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INTUITIONISTIC FUZZY GRAPH STRUCTURES

MUHAMMAD AKRAM1 AND RABIA AKMAL2

Abstract. In this paper, we introduce the concept of an intuitionistic fuzzy graph
structure (IFGS). We discuss certain notions, including intuitionistic fuzzy Bi-cycles,
intuitionistic fuzzy Bi-trees and φ-complement of an intuitionistic fuzzy graph struc-
ture with several examples. We also present φ-complement of an intuitionistic
fuzzy graph structure along with self-complementary and strong self-complementary
intuitionistic fuzzy graph structures.

1. Introduction

Fuzzy set was introduced by Zadeh in 1965. A fuzzy set gives the degree of
membership of an object in a given set. Kaufmann’s initial definition of a fuzzy graph
[10] was based on Zadeh’s fuzzy relations [22]. The fuzzy relations between fuzzy
sets were considered by Rosenfeld and he developed the structure of fuzzy graphs,
obtaining analogs of several graph theoretical concepts. Later on, Bhattacharya
[7] gave some remarks on fuzzy graphs and some operations on fuzzy graphs were
introduced by Mordeson and Peng [14]. In 1983, Atanassov [5] extended the idea
of a fuzzy set and introduced the concept of an intuitionistic fuzzy set. He added
a new component, degree of non-membership, in the definition of a fuzzy set with
the condition that sum of two degrees must be less or equal to one. Atanassov [6]
also introduced the concept of intuitionistic fuzzy graphs and intuitionistic fuzzy
relations. Shannon and Atanassov investigated some properties of intuitionistic fuzzy
relations and intuitionistic fuzzy graphs in [20]. Parvathi et al. defined operations
on intuitionistic fuzzy graphs in [16]. Karunambigai et al. used intuitionistic fuzzy
graphs to find shortest paths in networks [11]. Akram et al. [1–4] introduced many
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new concepts, including strong intuitionistic fuzzy graphs, intuitionistic fuzzy trees,
intuitionistic fuzzy hypergraphs, and intuitionistic fuzzy digraphs in decision support
systems.

Fuzzy graph theory is finding an increasing number of applications in modeling
real time systems where the level of information inherent in the system varies with
different levels of precision. Fuzzy models are becoming useful because of their aim in
reducing the differences between the traditional numerical models used in engineering
and sciences and the symbolic models used in expert systems. Intuitionistic fuzzy set
has got an advantage over fuzzy set because of its additional component which explains
the deficiency of knowledge in assigning the degree of membership to an object because
there is a fair chance of the existence of a non-zero hesitation part at each moment of
evaluation of anything. The advantages of intuitionistic fuzzy sets and graphs are that
they give more accuracy into the problems, reduce the cost of implementation and
improve efficiency. Intuitionistic fuzzy sets are very useful in providing a flexible model
to describe uncertainty and vagueness involved in decision making, so intuitionistic
fuzzy graphs are playing a substantial role in chemistry, economics, computer sciences,
engineering, medicine and decision making problems, now a days. Graph structures
or generalized graph structures introduced by Sampathkumar in 2006 [19], are a
generalization of graphs which is quite useful in studying signed graphs and graphs
in which every edge is labeled or colored because they help to study various relations
and corresponding edges simultaneously. Dinesh and Ramakrishnan [9] introduced
fuzzy graph structures. In this paper, we have worked on intuitionistic fuzzy graph
structures, some of their fundamental concepts and properties due to the improved
influence of intuitionistic fuzzy sets and particular use of graph structures. In this
paper, we introduce the concept of an intuitionistic fuzzy graph structure (IFGS). We
discuss certain notions, including intuitionistic fuzzy Bi-cycles, intuitionistic fuzzy
Bi-trees and φ-complement of an intuitionistic fuzzy graph structure with several
examples. We also present φ-complement of an intuitionistic fuzzy graph structure
along with self-complementary and strong self-complementary intuitionistic fuzzy
graph structures.

2. Preliminaries

We first review some definitions from [19] that are necessary for this paper.
A graph structure G∗ = (U,E1, E2, . . . , Ek), consists of a non-empty set U together

with relations E1, E2, . . . , Ek on U , which are mutually disjoint such that each Ei is
irreflexive and symmetric. If (u, v) ∈ Ei for some i, 1 ≤ i ≤ k, we call it an Ei-edge
and write it as “uv”. A graph structure G∗ = (U,E1, E2, . . . , Ek) is complete, if

(i) each edge Ei, 1 ≤ i ≤ k appears at least once in G∗;
(ii) between each pair of vertices uv in U , uv is an Ei-edge for some i, 1 ≤ i ≤ k.

A graph structure G∗ = (U,E1, E2, . . . , Ek) is connected, if the underlying graph is
connected. In a graph structure, Ei-path between two vertices u and v, is the path
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which consists of only Ei-edges for some i, and similarly, Ei-cycle is the cycle, which
consists of only Ei-edges for some i. A graph structure is a tree, if it is connected
and contains no cycle or equivalently the underlying graph of G∗ is a tree. G∗ is an
Ei-tree, if the subgraph structure induced by Ei-edges is a tree.

Similarly, G∗ is a E1E2 . . . Ek-tree, if G∗ is a Ej-tree for each j, 1 ≤ j ≤ k.
A graph structure is an Ei-forest, if the subgraph structure induced by Ei-edges is a

forest, i.e., if it has no Ei-cycles. Let S ⊆ U , then the subgraph structure 〈S〉 induced
by S, has vertex set S, where two vertices u and v in 〈S〉 are joined by an Ei-edge if,
and only if, they are joined by an Ei-edge in G∗ for 1 ≤ i ≤ k For some i, 1 ≤ i ≤ k,
the Ei-subgraph induced by S, is denoted by Ei-〈S〉 and it has only Ei-edges joining
the vertices in S. If T is a subset of edge set in G∗, then subgraph structure 〈T 〉
induced by T has the vertex set, the end vertices in T , and whose edges are those in
T . Let G∗ = (U1, E1, E2, . . . , Em) and H∗ = (U2, E

′
1, E

′
2, . . . , E

′
n) be graph structures

then G∗ and H∗ are isomorphic, if m = n and there exists a bijection f : U1 → U2 and
a permutation φ : {E1, E2, . . . , En} → {E ′1, E ′2, . . . , E ′n}, say Ei → E ′j, 1 ≤ i, j ≤ n,
such that for all u, v ∈ U1, uv ∈ Ei implies f(u)f(v) ∈ E ′j.

Two graph structures G∗ = (U,E1, E2, . . . , Ek) and H∗ = (U,E ′1, E
′
2, . . . , E

′
k), on

the same vertex set U , are identical, if there exists a bijection f : U → U , such that
for all u and v in U and an Ei-edge uv in G∗, f(u)f(v) is an E ′i-edge in H∗, where
1 ≤ i ≤ k and Ei ' E ′i for all i. Let φ be a permutation on {E1, E2, . . . , Ek} then
the φ-cyclic complement of G∗ denoted by (G∗)φc is obtained by replacing Ei with
φ(Ei) for 1 ≤ i ≤ k. Let G∗ = (U,E1, E2, . . . , Ek) be a graph structure and φ be a
permutation on {E1, E2, . . . , Ek}, then

• G∗ is φ-self complementary, if G∗ is isomorphic to (G∗)φc, the φ-cyclic comple-
ment of G∗ and G∗ is self-complementary, if φ 6= identity permutation;
• G∗ is strong φ-self complementary, ifG∗ is identical to (G∗)φc, the φ-complement
of G∗ and G∗ is strong self-complementary, if φ 6= identity permutation.

Definition 2.1 ([6]). An intuitionistic fuzzy set (IFS) on an universe X is an object
of the form

A = {〈x, µA(x), νA(x)〉 | x ∈ X},
where µA(x)(∈ [0, 1]) is called degree of membership of x ∈ A, νA(x)(∈ [0, 1]) is called
degree of nonmembership of x ∈ A, and µA and νA satisfy the following condition: for
all x ∈ X, µA(x) + νA(x) ≤ 1.

Definition 2.2 ([6]). An intuitionistic fuzzy relation R = (µR(x, y), νR(x, y)) in an
universe X × Y (R(X → Y )) is an intuitionistic fuzzy set of the form

R = {〈(x, y), µR(x, y), νR(x, y)〉 | (x, y) ∈ X × Y },

where µR : X × Y → [0, 1] and νR : X × Y → [0, 1]. The intuitionistic fuzzy relation
R satisfies µR(x, y) + νR(x, y) ≤ 1 for all x, y ∈ X.
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Definition 2.3 ([9]). Let G∗ = (U,E1, E2, . . . , Ek) be a graph structure and ν, ρ1, ρ2,
. . . , ρk be the fuzzy subsets of U,E1, E2, . . . , Ek, respectively such that

0 ≤ ρi(xy) ≤ ν(x) ∧ ν(y), for all x, y ∈ U and i = 1, 2, . . . , k.

Then G = (ν, ρ1, ρ2, . . . , ρk) is a fuzzy graph structure of G∗.

Definition 2.4 ([9]). Let G = (ν, ρ1, ρ2, . . . , ρk) be a fuzzy graph structure of a graph
structure G∗ = (U,E1, E2, . . . , Ek). Then F = (ν, τ1, τ2, . . . , τk) is a partial fuzzy
spanning subgraph structure of G if, τi ⊆ ρi for i = 1, 2, . . . , k.

Definition 2.5 ([9]). Let G∗ be a graph structure and G be a fuzzy graph structure
of G∗. If xy ∈ supp(ρi), then xy is said to be a ρi-edge of G.

Definition 2.6 ([9]). The strength of a ρi-path x0x1 . . . xn of a fuzzy graph structure
G is

∧n
j=1 ρi(xj−1xj) for i = 1, 2, . . . , k.

Definition 2.7 ([9]). In any fuzzy graph structure G,

ρ2i (xy) = ρi ◦ ρi(xy) =
∨
z

{ρi(xz) ∧ ρi(zy)} ,

ρji (xy) = (ρj−1i ◦ ρi)(xy) =
∨
z

{
ρj−1i (xz) ∧ ρi(zy)

}
,

j = 2, 3, . . . ,m, for any m ≥ 2. Also ρ∞i (xy) = ∨
{
ρji (xy), j = 1, 2, . . .

}
.

Definition 2.8 ([9]). G = (ν, ρ1, ρ2, . . . , ρk) is a ρi-cycle iff (supp(ν), supp(ρ1),
supp(ρ2), . . . , supp(ρk)) is a Ei-cycle.

Definition 2.9 ([9]). G = (ν, ρ1, ρ2, . . . , ρk) is a fuzzy ρi-cycle iff (supp(ν), supp(ρ1),
supp(ρ2), . . . , supp(ρk)) is a Ei-cycle and there exists no unique xy in supp(ρi) such
that

ρi(xy) = ∧{ρi)(uv)|uv ∈ supp(ρi)} .

Definition 2.10 ([9]). G = (ν, ρ1, ρ2, . . . , ρk) is a fuzzy ρi-tree if it has a partial fuzzy
spanning subgraph structure, F̆i = (ν, τ1, τ2, . . . , τk) which is a τi-tree where for all
ρi-edges not in F̆i, ρi(xy) < τ∞i (xy).

3. Intuitionistic Fuzzy Graph Structures

Definition 3.1. Let {Ei : i = 1, 2, . . . , n} be a set of irreflexive, symmetric and
mutually disjoint relations on a non-empty set U . An intuitionistic fuzzy graph
structure (IFGS) with underlying vertex set U is denoted by Ğs = (A,B1, B2, . . . , Bn),
where

(i) A is an intuitionistic fuzzy set of U with µA : U → [0, 1] and νA : U → [0, 1],
namely the degree of membership and the degree of nonmembership of x ∈ U ,
respectively, such that

0 ≤ µA(x) + νA(x) ≤ 1, for all x ∈ U.
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(ii) Each Bi is an intuitionistic fuzzy set of Ei such that the functions µBi : Ei →
[0, 1] and νBi : Ei → [0, 1] are defined by

µBi(xy) ≤ µA(x) ∧ µA(y), νBi(xy) ≤ νA(x) ∨ νA(y)

and

0 ≤ µBi(xy) + νBi(xy) ≤ 1, for all xy ∈⊂ U × U, i = 1, 2, . . . , n.

Equivalently, an IFGS of a graph structure may be defined in the following way.
LetG∗ = (U,E1, E2, . . . , En) be a graph structure and letA,B1, B2, . . . , Bn−1 andBn

be intuitionistic fuzzy subsets of U,E1, E2, . . . , En−1 and En, respectively. Then
Ğs = (A,B1, B2, . . . , Bn) is called an IFGS of G∗, if

µBi(xy) ≤ µA(x) ∧ µA(y), νBi(xy) ≤ νA(x) ∨ νA(y),

for all xy ∈ Ei, i = 1, 2, . . . , n, and

µBi(xy) + νBi(xy) ≤ 1, for all xy ∈ U × U.

Example 3.1. Let G∗ = (U,E1, E2) be a graph structure such that U = {a1, a2, a3, a4},
E1 = {a1a2, a2a3} and E2 = {a3a4, a1a4}. Let A,B1 andB2 be intuitionistic fuzzy
subsets of U,E1 and E2, respectively, such that

A = {(a1, 0.5, 0.2), (a2, 0.7, 0.3), (a3, 0.4, 0.3), (a4, 0.7, 0.3)},
B1 = {(a1a2, 0.5, 0.3), (a2a3, 0.4, 0.3)},

and B2 = {(a3a4, 0.4, 0.3), (a1a4, 0.1, 0.2)}.

Then Ğs = (A,B1, B2) is an IFGS of G∗ as shown in Fig. 1.
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Figure 1. IFGS Ğs = (A,B1, B2)

Definition 3.2. An IFGS H̆s = (C,D1, D2, . . . , Dn) is said to be an intuitionistic
fuzzy subgraph structure of an IFGS Ğs = (A,B1, B2, . . . , Bn) with underlying vertex
set U , if C ⊆ A and Di ⊆ Ci for all i, that is

µC(x) ≤ µA(x), νC(x) ≥ νA(x), for all x ∈ U,
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and for i = 1, 2, . . . , n

µDi(xy) ≤ µBi(xy), νDi(xy) ≥ νBi(xy), for all xy ∈ U × U.

H̆s is called an intuitionistic fuzzy spanning subgraph structure of an IFGS Ğs, if
C = A.
H̆s is called an intuitionistic fuzzy partial spanning subgraph structure of an IFGS

Ğs, if it excludes some edges of Ğs.
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Figure 2. Intuitionistic Fuzzy Subgraph Structures

Example 3.2. Consider an IFGS Ğs = (A,B1, B2), as shown in Fig. 1. Let

C = {(a1, 0.4, 0.4), (a2, 0.0, 0.4), (a3, 0.4, 0.3), (a4, 0.6, 0.4)},
D1 = {(a1a2, 0, 0.4), (a2a3, 0, 0.4)},
D2 = {(a3a4, 0.3, 0.4), (a1a4, 0.1, 0.4)},



INTUITIONISTIC FUZZY GRAPH STRUCTURES 225

C1 = {(a1a2, 0.3, 0.3), (a2a3, 0.4, 0.3)},
C2 = {(a3a4, 0.3, 0.3), (a1a4, 0.1, 0.3)},
F1 = {(a1a2, 0.5, 0.3), (a2a3, 0.4, 0.3)},

and F2 = {(a1a4, 0.1, 0.3)}.

By routine calculations, it is easy to see that H̆s = (C,D1, D2), J̆s = (A,C1, C2) and
K̆s = (A,F1, F2) are respectively the intuitionistic fuzzy subgraph structure, intu-
itionistic fuzzy spanning subgraph structure and intuitionistic fuzzy partial spanning
subgraph structure of Ğs. Their respective drawings are shown in Fig. 2.

Definition 3.3. Let Ğs = (A,B1, B2, . . . , Bn) be an IFGS with underlying vertex set
U . Then there is a Bi-edge between two vertices x and y of U , if one of the following
is true:

(i) µBi(xy) > 0 and νBi(xy) > 0,
(ii) µBi(xy) > 0 and νBi(xy) = 0,
(iii) µBi(xy) = 0 and νBi(xy) > 0,

for some i.

Definition 3.4. For an intuitionistic fuzzy graph structure Ğs = (A,B1, B2, . . . , Bn)
with vertex set U , support of Bi is given by:

supp(Bi) = {xy ∈ U × U : µBi(xy) 6= 0 or νBi(xy) 6= 0}, i = 1, 2, . . . , n.

Definition 3.5. Bi-path of an IFGS Ğs = (A,B1, B2, . . . , Bn) with underlying vertex
set U , is a sequence of distinct vertices v1, v2, . . . , vm ∈ U (except the choice vm = v1),
such that vj−1vj is a Bi-edge for all j = 2, 3, . . . ,m.

Definition 3.6. In an IFGS Ğs = (A,B1, B2, . . . , Bn) with underlying vertex set U ,
two vertices x and y of U are said to be Bi-connected, if they are joined by a Bi-Path,
for some i ∈ {1, 2, 3, . . . , n}.

Definition 3.7. An IFGS Ğs = (A,B1, B2, . . . , Bn) with underlying vertex set U , is
said to be Bi-strong, if for all Bi-edges xy

µBi(xy) = µA(x) ∧ µA(y), νBi(xy) = νA(x) ∨ νA(y),

for some i ∈ {1, 2, 3, . . . , n}.

Example 3.3. Consider the IFGS Ğs = (A,B1, B2), as shown in Fig. 1. Then
(i) a1a2, a2a3 are B1-edges and a3a4, a1a4 are B2-edges;
(ii) a1a2a3 and a3a4a1 are B1- and B2-paths, respectively;
(iii) a1 and a3 are B1-connected vertices of U ;
(iv) Ğs is B1-strong, since supp(B1) = {a1a2, a2a3} and

µB1(a1a2) = 0.5 = (µA(a1) ∧ µA(a2)),

νB1(a1a2) = 0.3 = (νA(a1) ∨ νA(a2)),
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µB1(a2a3) = 0.4 = (µA(a2) ∧ µA(a3)),

and νB1(a2a3) = 0.3 = (νA(a2) ∨ νA(a3)).

Definition 3.8. An IFGS Ğs = (A,B1, B2, . . . , Bn) is said to be strong, if it is
Bi-strong for all i ∈ {1, 2, 3, . . . , n}.

Definition 3.9. An IFGS Ğs = (A,B1, B2, . . . , Bn) with underlying vertex set U , is
called complete or B1B2 . . . Bn-complete if
(i) Ğs is a strong IFGS;
(ii) supp(Bi) 6= ∅ for all i = 1, 2, 3, . . . , n;
(iii) For each pair of vertices x, y ∈ U , xy is a Bi-edge for some i.

Example 3.4. Let Ğs = (A,B1, B2) shown in Fig. 3, be IFGS of the graph struc-
ture G∗ = (U,E1, E2) where U = {a1, a2, a3, a4}, E1 = {a1a3, a3a4, a1a4} and E2 =

{a1a2, a2a3, a2a4}. Then Ğs is a strong IFGS since it is both B1-strong and B2-strong.
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Figure 3. IFGS Ğs = (A,B1, B2)

Moreover supp(B1) 6= ∅, supp(B2) 6= ∅, every pair of vertices belonging to U , is either
a B1-edge or a B2-edge, so Ğs is a complete or B1B2-complete IFGS as well.

Definition 3.10. In an IFGS Ğs = (A,B1, B2, . . . , Bn) with underlying vertex set
U , µBi- and νBi-strengths of a Bi-path “P

¯Bi
= v1v2 . . . vm”, are denoted by δ.P

¯Bi
and

∆.P
¯Bi

, respectively, such that

δ.P
¯Bi

=
m∧
j=2

[µBi(vj−1vj)] and ∆.P
¯Bi

=
m∨
j=2

[νBi(vj−1vj)] .

Then we write, strength of the path P
¯Bi

= (δ.P
¯Bi

,∆.P
¯Bi

).

Example 3.5. In Ğs = (A,B1, B2) shown in Fig. 3, P
¯1 = a1a3a4a1 is a B1-path and

P
¯2 = a3a2a4 is a B2-path and

δ.P
¯1 =µB1(a1a3) ∧ µB1(a3a4) ∧ µB1(a4a1) = 0.2 ∧ 0.4 ∧ 0.2 = 0.2,
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∆.P
¯1 = νB1(a1a3) ∨ νB1(a3a4) ∨ νB1(a4a1) = 0.4 ∨ 0.6 ∨ 0.6 = 0.6,

δ.P
¯2 =µB2(a3a2) ∧ µB2(a2a4) = 0.3 ∧ 0.3 = 0.3,

∆.P
¯2 = νB2(a3a2) ∨ νB2(a2a4) = 0.4 ∨ 0.6 = 0.6.

Thus strength of B1-path P
¯1 = (δ.P

¯1,∆.P¯1) = (0.2, 0.6), strength of B2-path P
¯2 =

(δ.P
¯2,∆.P¯2) = (0.3, 0.6).

Definition 3.11. In an IFGS Ğs = (A,B1, B2, . . . , Bn) with underlying vertex set U :
(i) µBi-strength of connectedness between x and y, is defined by µ∞Bi(xy) =∨

j≥1{µ
j
Bi

(xy)}, where µjBi(xy) = (µj−1Bi
o µBi)(xy) for j ≥ 2 and µ2

Bi
(xy) =

(µBio µBi)(xy) =
∨
z{µBi(xz) ∧ µBi(zy)};

(ii) νBi-strength of connectedness between x and y, is defined by ν∞Bi(xy) =∨
j≥1{ν

j
Bi

(xy)}, where νjBi(xy) = (νj−1Bi
o νBi)(xy) for j ≥ 2 and ν2Bi(xy) =

(νBio νBi)(xy) =
∧
z{νBi(xz) ∨ νBi(zy)}.

Example 3.6. Let Ğs = (A,B1, B2), as shown in Fig. 4, be IFGS of graph structure
G∗ = (U,E1, E2), such that U = {a1, a2, a3}, E1 = {a1a2, a1a3} and E2 = {a2a3}.
Since µB1(a1a2) = 0.3, µB1(a1a3) = 0.3, µB1(a2a3) = 0, therefore

µ2
B1

(a1a2) = (µB1oµB1)(a1a2) = µB1(a1a3) ∧ µB1(a3a2) = 0.3 ∧ 0.0 = 0,

µ2
B1

(a2a3) = (µB1oµB1)(a2a3) = µB1(a2a1) ∧ µB1(a1a3) = 0.3 ∧ 0.3 = 0.3,

µ2
B1

(a1a3) = (µB1oµB1)(a1a3) = µB1(a1a2) ∧ µB1(a2a3) = 0.3 ∧ 0.0 = 0,

µ3
B1

(a1a2) = (µ2
B1
oµB1)(a1a2) = µ2

B1
(a1a3) ∧ µB1(a3a2) = 0.0 ∧ 0.0 = 0,

µ3
B1

(a2a3) = (µ2
B1
oµB1)(a2a3) = µ2

B1
(a2a1) ∧ µB1(a1a3) = 0.0 ∧ 0.3 = 0,

µ3
B1

(a1a3) = (µ2
B1
oµB1)(a1a3) = µ2

B1
(a1a2) ∧ µB1(a2a3) = 0.0 ∧ 0.0 = 0.

bb

❛✷✭�✿✺❀ �✿✹✁❛✸✭�✿✼❀ �✿✂✁

b
❛✶✭�✿✂❀ �✿✼✁

❇✷✭�✿✺❀ �✿✂✁

❇✶✭�✿✂❀ �✿✼✁❇✶✭�✿✂❀ �✿✂✁

Figure 4. IFGS Ğs = (A,B1, B2)

Thus, we have

µ∞B1
(a1a2) = ∨ {0.3, 0.0, 0.0} = 0.3,

µ∞B1
(a2a3) = ∨ {0.0, 0.3, 0.0} = 0.3,

µ∞B1
(a1a3) = ∨ {0.3, 0.0, 0.0} = 0.3.
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Since νB1(a1a2) = 0.7, νB1(a1a3) = 0.3, νB1(a2a3) = 0, therefore

ν2B1
(a1a2) = (νB1oνB1)(a1a2) = νB1(a1a3) ∨ νB1(a3a2) = 0.3 ∨ 0.0 = 0.3,

ν2B1
(a2a3) = (νB1oνB1)(a2a3) = νB1(a2a1) ∨ νB1(a1a3) = 0.7 ∨ 0.3 = 0.7,

ν2B1
(a1a3) = (νB1oνB1)(a1a3) = νB1(a1a2) ∨ νB1(a2a3) = 0.7 ∨ 0.0 = 0.7,

ν3B1
(a1a2) = (ν2B1

oνB1)(a1a2) = ν2B1
(a1a3) ∨ νB1(a3a2) = 0.7 ∨ 0.0 = 0.7,

ν3B1
(a2a3) = (ν2B1

oνB1)(a2a3) = ν2B1
(a2a1) ∨ νB1(a1a3) = 0.3 ∨ 0.3 = 0.3,

ν3B1
(a1a3) = (ν2B1

oνB1)(a1a3) = ν2B1
(a1a2) ∨ νB1(a2a3) = 0.3 ∨ 0.0 = 0.3,

and

ν4B1
(a1a2) = (ν3B1

oνB1)(a1a2) = ν3B1
(a1a3) ∨ νB1(a3a2) = 0.3 ∨ 0.0 = 0.3,

ν4B1
(a2a3) = (ν3B1

oνB1)(a2a3) = ν3B1
(a2a1) ∨ νB1(a1a3) = 0.7 ∨ 0.3 = 0.7,

ν4B1
(a1a3) = (ν3B1

oνB1)(a1a3) = ν3B1
(a1a2) ∨ νBi(a2a3) = 0.7 ∨ 0.0 = 0.7.

Thus, we have

ν∞B1
(a1a2) = ∨ {0.7, 0.3, 0.7, 0.3} = 0.7,

ν∞B1
(a2a3) = ∨ {0.0, 0.7, 0.3, 0.7} = 0.7,

ν∞B1
(a1a3) = ∨ {0.3, 0.7, 0.3, 0.7} = 0.7.

By similar calculations, it can be easily checked that

µ∞B2
(a1a2) = 0, µ∞B2

(a2a3) = 0.5, µ∞B2
(a1a3) = 0,

ν∞B2
(a1a2) = 0.3, ν∞B2

(a2a3) = 0.3, ν∞B2
(a1a3) = 0.3.

Definition 3.12. An IFGS Ğs = (A,B1, B2, . . . , Bn) of a graph structure G∗ =
(U,E1, E2, . . . , En) is a Bi-cycle, if G∗ is an Ei-cycle.

Definition 3.13. An IFGS Ğs = (A,B1, B2, . . . , Bn) of a graph structure G∗ =
(U,E1, E2, . . . , En) is an intuitionistic fuzzy Bi-cycle for some i, if following conditions
hold:
(i) Ğs is a Bi-cycle;
(ii) There is no unique Bi-edge uv in Ğs, such that µBi(uv) = min{µBi(xy) : xy ∈
Ei = supp(Bi)} or νBi(uv) = max{νBi(xy) : xy ∈ Ei = supp(Bi)}.

Example 3.7. IFGS Ğs = (A,B1, B2) shown in Fig. 3, is a B1-cycle as well as intuition-
istic fuzzy B1-cycle, since (supp(A), supp(B1), supp(B2)) is an E1-cycle and there are
two B1-edges with minimum degree of membership and two B1-edges with maximum
degree of nonmembership of all B1-edges.

Definition 3.14. An IFGS Ğs = (A,B1, B2, . . . , Bn) of a graph structure G∗ =
(U,E1, E2, . . . , En) is a Bi-tree, if (supp(A), supp(B1), supp(B2), . . . , supp(Bn)) is an
Ei-tree. In other words, Ğs is a Bi-tree if the subgraph of Ğs, induced by supp(Bi),
forms a tree.
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Definition 3.15. An IFGS Ğs = (A,B1, B2, . . . , Bn) of a graph structure G∗ =
(U,E1, E2, . . . , En) is an intuitionistic fuzzy Bi-tree (intuitionistic fuzzy Bi-forest), if
Ğs has an intuitionistic fuzzy partial spanning subgraph structure H̆s = (A,C1, C2, . . . ,

Cn), such that H̆s is a Ci-tree (Ci-forest) and µBi(xy) < µ∞Ci(xy) and νBi(xy) < ν∞Ci(xy)

for all Biedges not in H̆s.

Example 3.8. The IFGS, shown in Fig. 3, is a B2-tree but not an intuitionistic fuzzy
B2-tree. While IFGS Ğs = (A,B1, B2), shown in Fig. 5, is not a B1-tree but an intu-
itionistic fuzzy B1-tree, since it has an intuitionistic fuzzy partial spanning subgraph
structure (A,B′1, B

′
2) as a B1-tree, which is obtained by deleting B1-edge a1a4 from

Ğs, with µB1(a1a4) = 0.3 < 0.4 = µ∞B′1
(a1a4) and νB1(a1a4) = 0.5 < 0.6 = ν∞B′1

(a1a4).

b b

bb
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Figure 5. IFGS Ğs = (A,B1, B2)

Definition 3.16. An IFGS Ğs1 = (A1, B11, B12, . . . , B1n) of GS G∗1 = (U1, E11, E12,

. . . , E1n) is isomorphic to an IFGS Ğs2 = (A2, B21, B22, . . . , B2n) of G∗2 = (U2, E21, E22,

. . . , E2n), if there exist a bijection f : U1 → U2 and a permutation φ on the set
{1, 2, . . . , n}, such that:

µA1(u1) = µA2(f(u1)), νA1(u1) = νA2(f(u1)), for all u1 ∈ U1

and for φ(i) = j

µB1i
(u1u2) = µB2j

(f(u1)f(u2)), νB1i
(u1u2) = νB2j

(f(u1)f(u2)),

for all u1u2 ∈ E1i, i = 1, 2, . . . , n.

Definition 3.17. An IFGS Ğs1 = (A1, B11, B12, . . . , B1n) of GSG∗1 = (U,E11, E12, . . . ,

E1n) is identical to an IFGS Ğs2 = (A2, B21, B22, . . . , B2n) of G∗2 = (U,E21, E22, . . . ,
E2n), if there exist a bijection f : U → U , such that:

µA1(u) = µA2(f(u)), νA1(u) = νA2(f(u)), for all u ∈ U
and

µB1i
(u1u2) = µB2i

(f(u1)f(u2)), νB1i
(u1u2) = νB2i

(f(u1)f(u2)),

for all u1u2 ∈ E1i, i = 1, 2, . . . , n.
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Example 3.9. Ğs1 and Ğs2, as shown in Fig. 6 and Fig. 7, are IFGSs of graph structures
G∗1 = (U1, E1, E2, E3, E4) and G∗2 = (U2, E

′
1, E

′
2, E

′
3, E

′
4), respectively, where

U1 = {a1, a2, a3, a4, a5}, E1 = {a1a2, a2a5},
E2 = {a2a3, a2a4}, E3 = {a1a3, a4a5},
E4 = {a1a5, a3a4}, U2 = {b1, b2, b3, b4, b5},
E ′1 = {b2b4, b3b4}, E ′2 = {b1b4, b4b5},
E ′3 = {b1b2, b3b5}, E ′4 = {b1b5, b2b3}.

b b

bb
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Figure 6. IFGS Ğs1 = (A1, B1, B2, B3, B4)

Then Ğs1 is isomorphic to Ğs2 under the mapping f : U1 → U2, given by

f(a1) = b5, f(a2) = b4, f(a3) = b3, f(a4) = b2, f(a5) = b1,

and a permutation φ given by

φ(1) = 2, φ(2) = 1, φ(3) = 3, φ(4) = 4,

such that
µA1(ai) = µA2(f(ai)), νA1(ai) = νA2(f(ai))

for all ai ∈ U1, and

µBk(aiaj) = µBφ(k)(f(ai)f(aj)), νBk(aiaj) = νBφ(k)(f(ai)f(aj)),

for all aiaj ∈ Ek, k = 1, 2, 3, 4.
Also, Ğs1 is identical with Ğs2 under the mapping f : U1 → U2, given by

f(a1) = b3, f(a2) = b4, f(a3) = b5, f(a4) = b1, f(a5) = b2,

such that
µA1(ai) = µA2(f(ai)), νA1(ai) = νA2(f(ai)),
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for all ai ∈ U1, and

µBk(aiaj) = µB′k(f(ai)f(aj)), νBk(aiaj) = νB′k(f(ai)f(aj)),

for all aiaj ∈ Ek, k = 1, 2, 3, 4.

b b

bb
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❇✵
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b

❜✄✭�✿✼❀ �✿☎✁

Figure 7. IFGS Ğs2 = (A2, B
′
1, B

′
2, B

′
3, B

′
4)

Remark 3.1. Identical IFGSs are always isomorphic but the converse is not necessarily
true. As IFGS shown in Fig. 3 is isomorphic to IFGS shown in Fig. 8 but they are
not identical.

b

bb
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Figure 8. IFGS Ğs1 = (A1, B
′
1, B

′
2)

Definition 3.18. Let Ğs = (A,B1, B2, . . . , Bn) be an intuitionistic fuzzy graph struc-
ture of a graph structure G∗ = (U,E1, E2, . . . , En). Let φ denote a permutation on
the set {E1, E2, . . . , En} and the corresponding permutation on {B1, B2, . . . , Bn}, i.e.,
φ(Bi) = Bj iff φ(Ei) = Ej for all i.

If xy ∈ Br for some r and

µBφi
(xy) =µA(x) ∧ µA(y)−

∨
j 6=i

µφBj(xy),
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νBφi
(xy) = νA(x) ∨ νA(y)−

∨
j 6=i

νφBj(xy), i = 1, 2, . . . , n,

then xy ∈ Bφ
m, whilem is chosen such that µBφm(xy) ≥ µBφi

(xy) and νBφm(xy) ≥ νBφi
(xy)

for all i.
Then IFGS (A,Bφ

1 , B
φ
2 , . . . , B

φ
n) denoted by Ğφc

s , is called the φ-complement of IFGS
Ğs.

Theorem 3.1. A φ-complement of an intuitionistic fuzzy graph structure is always a
strong IFGS. Moreover, if φ(i) = r for r, i ∈ {1, 2, . . . , n}, then all Br-edges in IFGS
Ğs = (A,B1, B2, . . . , Bn) become Bφ

i -edges in Ğφc
s = (A,Bφ

1 , B
φ
2 , . . . , B

φ
n).

Proof. First part is obvious from the definition of φ-complement Ğφc
s of IFGS Ğs,

since for any Bφ
i -edge xy, µ

φ
Bi

(xy) and νφBi(xy) respectively have the maximum values
of

(3.1) [µA(x) ∧ µA(y)]−
∨
j 6=i

µφBj(xy) and [νA(x) ∨ νA(y)]−
∨
j 6=i

νφBj(xy).

That is,

(3.2) µφBi(xy) = µA(x) ∧ µA(y), νφBi(xy) = νA(x) ∨ νA(y),

for all edges xy in Ğφc
s , hence Ğφc

s is always a strong IFGS.
Now suppose on contrary that φ(i) = r but xy is a Bs-edge in Ğs with s 6= r, which

implies that φBi 6= Bs. Comparing expressions (3.1) and (3.2), we get∨
j 6=i

µφBj(xy) = 0,
∨
j 6=i

νφBj(xy) = 0,

which is not possible because Bs = φBj for some j ∈ {1, 2, . . . , i − 1, i + 1, . . . , n}.
So our supposition is wrong and xy must be a Br-edge. Hence we can conclude that
if φ(i) = r, then all Br-edges in IFGS Ğs = (A,B1, B2, . . . , Bn) become Bφ

i -edges in
Ğφc
s = (A,Bφ

1 , B
φ
2 , . . . , B

φ
n) for r, i ∈ {1, 2, . . . , n}. �

Example 3.10. Consider IFGS Ğs = (A,B1, B2) shown in Fig. 4 and let φ be a
permutation on the set {B1, B2} such that φ(B1) = B2 and φ(B2) = B1.

Now for a1a2 ∈ B1,

µφB1
(a1a2) =µA(a1) ∧ µA(a2)−

∨
j 6=1

[µφBj(a1a2)] = 0.3 ∧ 0.5− [µφB2(a1a2)]

= 0.3− µB1(a1a2) = 0.3− 0.3 = 0,

νφB1
(a1a2) = νA(a1) ∨ νA(a2)−

∨
j 6=1

[νφBj(a1a2)] = 0.7 ∨ 0.4− [νφB2(a1a2)]

= 0.7− νB1(a1a2) = 0.7− 0.7 = 0,

µφB2
(a1a2) =µA(a1) ∧ µA(a2)−

∨
j 6=2

[µφBj(a1a2)] = 0.3 ∧ 0.5− [µφB1(a1a2)]
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= 0.3− µB2(a1a2) = 0.3− 0 = 0.3,

νφB2
(a1a2) = νA(a1) ∨ νA(a2)−

∨
j 6=2

[νφBj(a1a2)] = 0.7 ∨ 0.4− [νφB1(a1a2)]

= 0.7− νB2(a1a2) = 0.7− 0 = 0.7.

Clearly, µφB2
(a1a2) = 0.3 > 0 = µφB1

(a1a2) and νφB2
(a1a2) = 0.7 > 0 = νφB1

(a1a2), so
a1a2 ∈ Bφ

2 .

bb
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Figure 9. IFGS Ğφc
s = (A,Bφ

1 , B
φ
2 )

Similarly for a1a3 ∈ B1,

µφB1
(a1a3) = 0, νφB1

(a1a3) = 0.4, µφB2
(a1a3) = 0.3, νφB2

(a1a3) = 0.7.

Clearly, µφB2
(a1a3) = 0.3 > 0 = µφB1

(a1a3) and νφB2
(a1a3) = 0.7 > 0.4 = νφB1

(a1a3), so
a1a3 ∈ Bφ

2 .
And for a2a3 ∈ B2

µφB1
(a2a3) = 0.5, νφB1

(a2a3) = 0.4, µφB2
(a2a3) = 0, νφB2

(a2a3) = 0.1,

that is, µφB1
(a2a3) = 0.5 > 0 = µφB2

(a2a3) and νφB1
(a2a3) = 0.4 > 0.1 = νφB2

(a2a3), so
a2a3 ∈ Bφ

1 .
This implies that Bφ

1 = {(a2a3, 0.5, 0.4)}, Bφ
2 = {(a1a2, 0.3, 0.7), (a1a3, 0.3, 0.7)} and

Ğφc
s = (A,Bφ

1 , B
φ
2 ) shown in Fig. 9 is the φ-complement of Ğs.

Definition 3.19. Let Ğs = (A,B1, B2, . . . , Bn) be an IFGS and φ be a permutation
on the set {1, 2, . . . , n}. Then

(i) Ğs is self-complementary, if it is isomorphic to Ğφc
s , the φ-complement of Ğs.

(ii) Ğs is strong self-complementary, if it is identical to Ğφc
s .

(iii) Ğs is totally self-complementary, if it is isomorphic to Ğφc
s , the φ-complement

of Ğs for all permutations φ on the set {1, 2, . . . , n}.
(iv) Ğs is totally strong self-complementary, if it is identical to Ğφc

s , the
φ-complement of Ğs for all permutations φ on the set {1, 2, . . . , n}.

Theorem 3.2. An IFGS Ğs is strong if and only if Ğs is totally self-complementary.
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Proof. Let Ğs be a strong IFGS and φ be any permutation on the set {1, 2, . . . , n}.
If φ−1(i) = j, then by Theorem 3.1, all Bi-edges in Ğs = (A,B1, B2, . . . , Bn) become

Bφ
j -edges in Ğφc

s = (A,Bφ
1 , B

φ
2 , . . . , B

φ
n). Also Ğφc

s is strong, so

µBi(a1a2) =µA(a1) ∧ µA(a2) = µBφj
(a1a2),

νBi(a1a2) = νA(a1) ∨ νA(a2) = νBφj
(a1a2).

Then Ğs is isomorphic to Ğφc
s , under the identity mapping f : U → U and a permu-

tation φ [φ−1(i) = j, i, j = 1, 2, . . . , n], such that

µA(a) = µA(f(a)), νA(a) = νA(f(a)), for all a ∈ U
and

µBi(a1a2) =µBφj
(a1a2) = µBφj

(f(a1)f(a2)),

νBi(a1a2) = νBφj
(a1a2) = νBφj

(f(a1)f(a2)), for all a1a2 ∈ Ei.

This holds for all permutations on the set {1, 2, . . . , n}. Hence Ğs is totally self-
complementary.

Conversely, let φ be any permutation on the set {1, 2, . . . , n} and Ğs and Ğφc
s be

isomorphic. From the definition of φ-complement and isomorphism of IFGSs, we have

µBi(a1a2) =µBφj
(f(a1)f(a2)) = µA(f(a1)) ∧ µA(f(a2)) = µA(a1) ∧ µA(a2),

νBi(a1a2) = νBφj
(f(a1)f(a2)) = νA(f(a1)) ∨ µA(f(a2)) = νA(a1) ∨ νA(a2),

for all a1a2 ∈ Ei, i = 1, 2, . . . , n.
Hence, Ğs is a strong IFGS. �

Remark 3.2. Every self-complementary IFGS is necessarily totally self-complementary.

Theorem 3.3. If graph structure G∗ = (U,E1, E2, . . . , En) is totally strong self-
complementary and A is an IFS of U with constant fuzzy mappings µA and νA then a
strong IFGS Ğs = (A,B1, B2, . . . , Bn) of G∗ is totally strong self-complementary.

Proof. Consider a strong IFGS Ğs = (A,B1, B2, . . . , Bn) of a graph structure G∗ =
(U,E1, E2, . . . , En). Suppose that G∗ is totally strong self-complementary and that for
some constants s, t ∈ [0, 1], A = (µA, νA) is an IFS of U such that µA(u) = s, νA(u) = t,
for all u ∈ U . Then we have to prove that Ğs is totally strong self-complementary.

Let φ be an arbitrary permutation on the set {1, 2, . . . , n} and φ−1(j) = i. Since
G∗ is totally strong self-complementary, so there exists a bijection f : U → U , such
that for every Ei-edge a1a2 in G∗, f(a1)f(a2) (an Ej-edge in G∗) is an Ei-edge in
(G∗)φ

−1c. Consequently, for every Bi-edge a1a2 in Ğs, f(a1)f(a2) (a Bj-edge in Ğs) is
a Bφ

i -edge in Ğφc
s .

From the definition of A and the definition of strong IFGS Ğs

µA(a) = s = µA(f(a)), νA(a) = t = νA(f(a)), for all a, f(a) ∈ U,
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and

µBi(a1a2) =µA(a1) ∧ µA(a2) = µA(f(a1)) ∧ µA(f(a2)) = µBφi
(f(a1)f(a2)),

νBi(a1a2) = νA(a1) ∨ νA(a2) = νA(f(a1)) ∨ νA(f(a2)) = νBφi
(f(a1)f(a2)),

for all a1a2 ∈ Bi, i = 1, 2, . . . , n, which shows Ğs is strong self-complementary. Hence
Ğs is totally strong self-complementary, since φ is arbitrary. �

Remark 3.3. Converse of Theorem 3.3 is not necessary, since a totally strong self-
complementary and strong IFGS Ğs = (A,B1, B2, B3) as shown in Fig. 11, has a
totally strong self-complementary underlying graph structure but µA and νA are not
constant fuzzy functions.

Example 3.11. The IFGS shown in Fig. 8 is self-complementary, i.e., it is isomorphic
to its φ-complement, where φ = (1 2). Also, it is totally self-complementary because
φ is the only non-identity permutation on set {1, 2}.

Example 3.12. The IFGS Ğs = (A1, B1, B2, B3, B4) shown in Fig. 10, is strong self-
complementary, i.e., it is identical to its φ-complement where the permutation φ is
(1 2) (3 4). It is not totally strong self-complementary.

b

b
❛✹✭�✿✼❀ �✿✷✁

b❇✶✂✄☎✻✆ ✄☎✝✞

b

b

✟✠✡☛☞✌✍ ☛☞✎✏

✑✸✒✓✔✕✖ ✓✔✗✘

✙✺✚✛✜✢✣ ✛✜✤✥✦✧★✩✪✫✬ ✩✪✮✯

✰✱✲✳✴✵✽ ✳✴✾❁

❂❃❄❅❆❈❉ ❅❆❊❋

●❍■❏❑▲▼ ❏❑◆❖

P◗❘❙❚❯❱ ❙❚❲❳

❨❩❬❭❪❫❴ ❭❪❵❜

Figure 10. IFGS Ğs = (A1, B1, B2, B3, B4)

Example 3.13. The IFGS Ğs = (A1, B1, B2, B3), shown in Fig. 11, is totally strong
self-complementary because it is identical to its φ-complement for all the permutations
φ on the set {1, 2, 3}.
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b

b b
❇✷✭�✿✸❀ �✿✸✁

✂
✄
☎
✆
✝✞
✟
✆
✝✹
✠

❛✡✭�✿✸❀ �✿✸✁

❛✷✭�✿✸❀ �✿✸✁❛☛✭�✿✸❀ �✿✸✁

b

❛✶✭�✿✻❀ �✿☞✁

❇☛✭�✿✸❀ �✿✸✁

❇✶✭�✿✸❀ �✿✸✁

❇✶✭�✿✸❀ �✿☞✁ ❇☛✭�✿✸❀ �✿☞✁

Figure 11. IFGS Ğs = (A1, B1, B2, B3)
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