in X$;
- (b) if ||x, z|| = 0 for all $z \in X$, then x = 0;
- (c) for a convergent sequence x_n in X

$$\lim_{n \to \infty} ||x_n, z|| = \left\| \lim_{n \to \infty} x_n, z \right\|,$$

for all $z \in X$.

The problem of the stability of functional equations is caused by the question of S. M. Ulam [38] about the stability in group homomorphisms. The first affirmative partial answer to the Ulam's problem for Banach spaces was provided by D. H. Hyers [28]. The result of Hyers was generalizable. Namely, it was generalized by T. Aoki [3] for additive mappings and by Th. M. Rassias [34] for linear mappings by considering an unbounded Cauchy difference. In 1994, P. Găvruţa [25] introduced the generalization of the Th. M. Rassias theorem was obtained by replacing the unbounded Cauchy difference by a general control function in the spirit of Th. M. Rassias' approach.

Within that, a special kind of stability was introduced. This kind is the hyperstability which was given by the following definition.

Definition 1.4 ([13]). Let S be a nonempty set, (Y, d) be a metric space, $\mathcal{E} \subset \mathcal{C} \subset \mathbb{R}^{S^n}_+$ be nonempty, \mathcal{T} be an operator mapping \mathcal{C} into \mathbb{R}^S_+ and $\mathcal{F}_1, \mathcal{F}_2$ be operators mapping a nonempty set $\mathcal{D} \subset Y^S$ into Y^{S^n} . We say that the operator equation

$$\mathfrak{F}_1\varphi(x_1,\ldots,x_n) = \mathfrak{F}_2\varphi(x_1,\ldots,x_n), \quad x_1,\ldots,x_n \in S,$$

is $(\mathcal{E}, \mathcal{T})$ -hyperstable provided for any $\varepsilon \in \mathcal{E}$ and $\varphi_0 \in \mathcal{D}$ with

$$d(\mathcal{F}_1\varphi_0(x_1,\ldots,x_n),\mathcal{F}_2\varphi_0(x_1,\ldots,x_n)) \leq \varepsilon(x_1,\ldots,x_n), \quad x_1,\ldots,x_n \in S,$$

there is a solution $\varphi \in \mathcal{D}$ of equation (1.1) such that

$$d(\varphi(x), \varphi_0(x)) \le \Im \varepsilon(x), \quad x \in S.$$

In [5] the first result of hyperstability has been published, however, the term *hyperstability* was first used in [30].

There are many papers concerning the hyperstability of functional equations, see for example [4,7–9,13,16–20,26,27,30,33]. In 2013, Brzdęk [6] gave an important result that will be a basic tool to study the stability and hyperstability of functional equations.

Theorem 1.1 ([6]). Let X be a nonempty set, (Y,d) a complete metric space $f_1, \ldots, f_s \colon X \to X$ and $L_1, \ldots, L_s \colon X \to \mathbb{R}_+$ be given mappings. Let $\Lambda \colon \mathbb{R}_+^X \to \mathbb{R}_+^X$ be a linear operator defined by

$$\Lambda \delta(x) := \sum_{i=1}^{s} L_i(x) \delta(f_i(x)),$$

for $\delta \in \mathbb{R}_+^X$ and $x \in X$. If $\mathfrak{T}: Y^X \to Y^X$ is an operator satisfying the inequality

$$d\left(\Im\xi(x), \Im\mu(x)\right) \le \sum_{i=1}^{s} L_i(x)d\left(\xi(f_i(x)), \mu(f_i(x))\right), \quad \xi, \mu \in Y^X, x \in X,$$

and a function $\varepsilon \colon X \to \mathbb{R}_+$ and a mapping $\varphi \colon X \to Y$ satisfies

$$d\left(\Im\varphi(x), \varphi(x)\right) \le \varepsilon(x), \quad x \in X,$$

$$\varepsilon^*(x) := \sum_{k=0}^{\infty} \Lambda^k \varepsilon(x) < \infty, \quad x \in X,$$

then for every $x \in X$ the limit

$$\psi(x) := \lim_{n \to \infty} \mathfrak{T}^n \varphi(x)$$

exists and the function $\psi \in Y^X$ is a unique fixed point of Υ with

$$d(\varphi(x), \psi(x)) \le \varepsilon^*(x), \quad x \in X.$$

In 2019, M. Almahalebi et al. [2] introduced and proved an analogue of Theorem 1.1 in 2-Banach spaces.

Theorem 1.2 ([2]). Let X be a nonempty set, $(Y, \|\cdot, \cdot\|)$ be a 2-Banach space, $g: X \to Y$ be a surjective mapping and let $f_1, \ldots, f_r: X \to X$ and $L_1, \ldots, L_r: X \to \mathbb{R}_+$ be given mappings. Suppose that $\mathfrak{T}: Y^X \to Y^X$ and $\Lambda: \mathbb{R}_+^{X \times X} \to \mathbb{R}_+^{X \times X}$ are two operators satisfying the conditions

$$\left\| \Im \xi(x) - \Im \mu(x), g(z) \right\| \leq \sum_{i=1}^{r} L_i(x) \left\| \xi \left(f_i(x) \right) - \mu \left(f_i(x) \right), g(z) \right\|,$$

for all $\xi, \mu \in Y^X$, $x, z \in X$ and

(1.2)
$$\Lambda \delta(x,z) := \sum_{i=1}^{r} L_i(x) \delta(f_i(x), z), \quad \delta \in \mathbb{R}_+^{X \times X}, \ x, z \in X.$$

If there exist functions $\varepsilon: X \times X \to \mathbb{R}_+$ and $\varphi: X \to Y$ such that

$$\left\| \Im \varphi(x) - \varphi(x), g(z) \right\| \le \varepsilon(x, z)$$

and

$$\varepsilon^*(x,z) := \sum_{n=0}^{\infty} (\Lambda^n \varepsilon)(x,z) < \infty,$$

for all $x, z \in X$, then the limit

$$\lim_{n\to\infty} \Big((\mathfrak{T}^n \varphi) \Big) (x)$$

exists for each $x \in X$. Moreover, the function $\psi: X \to Y$ defined by

$$\psi(x) := \lim_{n \to \infty} \left((\mathfrak{T}^n \varphi) \right) (x)$$

is a fixed point of T with

$$\|\varphi(x) - \psi(x), g(z)\| \le \varepsilon^*(x, z),$$

for all $x, z \in X$.

Another version of Theorem 1.2 in 2-Banach space can be found in [14]. Also, J. Brzdęk and K. Ciepliński extended their fixed point result to the n-normed spaces in [15].

In this paper, we consider and solve the following equation

$$(1.3) f(x+ky) + f(x-ky) = 2f(x) + k^2 f(y) + k^2 f(-y),$$

where $k \in \mathbb{N}$. This equation can be reduced to the Drygas equation

(1.4)
$$f(x+y) + f(x-y) = 2f(x) + f(y) + f(-y).$$

In addition, we use Theorem 1.2 to investigate some stability and hyperstability results of equation (1.3) in 2-Banach spaces.

2. Solution of (1.3)

Throughout this section, X and Y will be real vector spaces. The functional equation (1.3) is connected with the functional equation (1.4) as it is shown below.

Theorem 2.1. A function $f: X \to Y$ satisfies the functional equation (1.3) if and only if f satisfies the Drygas functional equation (1.4) for all $x, y \in X$.

Proof. Suppose that $f: X \to Y$ satisfies (1.3) for all $x, y \in X$. Letting x = y = 0 in (1.3), we get f(0) = 0. Also, by setting x = 0 in (1.3), we obtain that

$$f(ky) + f(-ky) = k^2 f(y) + k^2 f(-y), \quad y \in X.$$

To prove that f satisfies the Drygas functional equation (1.4) for all $x, y \in X$, we assume that x' = x and y' = ky be two elements in X. Then we get

$$f(x' + y') + f(x' - y') = f(x + ky) + f(x - ky)$$

$$= 2f(x) + k^2 f(y) + k^2 f(-y)$$

$$= 2f(x) + f(ky) + f(-ky)$$

$$= 2f(x') + f(y') + f(-y'), \quad x, y \in X,$$

which means that f satisfies the Drygas functional equation (1.4) for all $x, y \in X$. On the other hand, let f be a function satisfying the Drygas functional equation (1.4) for all $x, y \in X$ with f(0) = 0 and f(x) = B(x, x) + A(x). Then

$$f(x + ky) + f(x - ky) = 2f(x) + f(ky) + f(-ky)$$

$$= 2f(x) + B(ky, ky) + A(ky) + B(-ky, -ky) + A(-ky)$$

$$= 2f(x) + k^{2}B(y, y) + k^{2}B(-y, -y) + \underbrace{A(ky) + A(-ky)}_{=0}$$

$$= 2f(x) + k^{2}B(y, y) + k^{2}B(-y, -y) + k^{2}\underbrace{\left(A(y) + A(-y)\right)}_{=0}$$

$$= 2f(x) + k^{2}\left(B(y, y) + A(y)\right) + k^{2}\left(B(-y, -y) + A(-y)\right)$$

$$= 2f(x) + k^{2}f(y) + k^{2}f(-y), \quad x, y \in X,$$

which means that f satisfies (1.3) for all $x, y \in X$.

3. Stability Results

In this section, we give some investigations on the stability and hyperstability results of the equation (1.3) by using Theorem 1.2 in 2-Banach spaces.

Theorem 3.1. Let X be a normed space, $(Y, \|\cdot, \cdot\|)$ be a 2-Banach space and $h_1, h_2 : X_0^2 \to \mathbb{R}_+$ be two functions such that

$$\mathcal{U} := \left\{ n \in \mathbb{N} : \alpha_n < 1 \right\} \neq \emptyset,$$

where

$$\alpha_n = \frac{1}{2}\lambda_1(1+kn)\lambda_2(1+kn) + \frac{1}{2}\lambda_1(1-kn)\lambda_2(1-kn) + \frac{k^2}{2}\lambda_1(n)\lambda_2(n) + \frac{k^2}{2}\lambda_1(-n)\lambda_2(-n)$$
and

$$\lambda_i(n) := \inf \left\{ t \in \mathbb{R}_+ : h_i(nx, z) \le th_i(x, z), \ x, z \in X_0 \right\},\,$$

for all $n \in \mathbb{N}$ with $i \in \{1, 2\}$. Assume that $f: X \to Y$ satisfies the inequality

$$(3.1) \left\| f(x+ky) + f(x-ky) - 2f(x) - k^2 f(y) - k^2 f(-y), g(z) \right\| \le h_1(x,z)h_2(y,z),$$

for all $x, y, z \in X_0$ such that $x + ky \neq 0$ and $x - ky \neq 0$, where $g : X \to Y$ is a surjective mapping. Then there exists a unique function $D : X \to Y$ that satisfies the equation (1.3) such that

$$||f(x) - D(x), g(z)|| \le \lambda_0 h_1(x, z) h_2(x, z),$$

for all $x, z \in X_0$, where

$$\lambda_0 = \frac{\lambda_2(n)}{2(1 - \alpha_m)}.$$

Proof. Let us fix $m \in \mathbb{N}$. Replacing x by mx, where $x \in X_0$, in the inequality (3.1), we obtain

$$\left\| \frac{1}{2} f((1+km)x) + \frac{1}{2} f((1-km)x) - \frac{k^2}{2} f(mx) - \frac{k^2}{2} f(-mx) - f(x), g(z) \right\|$$

(3.2)

$$\leq \frac{1}{2}h_1(x,z)h_2(mx,z),$$

for all $x, z \in X_0$. Define the operator $\mathfrak{T}_m \colon Y^{X_0} \to Y^{X_0}$ by

$$\mathfrak{I}_{m}\xi(x) := \frac{1}{2}\xi((1+km)x) + \frac{1}{2}\xi((1-km)x) - \frac{k^{2}}{2}\xi(mx) - \frac{k^{2}}{2}\xi(-mx),$$

for all $x \in X_0$ and $\xi \in Y^{X_0}$. Further put

(3.3)
$$\varepsilon_m(x,z) := \frac{1}{2} h_1(x,z) h_2(mx,z), \quad x,z \in X_0,$$

and observe that

$$(3.4) \quad \varepsilon_m(x,z) = \frac{1}{2}h_1(x,z)h_2(mx,z) \le \frac{1}{2}\lambda_2(m)h_1(x,z)h_2(x,z), \quad x,z \in X_0, \ m \in \mathbb{N}.$$

Thus, the inequality (3.2) becomes

$$\|\mathfrak{T}_m f(x) - f(x), g(z)\| \le \varepsilon_m(x, z), \quad x, z \in X_0.$$

Furthermore, for every $x, z \in X_0$ and $\xi, \mu \in Y^{X_0}$, we have

$$\left\| \Im_m \xi(x) - \Im_m \mu(x), g(z) \right\|$$

$$= \left\| \frac{1}{2} \xi \left((1 + km)x \right) + \frac{1}{2} \xi \left((1 - km)x \right) - \frac{k^2}{2} \xi(mx) \right\|$$

$$\begin{split} &-\frac{k^2}{2}\xi(-mx) - \frac{1}{2}\mu\Big((1+km)x\Big) - \frac{1}{2}\mu\Big((1-km)x\Big) + \frac{k^2}{2}\mu(mx) + \frac{k^2}{2}\mu(-mx), g(z)\Big\| \\ \leq &\frac{1}{2}\left\| (\xi-\mu)\Big((1+km)x\Big), g(z) \right\| + \frac{1}{2}\left\| (\xi-\mu)\Big((1-km)x\Big), g(z) \right\| \\ &+ \frac{k^2}{2}\left\| (\xi-\mu)(mx) \;,\; g(z) \right\| + \frac{k^2}{2}\left\| (\xi-\mu)(-mx), g(z) \right\| \;, \end{split}$$

for all $x, z \in X_0$ and $\xi, \mu \in Y^{X_0}$. It means that the condition (1.2) is satisfied and this brings us to define the operator $\Lambda_m \colon \mathbb{R}_+^{X_0 \times X_0} \to \mathbb{R}_+^{X_0 \times X_0}$ by

$$\Lambda_m\delta(x,z):=\frac{1}{2}\delta\Big((1+km)x,z\Big)+\frac{1}{2}\delta\Big((1-km)x,z\Big)+\frac{k^2}{2}\delta(mx,z)+\frac{k^2}{2}\delta(-mx,z),$$

for all $x, z \in X_0$ and $\delta \in \mathbb{R}_+^{X_0 \times X_0}$. This operator has the form given by (1.2) with $f_1(x) = (1+km)x$, $f_2(x) = (1-km)x$, $f_3(x) = mx$, $f_4(x) = -mx$, $L_1(x) = L_2(x) = \frac{1}{2}$ and $L_3(x) = L_4(x) = \frac{k^2}{2}$ for all $x \in X_0$. By induction on $n \in \mathbb{N}$, it is easy to show that

(3.5)
$$\left(\Lambda_m^n \varepsilon_m\right)(x,z) \le \frac{1}{2} \lambda_2(m) \alpha_m^n h_1(x,z) h_2(x,z),$$

for all $x, z \in X_0$ and all $m \in \mathcal{U}$, where

$$\alpha_m = \frac{1}{2}\lambda_1(1+km)\lambda_2(1+km) + \frac{1}{2}\lambda_1(1-km)\lambda_2(1-km) + \frac{k^2}{2}\lambda_1(m)\lambda_2(m) + \frac{k^2}{2}\lambda_1(-m)\lambda_2(-m).$$

Indeed, (3.3) and (3.4) imply that the inequality (3.5) holds for n=0. Next, we assume that (3.5) holds for n = r, where $r \in \mathbb{N}_1$. Then we obtain

$$\begin{split} \left(\Lambda_m^{r+1}\varepsilon_m\right)&(x,z)=&\Lambda_m\left(\left(\Lambda_m^r\varepsilon_m\right)(x,z)\right)\\ &=\frac{1}{2}\left(\Lambda_m^r\varepsilon_m\right)\left((1+km)x,z\right)+\frac{1}{2}\left(\Lambda_m^r\varepsilon_m\right)\left((1-km)x,z\right)\\ &+\frac{k^2}{2}\left(\Lambda_m^r\varepsilon_m\right)\left(mx,z\right)+\frac{k^2}{2}\left(\Lambda_m^r\varepsilon_m\right)\left(-mx,z\right)\\ &\leq\frac{1}{4}\lambda_2(m)\alpha_m^rh_1\Big((1+km)x,z\Big)h_2\Big((1+km)x,z\Big)\\ &+\frac{1}{4}\lambda_2(m)\alpha_m^rh_1\Big((1-km)x,z\Big)h_2\Big((1-km)x,z\Big)\\ &+\frac{k^2}{4}\lambda_2(m)\alpha_m^rh_1\Big(mx,z\Big)h_2\Big(mx,z\Big)\\ &+\frac{k^2}{4}\lambda_2(m)\alpha_m^rh_1\Big(-mx,z\Big)h_2\Big(-mx,z\Big)\\ &\leq\frac{1}{2}\lambda_2(m)\left(\frac{1}{2}\lambda_1(1+km)\lambda_2(1+km)+\frac{1}{2}\lambda_1(1-km)\lambda_2(1-km)\right) \end{split}$$

$$+ \frac{k^2}{2} \lambda_1(m) \lambda_2(m) + \frac{k^2}{2} \lambda_1(-m) \lambda_2(-m) \alpha_m^r h_1(x, z) h_2(x, z)$$

= $\frac{1}{2} \lambda_2(m) \alpha_m^{r+1} h_1(x, z) h_2(x, z),$

for all $x, z \in X_0$ and all $m \in \mathcal{U}$. It means that (3.5) holds for n = r + 1 which implies that (3.5) holds for all $n \in \mathbb{N}$. Hence, in view of (3.5), we obtain

$$\varepsilon^*(x,z) := \sum_{n=0}^{\infty} \Lambda_m^n \varepsilon_m(x,z)$$

$$\leq \sum_{n=0}^{\infty} \frac{1}{2} \lambda_2(m) \alpha_m^n h_1(x,z) h_2(x,z)$$

$$= \frac{\lambda_2(m) h_1(x,z) h_2(x,z)}{2(1-\alpha_m)} < \infty,$$

for all $x, z \in X_0$ and all $m \in \mathcal{U}$. Therefore, according to Theorem 1.2, with $\varphi = f$ and using the surjectivity of g, we get that the limit

$$\lim_{n\to\infty} \left(\mathfrak{T}_m^n f \right) (x)$$

exists and defined a function $D_m: X \to Y$ such that

(3.6)
$$||f(x) - D_m(x), g(z)|| \le \frac{\lambda_2(m)h_1(x, z)h_2(x, z)}{2(1 - \alpha_m)}, \quad x, z \in X_0, m \in \mathcal{U}.$$

To prove that F_m satisfies the functional equation (1.3), just prove the following inequality by the induction on $n \in \mathbb{N}_0$

(3.7)

$$\left\| (\mathfrak{I}_m^n f) \left(x + ky \right) + (\mathfrak{I}_m^n f) \left(x - ky \right) - 2(\mathfrak{I}_m^n f) \left(x \right) - k^2 (\mathfrak{I}_m^n f) \left(y \right) - k^2 (\mathfrak{I}_m^n f) (-y), g(z) \right\|$$

$$\leq \alpha_m^n h_1(x, z) h_2(y, z),$$

for every $x, y, z \in X_0$ such that $x + ky \neq 0$, $x - ky \neq 0$ and every $m \in \mathcal{U}$.

First, for n = 0, we just find (3.1). Next, take $r \in \mathbb{N}$ and assume that (3.7) holds for n = r and every $x, y, z \in X_0$ such that $x + ky \neq 0$ and $x - ky \neq 0$, $m \in \mathcal{U}$. Then, for each $x, y, z \in X_0$ and $m \in \mathcal{U}$, we have

$$\begin{split} & \left\| (\mathfrak{I}_{m}^{r+1}f) \Big(x + ky \big) + (\mathfrak{I}_{m}^{r+1}f) \Big(x - ky \Big) - 2(\mathfrak{I}_{m}^{r+1}f) \Big(x \Big) \\ & - k^{2} (\mathfrak{I}_{m}^{r+1}f) \Big(y \Big) - k^{2} (\mathfrak{I}_{m}^{r+1}f) (-y) \; , \; g(z) \right\| \\ &= & \left\| \frac{1}{2} (\mathfrak{I}_{m}^{r}f) \Big((1 + km)(x + ky) \Big) + \frac{1}{2} (\mathfrak{I}_{m}^{r}f) \Big((1 - km)(x + ky) \Big) \right. \\ & - \frac{k^{2}}{2} (\mathfrak{I}_{m}^{r}f) \Big(m(x + ky) \Big) - \frac{k^{2}}{2} (\mathfrak{I}_{m}^{r}f) \Big(- m(x + ky) \Big) \\ & + \frac{1}{2} (\mathfrak{I}_{m}^{r}f) \Big((1 + km)(x - ky) \Big) + \frac{1}{2} (\mathfrak{I}_{m}^{r}f) \Big((1 - km)(x - ky) \Big) \end{split}$$

$$\begin{split} &-\frac{k^{2}}{2}(\mathfrak{I}_{m}^{r}f)\left(m(x-ky)\right)-\frac{k^{2}}{2}(\mathfrak{I}_{m}^{r}f)\left(-m(x-ky)\right)\\ &-(\mathfrak{I}_{m}^{r}f)\left((1+km)(x)\right)-(\mathfrak{I}_{m}^{r}f)\left((1-km)(x)\right)\\ &+k^{2}(\mathfrak{I}_{m}^{r}f)\left(mx\right)+k^{2}(\mathfrak{I}_{m}^{r}f)\left(-mx\right)\\ &-\frac{k^{2}}{2}(\mathfrak{I}_{m}^{r}f)\left((1+km)(y)\right)-\frac{k^{2}}{2}(\mathfrak{I}_{m}^{r}f)\left((1-km)(y)\right)+\frac{k^{4}}{2}(\mathfrak{I}_{m}^{r}f)\left(my\right)\\ &+\frac{k^{4}}{2}(\mathfrak{I}_{m}^{r}f)\left(-my\right)-\frac{k^{2}}{2}(\mathfrak{I}_{m}^{r}f)\left((1+km)(-y)\right)-\frac{k^{2}}{2}(\mathfrak{I}_{m}^{r}f)\left((1-km)(-y)\right)\\ &+\frac{k^{4}}{2}(\mathfrak{I}_{m}^{r}f)\left(-my\right)+\frac{k^{4}}{2}(\mathfrak{I}_{m}^{r}f)\left(my\right),g(z)\right\|\\ &\leq\frac{1}{2}\left\|(\mathfrak{I}_{m}^{r}f)\left((1+km)(x+ky)\right)+(\mathfrak{I}_{m}^{r}f)\left((1+km)(x-ky)\right)\\ &-2(\mathfrak{I}_{m}^{r}f)\left((1+km)(x)\right)-k^{2}(\mathfrak{I}_{m}^{r}f)\left((1+km)(y)\right)\\ &-k^{2}(\mathfrak{I}_{m}^{r}f)\left((1-km)(x+ky)\right)+(\mathfrak{I}_{m}^{r}f)\left((1-km)(x-ky)\right)\\ &-2(\mathfrak{I}_{m}^{r}f)\left((1-km)(x)\right)-k^{2}(\mathfrak{I}_{m}^{r}f)\left((1-km)(y)\right)\\ &-k^{2}(\mathfrak{I}_{m}^{r}f)\left((1-km)(-y)\right),g(z)\right\|\\ &+\frac{k^{2}}{2}\left\|(\mathfrak{I}_{m}^{r}f)\left(m(x+ky)\right)+(\mathfrak{I}_{m}^{r}f)\left(m(x-ky)\right)-2(\mathfrak{I}_{m}^{r}f)\left(mx\right)\\ &-k^{2}(\mathfrak{I}_{m}^{r}f)\left(my\right)-k^{2}(\mathfrak{I}_{m}^{r}f)\left(-my\right),g(z)\right\|\\ &+\frac{k^{2}}{2}\left\|(\mathfrak{I}_{m}^{r}f)\left(-m(x+ky)\right)+(\mathfrak{I}_{m}^{r}f)\left(-m(x-ky)\right)-2(\mathfrak{I}_{m}^{r}f)\left(-mx\right)\\ &-k^{2}(\mathfrak{I}_{m}^{r}f)\left(-my\right)-k^{2}(\mathfrak{I}_{m}^{r}f)\left(my\right),g(z)\right\|\\ &\leq\frac{1}{2}\alpha_{m}^{r}h_{1}\left((1+km)x,z\right)h_{2}\left((1+km)y,z\right)+\frac{1}{2}\alpha_{m}^{r}h_{1}\left((1-km)x,z\right)h_{2}\left((1-km)y,z\right)\\ &+\frac{k^{2}}{2}\alpha_{m}^{r}h_{1}\left(mx,z\right)h_{2}(my,z)+\frac{k^{2}}{2}\alpha_{m}^{r}h_{1}\left(-mx,z\right)h_{2}\left(-my,z\right)\\ &=\alpha_{m}^{r+1}h_{1}(x,z)h_{2}(y,z). \end{split}$$

Thus, by induction, we have shown that (3.7) holds for every $x, y, z \in X_0$, $n \in \mathbb{N}_0$, and $m \in \mathcal{U}$ such that $x + ky \neq 0$ and $x - ky \neq 0$. Letting $n \to \infty$ in (3.7), we obtain the equality

$$D_m(x + ky) + D_m(x - ky) = 2D_m(x) + k^2 D_m(y) + k^2 D_m(-y),$$

for all $x, y \in X_0$ and $m \in \mathcal{U}$ such that $x + ky \neq 0$ and $x - ky \neq 0$. This implies that $D_m : X \to Y$, defined in this way, is a solution of the equation

(3.8)
$$D(x) = \frac{1}{2}D((1+km)x) + \frac{1}{2}D((1-km)x) - \frac{k^2}{2}D(mx) - \frac{k^2}{2}D(-mx),$$

for all $x \in X_0$ and all $m \in \mathcal{U}$. Next, we will prove that each cubic functional equation $D: X \to Y$ satisfying the inequality

(3.9)
$$||f(x) - D(x), g(z)|| \le L h_1(x, z) h_2(x, z), \quad x, z \in X_0,$$

with some L > 0, is equal to D_m for each $m \in \mathcal{U}$. To this end, we fix $m_0 \in \mathcal{U}$ and $D: X \to Y$ satisfying (3.9). From (3.6), for each $x \in X_0$, we get

$$||D(x) - D_{m_0}(x), g(z)|| \le ||D(x) - f(x), g(z)|| + ||f(x) - D_{m_0}(x), g(z)||$$

$$\le L h_1(x, z)h_2(x, z) + \varepsilon_{m_0}^*(x, z)$$

$$\le L_0 h_1(x, z)h_2(x, z) \sum_{n=0}^{\infty} \alpha_{m_0}^n,$$
(3.10)

where $L_0 := 2(1 - \alpha_{m_0})L + \lambda_2(m_0) > 0$ and we exclude the case that $h_1(x, z) \equiv 0$ or $h_2(x, z) \equiv 0$ which is trivial. Observe that D and D_{m_0} are solutions to equation (3.8) for all $m \in \mathcal{U}$. Next, we show that, for each $j \in \mathbb{N}_0$, we have

(3.11)
$$||D(x) - D_{m_0}(x), g(z)|| \le L_0 h_1(x, z) h_2(x, z) \sum_{n=j}^{\infty} \alpha_{m_0}^n, \quad x, z \in X_0.$$

The case j=0 is exactly (3.10). We fix $r \in \mathbb{N}$ and assume that (3.11) holds for j=r. Then, in view of (3.10), for each $x, z \in X_0$, we get

$$||D(x) - D_{m_0}(x), g(z)|| = ||\frac{1}{2}D((1 + km_0)x) + \frac{1}{2}D((1 - km_0)x) - \frac{k^2}{2}D(m_0x)$$

$$- \frac{k^2}{2}D(-m_0x) - \frac{1}{2}D_{m_0}((1 + km_0)x)$$

$$- \frac{1}{2}D_{m_0}((1 - km_0)x) + \frac{k^2}{2}D_{m_0}(m_0x)$$

$$+ \frac{k^2}{2}D_{m_0}(-m_0x), g(z)||$$

$$\leq \frac{1}{2}||D((1 + km_0)x) - D_{m_0}((1 + km_0)x), g(z)||$$

$$+ \frac{1}{2}||D((1 - km_0)x) - D_{m_0}((1 - km_0)x), g(z)||$$

$$+ \frac{k^2}{2}||D(m_0x) - D_{m_0}(m_0x), g(z)||$$

$$+ \frac{k^2}{2}||D(-m_0x) - D_{m_0}(-m_0x), g(z)||$$

$$\leq \frac{1}{2}L_{0} h_{1}((1+km_{0})x,z)h_{2}((1+km_{0})x,z)\sum_{n=r}^{\infty}\alpha_{m_{0}}^{n} \\
+ \frac{1}{2}L_{0} h_{1}((1-km_{0})x,z)h_{2}((1-km_{0})x,z)\sum_{n=r}^{\infty}\alpha_{m_{0}}^{n} \\
+ \frac{k^{2}}{2}L_{0} h_{1}(m_{0}x,z)h_{2}(m_{0}x,z)\sum_{n=r}^{\infty}\alpha_{m_{0}}^{n} \\
+ \frac{k^{2}}{2}L_{0} h_{1}(-m_{0}x,z)h_{2}(-m_{0}x,z)\sum_{n=r}^{\infty}\alpha_{m_{0}}^{n} \\
\leq L_{0} \alpha_{m_{0}} h_{1}(x,z)h_{2}(x,z)\sum_{n=r+1}^{\infty}\alpha_{m_{0}}^{n} \\
= L_{0} h_{1}(x,z)h_{2}(x,z)\sum_{n=r+1}^{\infty}\alpha_{m_{0}}^{n}.$$

This shows that (3.11) holds for j = k+1. Now we can conclude that the inequality (3.11) holds for all $j \in \mathbb{N}_0$. Now, letting $j \to \infty$ in (3.11), we get

$$(3.12) D = D_{m_0}.$$

Thus, we have also proved that $D_m = D_{m_0}$ for each $m \in \mathcal{U}$, which (in view of (3.6)) yields

$$||f(x) - D_{m_0}(x), g(z)|| \le \frac{\lambda_2(m)h_1(x, z)h_2(x, z)}{2(1 - \alpha_m)}, \quad x, z \in X_0, m \in \mathcal{U}.$$

This implies (1.3) with $D = D_{m_0}$ and (3.12) confirms the uniqueness of D.

4. Hyperstaility Results

The following theorems and corollaries concern the η -hyperstability of (1.3) in 2-Banach spaces. Namely, we consider functions $f: X \to Y$ fulfilling (1.3) approximately, i.e., satisfying the inequality

for all $x, y, z \in X_0$ such that $x + ky \neq 0$ and $x - ky \neq 0$ with $\eta : X_0 \times X_0 \times X_0 \to \mathbb{R}_+$ is a given mapping. Then we find a unique cubic function $F : X \to Y$ which is close to f. Then, under some additional assumptions on η , we prove that the conditional functional equation (1.3) is η -hyperstable in the class of functions $f : X \to Y$, i.e., each $f : X \to Y$ satisfying inequality (4.1), with such η , must fulfil equation (1.3).

Theorem 4.1. Let X be a normed space, $(Y, \|\cdot, \cdot\|)$ be a real 2-Banach space, h_1, h_2 and \mathcal{U} be as in Theorem 3.1. Assume that

$$\begin{cases} \lim_{n\to\infty} \lambda_2(n) = \lim_{n\to\infty} \lambda_1(1+kn)\lambda_2(1+kn) = \lim_{n\to\infty} \lambda_1(-n)\lambda_2(-n) = 0, \\ \lim_{n\to\infty} \lambda_1(1-kn)\lambda_2(1-kn) = \lim_{n\to\infty} \lambda_1(n)\lambda_2(n) = 0. \end{cases}$$

Then every $f: X \to Y$ satisfying (3.1) is a solution of (1.3) on X_0 .

Proof. Suppose that $f: X \to Y$ satisfies (3.1). Then, by Theorem 3.1, there exists a mapping $D: X \to Y$ satisfying (1.3) and

$$||f(x) - D(x), g(z)|| \le \lambda_0 h_1(x, z) h_2(x, z),$$

for all $x, z \in X_0$, where $g: X \to Y$ is a surjective mapping and

$$\lambda_0 = \frac{\lambda_2(n)}{2(1 - \alpha_m)},$$

with

$$\alpha_n = \frac{1}{2}\lambda_1(1+kn)\lambda_2(1+kn) + \frac{1}{2}\lambda_1(1-kn)\lambda_2(1-kn) + \frac{k^2}{2}\lambda_1(n)\lambda_2(n) + \frac{k^2}{2}\lambda_1(-n)\lambda_2(-n).$$

Since, in view of (4.2), $\lambda_0 = 0$, this means that f(x) = D(x) for all $x \in X_0$, whence

$$f(x + ky) + f(x - ky) = 2f(x) + k^2 f(y) + k^2 f(-y),$$

for all $x, y \in X_0$ such that $x + ky \neq 0$ and $x - ky \neq 0$, which implies that f satisfies the functional equation (1.3) on X_0 .

Corollary 4.1. Let $(X, \|\cdot\|)$ be a normed space, $(Y, \|\cdot,\cdot\|)$ be a real 2-Banach space and $\theta \geq 0$, $s \geq 0$, $p, q \in \mathbb{R}$ such that p + q < 0. Suppose that $f: X \to Y$ such that f(0) = 0 satisfies the inequality (4.3)

$$||f(x+ky) + f(x-ky) - 2f(x) - k^2 f(y) - k^2 f(-y), g(z)|| \le \theta ||x||^p ||y||^q ||z||^s,$$

for all $x, y, z \in X_0$ such that $x + ky \neq 0$ and $x - ky \neq 0$, where $g : X \to Y$ is a surjective mapping. Then f satisfies (1.3) on X_0 .

Proof. The proof follows from Theorem 3.1 by defining $h_1, h_2 : X_0 \times X_o \to \mathbb{R}_+$ by $h_1(x,z) = \theta_1 ||x||^p ||z||^{s_1}$, $h_2(y,z) = \theta_2 ||y||^q ||z||^{s_2}$ and $h_1(0,z) = h_2(0,z) = 0$ with $\theta_1, \theta_2 \in \mathbb{R}_+$, $s_1, s_2 \in \mathbb{R}_+$ and $p, q \in \mathbb{R}$ such that $\theta_1 \theta_2 = \theta$, $s_1 + s_2 = s$ and p + q < 0. For each $n \in \mathbb{N}$, we have

$$\lambda_1(n) = \inf \{ t \in \mathbb{R}_+ \colon h_1(nx, z) \le t \ h_1(x, z), \ x, z \in X_0 \}$$

= \inf \{ t \in \mathbb{R}_+ \: \theta_1 \| nx \|^p \| z \|^{s_1} \le t \theta_1 \| x \|^p \| z \|^{s_1}, \ x, z \in X_0 \}
= n^p

Also, we have $\lambda_2(n) = n^q$ for all $n \in \mathbb{N}$. Clearly, we can find $n_0 \in \mathbb{N}$ such that

$$\frac{1}{2}\lambda_1(1+kn)\lambda_2(1+kn) + \frac{1}{2}\lambda_1(1-kn)\lambda_2(1-kn) + \frac{k^2}{2}\lambda_1(n)\lambda_2(n) + \frac{k^2}{2}\lambda_1(-n)\lambda_2(-n)
= \frac{1}{2}(1+kn)^{p+q} + \frac{1}{2}(1-kn)^{p+q} + k^2n^{p+q} < 1,$$

for all $n \geq n_0$. According to Theorem 3.1, there exists a unique Drygas function $D: X \to Y$ such that

$$||f(x) - D(x), g(z)|| \le \theta \lambda_0 h_1(x, z) h_2(x, z),$$

for all $x, z \in X_0$, where

$$\lambda_0 = \frac{\lambda_2(n)}{2(1 - \alpha_m)},$$

with

$$\alpha_n = \frac{1}{2}\lambda_1(1+kn)\lambda_2(1+kn) + \frac{1}{2}\lambda_1(1-kn)\lambda_2(1-kn) + \frac{k^2}{2}\lambda_1(n)\lambda_2(n) + \frac{k^2}{2}\lambda_1(-n)\lambda_2(-n).$$

Since p + q < 0, one of p and q must be negative. Assume that q < 0. Then

$$\lim_{n \to \infty} \lambda_2(n) = \lim_{n \to \infty} n^q = 0,$$

$$\lim_{n \to \infty} \lambda_1(1 + kn)\lambda_2(1 + kn) = \lim_{n \to \infty} (1 + kn)^{p+q} = 0,$$

$$\lim_{n \to \infty} \lambda_1(1 - kn)\lambda_2(1 - kn) = \lim_{n \to \infty} (1 + kn)^{p+q} = 0,$$

$$\lim_{n \to \infty} \lambda_1(n)\lambda_2(n) = \lim_{n \to \infty} n^{p+q} = 0.$$

Thus by Theorem 4.1, we get the desired results.

The next corollary prove the hyperstability results for the inhomogeneous Drygas functional equation

$$f(x+ky) + f(x-ky) = 2f(x) + k^2 f(y) + k^2 f(-y) + G(x,y).$$

Corollary 4.2. Let $(X, \|\cdot\|)$ be a normed space, $(Y, \|\cdot,\cdot\|)$ be a real 2-Banach space and $\theta \geq 0$, $s \geq 0$, $p, q \in \mathbb{R}$ such that p + q < 0. Assume that $G: X^2 \to Y$ and $f: X \to Y$ such that f(0) = 0 and satisfies the inequality (4.4)

$$\|f(x+ky) + f(x-ky) - 2f(x) - k^2 f(y) - k^2 f(-y) - G(x,y), g(z)\| \le \theta \|x\|^p \|y\|^q \|z\|^s,$$

for all $x, y, z \in X_0$ such that $x + ky \neq 0$ and $x - ky \neq 0$, where $g: X \to Y$ is a surjective mapping. If the functional equation

$$(4.5) f(x+ky) + f(x-ky) = 2f(x) + k^2 f(y) + k^2 f(-y) + G(x,y),$$

for all $x, y \in X_0$ such that $x + ky \neq 0$ and $x - ky \neq 0$ has a solution $f_0 : X \to Y$ on X_0 , then f is a solution to (4.5) on X_0 .

Proof. From (4.4) we get that the function $K: X \to Y$ defined by $K := f - f_0$ satisfies (4.3). Consequently, Corollary 4.1 implies that K is a solution to Drygas functional equation (1.3) on X_0 . Therefore,

$$f(x+ky) + f(x-ky) - 2f(x) - k^2 f(y) - k^2 f(-y) - G(x,y)$$

$$= K(x+ky) + f_0(x+ky) + K(x-ky) + f_0(x-ky) - 2K(x) - 2f_0(x)$$

$$- k^2 K(y) - k^2 f_0(y) - k^2 K(-y) - k^2 f_0(-y) - G(x,y)$$

$$= 0,$$

for all $x, y \in X_0$ such that $x + ky \neq 0$ and $x - ky \neq 0$ which means f is a solution to (4.5) on X_0 .

References

- [1] M. Almahalebi, On the hyperstability of σ-Drygas functional equation on semigroups, Aequationes Math. 90(4) (2016), 849–857. https://doi.org/10.1007/s00010-016-0422-2
- [2] M. Almahalebi and A. Chahbi, Approximate solution of p-radical functional equation in 2-Banach spaces, Acta Math. Scientia. 39(2) (2019), 551-566. https://doi.org/10.1007/s10473-019-0218-2
- [3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- [4] A. Bahyrycz and M. Piszczek, Hyperstability of the Jensen functional equation, Acta Math. Hungar. 142 (2014), 353–365. https://doi.org/10.1007/s10474-013-0347-3
- [5] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385–397. https://doi.org/10.1215/S0012-7094-49-01639-7
- [6] J. Brzdęk, Stability of additivity and fixed point methods, Fixed Point Theory Appl. 2013 (2013), Article ID 265. https://doi.org/10.1186/1687-1812-2013-285
- [7] J. Brzdęk, Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungar. 141 (2013), 58-67. https://doi.org/10.1007/s10474-013-0302-3
- [8] J. Brzdęk, Remarks on hyperstability of the Cauchy functional equation, Aequationes Math. 86 (2013), 255–267. https://doi.org/10.1007/s00010-012-0168-4
- [9] J. Brzdęk, A hyperstability result for the Cauchy equation, Bull. Aust. Math. Soc. 89 (2014), 33-40. https://doi.org/10.1017/S0004972713000683
- [10] J. Brzdęk, L. Cadăriu and K. Ciepliński, Fixed point theory and the Ulam stability, J. Funct. Spaces 2014 (2014), Article ID 829419. https://doi.org/16.10.1007/s11784-016-0288-x
- [11] J. Brzdęk, W. Fechner, M. S. Moslehian and J. Sikorska, Recent developments of the conditional stability of the homomorphism equation, Banach J. Math. Anal. 9 (2015), 278–327. https://doi.org/10.15352/bjma/09-3-20
- [12] J. Brzdęk, J. Chudziak and Zs. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal. 74 (2011), 6728–6732. https://doi.org/10.1016/j.na.2011.06.052
- [13] J. Brzdęk and K. Ciepliński, Hyperstability and superstability, Abs. Appl. Anal. 2013 (2013), Article ID 401756, 13 pages. https://doi.org/10.1016/j.na.2011.06.052.10.1155/2013/ 401756
- [14] J. Brzdęk and K. Ciepliński, On a fixed point theorem in 2-Banach spaces and some of its applications, Acta Math. Sci. **38**(2) (2018), 377–744.https://doi.org/10.1016/S0252-9602(18) 30755-0
- [15] J. Brzdęk and K. Ciepliński, A fixed point theorem in n-Banach spaces and Ulam stability, J. Math. Anal. Appl. 470 (2019), 632-646. https://doi.org/10.1016/j.jmaa.2018.10.028
- [16] J. Brzdęk and El-S. El-Hady, On approximately additive mappings in 2-Banach spaces, Bull. Aust. Math. Soc. (2019). https://doi.org/10.1017/S0004972719000868
- [17] Y. J. Cho, C. Park and M. Eshaghi Gordji, Approximate additive and quadratic mappings in 2-Banach spaces and related topics, Int. J. Nonlinear Anal Appl. 3(2) (2012), 75-81. https://dx.doi.org/10.22075/ijnaa.2012.55
- [18] S. C. Chung and W.-G. Park, Hyers-Ulam stability of functional equations in 2-Banach spaces, Int. J. Math. Anal. (Ruse) 6(17/20) (2012), 951-961. https://dx.doi.org/10.22075/ijnaa. 2012.55
- [19] K. Ciepliński, Approximate multi-additive mappings in 2-Banach spaces, Bull. Iranian Math. Soc. 41(3) (2015), 785–792.
- [20] K. Ciepliński and T. Z. Xu, Approximate multi-Jensen and multi-quadratic mappings in 2-Banach spaces, Carpathian J. Math. 29(2) (2013), 159–166.
- [21] H. Drygas, Quasi-Inner Products and their Applications, Springer, Netherlands, 1987, 13–30.

- [22] B. R. Ebanks, P. L. Kannappan and P. K. Sahoo, A common generalization of functional equations characterizing normed and quasi-inner-product spaces, Canad. Math. Bull. **35**(3) (1992), 321–327. https://doi.org/10.4153/CMB-1992-044-6
- [23] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115–148.
- [24] S. Gähler, *Linear 2-normiete Räumen*, Math. Nachr. **28** (1964), 1–43.
- [25] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994. 1211
- [26] J. Gao, On the stability of the linear mapping in 2-normed spaces, Nonlinear Funct. Anal. Appl. 14(5) (2009), 801–807.
- [27] E. Gselmann, *Hyperstability of a functional equation*, Acta Math. Hungar. **124** (2009), 179–188. https://doi.org/10.1007/s10474-009-8174-2
- [28] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222-224. https://dx.doi.org/10.1073%2Fpnas.27.4.222
- [29] S.-M. Jung and P. K. Sahoo, Stability of a functional equation of Drygas, Aequationes Math. **64**(3) (2002), 263–273. https://doi.org/10.1007/PL00012407
- [30] Gy. Maksa and Zs. Páles, Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 17 (2001), 107–112.
- [31] W.-G. Park, Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl. 376 (2011), 193-202. https://doi.org/10.1016/j.jmaa.2010.10.004
- [32] M. Piszczek and J. Szczawińska, Hyperstability of the Drygas Functional Equation, J. Funct. Spaces 2013 (2013). http://dx.doi.org/10.1155/2013/912718
- [33] M. M. Piszczek, Remark on hyperstability of the general linear equation, Aequationes Math. 88 (2014), 163–168. https://doi.org/10.1007/s00010-013-0214-x
- [34] Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- [35] P. K. Sahoo and Pl. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, Florida, 2011.
- [36] M. Sirouni and S. Kabbaj, A fixed point approach to the hyperstability of Drygas functional equation in metric spaces, J. Math. Comput. Sci. 4(4) (2014), 705–715.
- [37] W. Smajdor, On set-valued solutions of a functional equation of Drygas, Aequationes Math. 77 (2009), 89–97. https://doi.org/10.1007/s00010-008-2935-9
- [38] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.

¹Department of Mathematics, Faculty of Sciences,

UNIVERSITY OF IBN TOFAIL, BP 133 KENITRA, MOROCCO

Email address: hryrou.mustapha@hotmail.com

 $Email\ address: {\tt samkabbaj@yahoo.fr}$