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SOLVABILITY FOR MULTI-POINT BVP OF NONLINEAR
FRACTIONAL DIFFERENTIAL EQUATIONS AT RESONANCE

WITH THREE DIMENSIONAL KERNELS

ZIDANE BAITICHE1, MAAMAR BENBACHIR2, AND KADDOUR GUERBATI1

Abstract. This work deals with the BVP multi-point existence of solutions of a
nonlinear fractional differential equations at resonance, where the kernel’s dimension
of the fractional differential operator is equal to three. Our results are based on
Mawhin’s theory of coincidence. As application, we give an example to illustrate
our results.

1. Introduction

The present work concerns a kind of fractional differential equation which can be
written as Lx = Nx, where L is a linear Fredholm operator of index zero, and N is a
nonlinear operator. It is well known that if the kernel of the linear part contains only
zero, the corresponding boundary value problem is called non-resonant. In this case,
L is invertible, the equation can be reduced to a fixed point problem for the L−1N
operator. Otherwise, if L is a non-invertible, i.e., dim kerL ≥ 1, then the problem is
said to be at resonance, and then the problem can be solved by using the coincidence
degree theory. The higher value of dim kerL is the more difficult. Recently, many
authors investigated the existence of solutions for fractional differential equations at
resonance. For instance, see [3–6,9–11,15,16,18,19,32] and the references therein.

The case of dim kerL = 1 has been discussed by many authors [3, 4, 6, 9–11,16,18,
19, 32]. In [6], Z. Bai and Y. Zhang investigated the boundary value problem for a
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fractional differential equation with nonlinear growth with dim kerL = 1D
α
0+u(t) = f

(
t, u(t), Dα−1

0+ u(t)
)
, t ∈ [0, 1],

u(0) = 0, u(1) = σu(η),

whereDα
0+ is the standard Riemann-Liouville derivative, 1 < α ≤ 2, f : [0, 1]×R2 → R

is continuous and σ ∈ (0, ∞), η ∈ (0, 1) are given constants such that σηα−1 = 1.
Z. Hu et al. in [10] prove the existence of solutions of two-point boundary value

problem for a fractional differential equation at resonance with dim kerL = 1D
α
0+u(t) = f

(
t, u(t), u′(t)

)
, t ∈ [0, 1],

u(0) = 0, u(1) = u′(1),

where Dα
0+ is the Caputo fractional derivative, 1 < α ≤ 2, f : [0, 1]×R2 → R satisfies

the Caratheodory conditions.
L. Hu et al. studied in [11] a two-point boundary value problem for fractional

differential equation at resonance with dim kerL = 1:D
α
0+u(t) = f

(
t, u(t), Dα−1

0+ u(t), Dα−2
0+ u(t), . . . , Dα−(N−1)

0+ u(t)
)
,

u(0) = Dα−2
0+ u(0) = · · · = D

α−(N−1)
0+ u(0) = 0, Dα−1

0+ u(0) = Dα−1
0+ u(1),

where 0 < t < 1, N − 1 < α ≤ N, Dα
0+ is Riemann-Liouville fractional derivative, and

f : [0, 1]× R2 → R is a continuous function.
For the case dim kerL = 2, Bai and Zhang established in [5] the existence of at

least one solution for the m-point boundary value problem for fractional differential
equation at resonance with dim kerL = 2D

α
0+u(t) = f

(
t, u(t), Dα−2

0+ u(t), Dα−1
0+ u(t)

)
, t ∈ (0, 1),

Iα−1
0+ u(0) = 0, Dα−1

0+ u(0) = D3−α
0+ (η), u(1) = ∑m

i=1 αiu(ηi),

where 2 < α < 3, 0 < η ≤ 1, 0 < η1 < η2 < · · · < ηm < 1, m ≥ 2, ∑m
i=1 αiη

α−1
i =∑m

i=1 αiη
α−2
i = 1. Dα

0+ and Iα0+ are the standard Riemann-Liouville fractional derivative
and fractional integral respectively and f : [0, 1]×R3 → R satisfies the Caratheodory
conditions. The results are obtained under the assumption that:

R = 1
α
ηα

Γ(α)Γ(α− 1)
Γ(2α− 1)

[
1−

m∑
i=1

αiη
2α−2
i

]
− 1
α− 1η

α−1 (Γ(α))2

Γ(2α)

[
1−

m∑
i=1

αiη
2α−1
i

]
6= 0.

W. Jiang showed in [15] an existence result for the boundary value problem of
fractional differential equation at resonance with dim kerL = 2:D

α
0+u(t) = f

(
t, u(t), Dα−1

0+ u(t)
)
, t ∈ J = [0, 1],

u(0) = 0, Dα−1
0+ u(0) = ∑m

i=1 aiD
α−1
0+ (ξi), Dα−2

0+ u(0) = ∑n
j=1 bjD

α−2
0+ (ηj),

where 2 < α < 3, Dα
0+ is Riemann-Liouville fractional derivative, 0 < ξ1 < ξ2 <

· · · < ξm < 1, 0 < η1 < η2 < · · · < ηn < 1, ∑m
i=1 ai = 1, ∑n

j=1 bj = 1,∑n
j=1 bjηj = 1,
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f : [0, 1] × R2 → R satisfies the Caratheodory conditions. The results are obtained
under the assumption that

1
3

(
1−

n∑
j=1

bjη
3
j

) m∑
i=1

aiξi −
1
2

(
1−

n∑
j=1

bjη
2
j

) m∑
i=1

aiξ
2
i 6= 0.

Motivated by the results cited above, we investigate the solvability of multi-point
boundary value problem of nonlinear fractional differential equation at resonance with
dim kerL = 3

(1.1)


(
φ(t)CDα

0+u(t)
)′

= f
(
t, u(t), u′(t), u′′(t), u′′′(t), CDα

0+u(t)
)
, t ∈ I,

u(0) = 0, CDα
0+u(0) = 0, u′′′(0) = ∑m

i=1 aiu
′′′(ξi),

u′′(0) = ∑l
j=1 bju

′′(ηj), u′(1) = ∑n
k=1 cku

′(ρk),

where CDα
0+ is the Caputo fractional derivative, 3 < α ≤ 4, 0 < ξ1 < · · · < ξm <

1, 0 < η1 < · · · < ηl < 1, 0 < ρ1 < · · · < ρn < 1, ai, bj, ck ∈ R, i = 1, . . . ,m, j =
1, . . . , l, k = 1, . . . , n, I = [0, 1], φ(t) ∈ C1([0, 1]), µ = mint∈I φ(t) > 0 and f : [0, 1]×
R5 → R is a Caratheodory function, that is,
(i) for each x ∈ R5, the function x→ f(t, x) is Lebesgue measurable;
(ii) for almost every t ∈ [0, 1], the function t→ f(t, x) is continuous on R5;
(iii) for each r > 0, there exists ϕr(t) ∈ L1

(
[0, 1], R

)
such that, for a.e. t ∈ [0, 1] and

every |x| ≤ r, we have |f(t, x)| ≤ ϕr(t).
In this work, we will always suppose that the following conditions hold.

(H1) ∑m
i=1 ai = ∑l

j=1 bj = ∑n
k=1 ck = 1, ∑l

j=1 bjηj = 0, ∑n
k=1 ckρk = ∑n

k=1 ckρ
2
k = 1.

(H2)

∆ =

∣∣∣∣∣∣∣
d11 d12 d13
d21 d22 d23
d31 d32 d33

∣∣∣∣∣∣∣ 6= 0,

where for ν = 1, 2, 3, we define

dν1 =
m∑
i=1

ai

∫ ξi

0

sν(ξi − s)α−4

νφ(s) ds, dν2 =
l∑

j=1
bj

∫ ηj

0

sν(ηj − s)α−3

νφ(s) ds,

dν3 =
∫ 1

0

sν(1− s)α−2

νφ(s) ds−
n∑
k=1

ck

∫ ρk

0

sν(ρk − s)α−2

νφ(s) ds.

The rest of this work is organized as follows. In Section 2, we introduce some
notations, definitions and lemmas which will be used later. In Section 3, we present
and prove our main results by applying the coincidence degree continuation theorem.
Finally, in Section 4 we provide an example.
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2. Preliminaries

In this section, we present the necessary definitions and lemmas from fractional
calculus theory. These definitions and properties can be found in recent literature,
see for example [17,26–28,30].

Definition 2.1. Let α > 0, and u a function u : (0,∞)→ R. The Riemann-Liouville
fractional integral of order α of u is defined by

Iα0+u(t) = 1
Γ(α)

∫ t

0
(t− s)α−1u(s)ds,

provided that the right-hand side is pointwise defined on (0,∞).

Remark 2.1. The notation Iα0+u(t) |t=0 means that the limit is taken at almost all
points of the right-sided neighborhood (0, ε), ε > 0, of 0 as follows:

Iα0+u(t) |t=0= lim
t→0+

Iα0+u(t).

Generally [Iα0+u(t) |t=0 ] is not necessarily zero. For instance, let α ∈ (0, 1), u(t) = t−α.
Then

Iα0+t−α|t=0 = lim
t→0+

1
Γ(α)

∫ t

0
(t− s)α−1s−αds = lim

t→0+
Γ(1− α) = Γ(1− α).

Definition 2.2. Let α > 0. The Caputo fractional derivative of order α of a function
u : (0,∞)→ R is given by

CDα
0+u(t) = In−α0+ u(n)(t) = 1

Γ(n− α)

∫ t

0
(t− s)n−α−1u(n)(s)ds,

where n = [α] + 1, [α] denotes the integer part of real number α, provided that the
right-hand side is pointwise defined on (0,∞).

Lemma 2.1. Let α, η > 0, n = [α] + 1, then the following relations hold

CDα
0+tη = Γ(η + 1)

Γ(η − α + 1)t
η−α, η > n− 1,

and
CDα

0+tk = 0, k = 0, . . . , n− 1.

Lemma 2.2. Let α, β ≥ 0 and u ∈ L1
(
[0, 1]

)
. Then Iα0+I

β
0+u(t) = Iα+β

0+ u(t) and
CDα

0+Iα0+u(t) = u(t) for all t ∈ [0, 1]

Lemma 2.3. Let α > 0, n = [α] + 1. Then

Iα0+

(
CDα

0+u(t)
)

= u(t) +
n−1∑
k=0

δkt
k, δk ∈ R.

Lemma 2.4. Let α > 0 and n = [α] + 1. If CDα
0+u(t) ∈ C[0, 1], then u(t) ∈

Cn−1([0, 1]).
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Proof. Let h(t) ∈ C[0, 1], such that CDα
0+u(t) = h(t), then, from Lemma 2.2, we have

u(t) = Iα0+h(t) +
n−1∑
k=0

δkt
k, δk ∈ R.

It is easy to check that u(t) ∈ Cn−1([0, 1]). �

Lemma 2.5. Let α > 0, u ∈ L1
(
[0, 1],R

)
. Then, for all t ∈ [0, 1], we have

Iα+1
0+ u(t) ≤ ‖Iα0+u‖L1 .

Proof. Let u ∈ L1
(
[0, 1],R

)
, from Lemma 2.2, we have

Iα+1
0+ u(t) = I1

0+Iα0+u(t) =
∫ t

0
Iα0+u(s)ds ≤

∫ 1

0
|Iα0+u(s)|ds = ‖Iα0+u‖L1 . �

Lemma 2.6 ([30]). The fractional integral Iα0+, α > 0, is bounded in L1([0, 1],R) with

‖Iα0+u‖L1 ≤ ‖u‖L1

Γ(α + 1) .

Now, let us recall some notations about the coincidence degree continuation theorem.
For more details see [25].

Definition 2.3. Let X and Y be real Banach spaces. A linear operator L : domL ⊂
X → Y is said to be a Fredholm operator of index zero if
(1) ImL is a closed subset of Y ;
(2) dim kerL = codim ImL <∞.

It follows from Definition 2.3 that there exist continuous projectors P : X → X
and Q : Y → Y such that

kerL = ImP, ImL = kerQ, X = kerL⊕ kerP, Y = ImL⊕ ImQ.

It follows that
Lp = L |domL∩kerP : domL ∩ kerP → ImL

is invertible. We denote the inverse of this map by Kp.

Definition 2.4. Let L be a Fredholm operator of index zero. If Ω is an open bounded
subset of X and domL

⋂Ω 6= ∅ . The map N : Ω→ X will be called L-compact on
Ω if
(1) QN(Ω) is bounded;
(2) KP,QN = Kp(I −Q)N : Ω→ X is compact.

Theorem 2.1. Let L : domL ⊂ X → Y be a Fredholm operator of index zero and
N : X → Y L-compact on Ω. Assume that the following conditions are satisfied:
(1) Lx 6= λNx for every (x, λ) ∈ [(domL\ kerL) ∩ ∂Ω]× (0, 1);
(2) Nx /∈ ImL for every x ∈ kerL ∩ ∂Ω;
(3) deg (QN |kerL,Ω ∩ kerL, 0) 6= 0, where Q : Y → Y is a projection such that

ImL = kerQ.
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Then, the abstract equation Lx = Nx has at least one solution in domL ∩ Ω.

For our purpose and according to Lemma 2.4, the adequate functional space is:

X =
{
u : CDα

0+u ∈ C([0, 1],R), u satisfies boundary value conditions of (1.1)
}

endowed with the norm:

‖u‖X =
3∑
i=0
‖u(i)‖∞ + ‖CDα

0+u‖∞, where ‖u‖∞ = max
t∈[0,1]

|u(t)|.

By means of the functional analysis theory, we can prove that (X, ‖.‖X) is a Banach
space.

Let Y = L1[0, 1] be the Lebesgue space of real measurable functions t 7→ y(t) defined
on [0, 1] and such that t 7→ |y(t)| is Lebesgue integrable. Y is a Banach space with
the norm ‖y‖L1 =

∫ 1
0 |y(t)|dt. Define L to be the linear operator from domL∩X toY

Lu =
(
φCDα

0+u
)′
, u ∈ domL,

where

domL =
{
u ∈ X : CDα

0+u(t) is absolutely continuous on [0, 1]
}

and define the operator N : X → Y as:

Nu(t) = f
(
t, u(t), u′(t), u′′(t), u′′′(t), CDα

0+u(t)
)
, t ∈ [0, 1].

Then the boundary value problem (1.1) can be written in abstract form as:

Lu = Nu, u ∈ domL.

To study the compactness of operator N , we need the following lemma.

Lemma 2.7. U ⊂ X is a relatively compact set in X if and only if U is uniformly
bounded and equicontinuous. Here uniformly bounded means there exists M > 0 such
that for every u ∈ U

‖u‖X =
3∑
i=0
‖u(i)‖∞ + ‖CDα

0+u‖∞ ≤M,

and equicontinuous means that for all ε > 0, exists δ > 0, such that

|u(i)(t1)− u(i)(t2)| < ε, for all u ∈ U, t1, t2 ∈ I, |t1 − t2| < δ, i ∈ {0, 1, 2, 3},

and
|CDα

0+u(t1)− CDα
0+u(t2)| < ε, for all u ∈ U, t1, t2 ∈ I, |t1 − t2| < δ.
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3. Main Results

In this section we shall present and prove our main result.

Lemma 3.1. Let y ∈ Y, φ ∈ C1[0, 1], mint∈I φ(t) > µ > 0, and suppose that (H1)
holds. Then u ∈ X is the solution of the following fractional differential equation:

(3.1)


(
φ(t)CDα

0+u(t)
)′

= y(t), t ∈ I = [0, 1],
u(0) = 0, CDα

0+u(0) = 0, u′′′(0) = ∑m
i=1 aiu

′′′(ξi),
u′′(0) = ∑l

j=1 bju
′′(ηj), u′(1) = ∑n

k=1 cku
′(ρk),

where u is given by

u(t) =
3∑
i=1

δit
i + 1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
y(r)drds, δ1, δ2, δ3 ∈ R,(3.2)

and

T1(y) = T2(y) = T3(y) = 0,(3.3)

where T1, T2, T3 : Y → Y are three linear operators defined as follow:

T1(y) =
m∑
i=1

ai

∫ ξi

0

(ξi − s)α−4

φ(s)

∫ s

0
y(r)drds,

T2(y) =
l∑

j=1
bj

∫ ηj

0

(ηj − s)α−3

φ(s)

∫ s

0
y(r)drds,

T3(y) =
∫ 1

0

(1− s)α−2

φ(s)

∫ s

0
y(r)drds−

n∑
k=1

ck

∫ ρk

0

(ρk − s)α−2

φ(s)

∫ s

0
y(r)drds.

Proof. Let u be a solution of problem (3.1). Then we have

φ(t)CDα
0+u(t) = δ +

∫ t

0
y(s)ds, δ ∈ R.

The hypothesis CDα
0+u(0) = 0 and mint∈I φ(t) > 0, allow us to write

CDα
0+u(t) = 1

φ(t)

∫ t

0
y(s)ds.

By Lemma 2.3, we get that

u(t) =
3∑
i=0

δit
i + 1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
y(r)drds, δ0, δ1, δ2, δ3 ∈ R.

u(0) = 0, implies that

u(t) =
3∑
i=1

δit
i + 1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
y(r)drds, δ1, δ2, δ3 ∈ R.
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By u′′′(0) = ∑m
i=1 aiu

′′′(ξi) and ∑l
i=1 ai = 1, we obtain

l∑
i=1

ai

∫ ξi

0

(ξi − s)α−4

φ(s)

∫ s

0
y(r)drds = 0,

From the conditions u′′(0) = ∑l
j=1 bju

′′(ηj) and ∑l
j=1 bj = 1, ∑l

j=1 bjηj = 0, we get
l∑

j=1
bj

∫ ηj

0

(ηj − s)α−3

φ(s)

∫ s

0
y(r)drds = 0.

Combining u′(1) = ∑n
k=1 cku

′(ρk),
∑n
k=1 ck = 1 and ∑n

k=1 ckρk = 1, ∑n
k=1 ckρ

2
k = 1, we

find ∫ 1

0

(1− s)α−2

φ(s)

∫ s

0
y(r)drds−

n∑
k=1

ck

∫ ρk

0

(ρk − s)α−2

φ(s)

∫ s

0
y(r)drds = 0.

Thus,
T1(y) = T2(y) = T3(y) = 0.

On the other hand, we let

u(t) =
3∑
i=1

δit
i + 1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
y(r)drds,

where δ1, δ2, δ3 are arbitrary constants. It is clear that u(0) = 0, in view of Lemmas
2.1 and 2.2, we obtain

CDα
0+u(t) = 1

φ(t)

∫ t

0
y(s)ds.

Thus, CDα
0+u(0) = 0 and

(
φ(t)CDα

0+u(t)
)′

= y(t) for all t ∈ [0, 1].
If (3.3) holds, we can calculate the following equations

u′′′(0)−
m∑
i=1

aiu
′′′(ξi) = T1(y)

Γ(α− 3) = 0, u′′(0)−
l∑

j=1
bju
′′(ηj) = T2(y)

Γ(α− 2) = 0,

u′(1)−
n∑
k=1

cku
′(ρk) = T3(y)

Γ(α− 1) = 0,

so, u is the solution of the problem (3.1), this completes the proof. �

Lemma 3.2. Assume that (H1) and (H2) hold. Let φ ∈ C1([0, 1]), mint∈[0,1] φ(t) >
µ > 0, then L : domL ⊂ X → Y is a Fredholm operator of index zero, and the inverse
linear operator Kp = L−1

p : ImL→ domL ∩ kerP is defined by

(Kpy)(t) = 1
Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
y(r)drds.(3.4)

It satisfies

‖Kpy‖X ≤
4 + Γ(α− 2)
µΓ(α− 2) ‖y‖L

1 .(3.5)
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Proof. It is clear that kerL =
{
u : u(t) = ∑3

k=1 δkt
k, δ1, δ2, δ3 ∈ R

}
. Furthermore,

Lemma 3.1 implies
ImL =

{
y ∈ Y : T1(y) = T2(y) = T3(y) = 0

}
.(3.6)

Consider continuous linear mapping Q : Y → Y defined by
Qy = Q1(y) +Q2(y)t+Q3(y)t2,(3.7)

where Q1, Q2, Q3 : Y → Y are three linear operators defined as follows

Q1(y) = 1
∆

(
e11T1(y) + e12T2(y) + e13T3(y)

)
,

Q2(y) = 1
∆

(
e21T1(y) + e22T2(y) + e23T3(y)

)
,

Q3(y) = 1
∆

(
e31T1(y) + e32T2(y) + e33T3(y)

)
,

eij, i, j = 1, 2, 3, are the algebraic complements of dij.
We will prove that kerQ = ImL. Obviously, ImL ⊂ kerQ. As well, if y ∈ kerQ,

then

(3.8)


e11T1(y) + e12T2(y) + e13T3(y) = 0,
e21T1(y) + e22T2(y) + e23T3(y) = 0,
e31T1(y) + e32T2(y) + e33T3(y) = 0.

The determinant of coefficients for (3.8) is ∆2 6= 0. We find T1(y) = T2(y) = T3(y) = 0
and that implies y ∈ ImL. So, kerQ ⊂ ImL. Now, we prove Q2y = Qy, y ∈ Y . For
y ∈ Y, we have

Q2
1(y) = 1

∆

[
e11T1

(
Q1(y)

)
+ e12T2

(
Q1(y)

)
+ e13T3

(
Q1(y)

)]
= 1

∆
(
e11d11 + e12d21 + e13d31

)
Q1y

= Q1y,

Q1

(
Q2(y)t

)
= 1

∆

[
e11T1

(
Q2(y)t

)
+ e12T2

(
Q2(y)t

)
+ e13T3

(
Q2(y)t

)]
= 1

∆
(
e11d12 + e12d22 + e13d32

)
Q2y

= 0,

Q1

(
Q3(y)t2

)
= 1

∆

[
e11T1

(
Q3(y)t2

)
+ e12T2

(
Q3(y)t2

)
+ e13T3

(
Q3(y)t2

)]
= 1

∆
(
e11d13 + e12d23 + e13d33

)
Q3y

= 0.
Similarly, we obtain

Q2
(
Q1(y)

)
= 0, Q2

(
Q2(y)t

)
= Q2y, Q2

(
Q3(y)t2

)
= 0,
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Q3
(
Q1(y)

)
= 0, Q3

(
Q2(y)t

)
= 0, Q3

(
Q3(y)t2

)
= Q3y.

Therefore, we get

Q2g =Q1
(
Q1(y)

)
+Q1

(
Q2(y)t

)
+Q1

(
Q3(y)t2

)
+Q2

(
Q1(y)

)
t+Q2

(
Q2(y)t

)
t

+Q2
(
Q3(y)t2

)
t+Q3

(
Q1(y)

)
t2 +Q3

(
Q2(y)t

)
t2 +Q3

(
Q3(y)t2

)
t2

=Q1(y) +Q2(y)t+Q3(y)t2

=Qg.
This implies that the operator Q is a projector.

Take y ∈ Y in the form y = (y − Qy) + Qy. Then (y − Qy) ∈ kerQ = ImL and
Qy ∈ ImQ. Thus, Y = ImQ + ImL. And for any y ∈ ImQ ∩ ImL from y ∈ ImQ,
there exist constants δ1, δ2, δ3 ∈ R such that y(t) = ∑3

k=1 δkt
k, from y ∈ ImL, we

obtain

(3.9)


d11δ1 + d12δ2 + d13δ3 = 0,
d21δ1 + d22δ2 + d23δ3 = 0,
d31δ1 + d32δ2 + d33δ3 = 0.

The determinant of coefficients for (3.9) is ∆ 6= 0. Therefore, (3.9) has an unique
solution δ1 = δ2 = δ3 = 0, which implies ImQ ∩ ImL = 0. Then, we have

Y = ImQ⊕ kerQ = ImQ⊕ ImL.(3.10)
Thus, dim kerL = 3 = dim ImQ = codim ker Q = codimImL, this means that L is a
Fredholm operator of index zero.

Let P : X → X be a mapping defined by

Pu(t) =
3∑

k=1

u(k)(0)
k! tk.(3.11)

We note that P is a linear continuous projector and ImP = kerL. It follows from
u = (u − Pu) + Pu that X = kerP + kerL. By simple calculation, we obtain that
kerL ∩ kerP = {0}. Hence,

X = kerL⊕ kerP.(3.12)
Define Kp : ImL→ domL ∩ kerP as follows:

(Kpy)(t) = 1
Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
y(r)drds.

Now, we will prove thatKp is the inverse of L |domL∩kerP . In fact, for u ∈ domL∩kerP ,
we have

(KpL)u(t) = Iα0+


I1

0+

(
φ CDα

0+u
)′

φ

 (t) = Iα0+
CDα

0+u(t) = u(t) +
3∑

k=0

u(k)(0)
k! tk.
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In view of u ∈ domL ∩ kerP , u(0) = 0 and Pu = 0. Thus,
(KpL)u(t) = u(t),(3.13)

and for y ∈ ImL, we find

(LKp)y(t) = L(Kpy)(t) =
[
φ(t) CDα

0+

(
Iα0+

(
I1

0+y

φ

)
(t)
)]′

= y(t).

Thus, Kp =
(
L |domL∩ kerP

)−1
. Again for each y ∈ ImL, and from Lemmas 2.2, 2.5

and 2.6, we have

‖Kpy‖X =
3∑
i=0

max
t∈[0,1]

∣∣∣(Kpy)(i)(t)
∣∣∣+ max

t∈[0,1]

∣∣∣CDα
0+(Kpy)(t)

∣∣∣
=

3∑
i=0

max
t∈[0,1]

∣∣∣∣∣Iα−i0+

(
I1

0+y

φ

)
(t)
∣∣∣∣∣+ max

t∈[0,1]

∣∣∣∣∣CDα
0+Iα0+

(
I1

0+y

φ

)
(t)
∣∣∣∣∣

≤
3∑
i=0
‖y‖L1 max

t∈[0,1]

∣∣∣∣∣Iα−i0+
1
φ

(t)
∣∣∣∣∣+ ‖y‖L1 max

t∈[0,1]

∣∣∣∣∣I1
0+

1
φ

(t)
∣∣∣∣∣

≤
3∑
i=0
‖y‖L1 max

t∈[0,1]

∣∣∣∣∣Iα−i0+
1
µ

(t)
∣∣∣∣∣+ ‖y‖L1 max

t∈[0,1]

∣∣∣∣∣I1
0+

1
µ

(t)
∣∣∣∣∣

≤
3∑
i=0

‖y‖L1

µΓ(α + 1− i) + ‖y‖L1

µ

≤ 4 + Γ(α− 2)
µΓ(α− 2) ‖y‖L

1 . �

Lemma 3.3. Suppose that Ω is an open bounded subset of X such that domL∩Ω 6= ∅.
Then, N is L-compact on Ω.
Proof. It is clear that QN(Ω) and Kp(I −Q)N(Ω) are bounded, due to the fact that
f realize the caratheodory conditions.

Using the Lebesgue dominated convergence theorem, we can easily find that QN
and KP,QN = Kp(I −Q)N : Ω→ X are continuous. By the hypothesis (iii) on the
function f , there exists a constant A > 0, such that |(I−Q)N(u(t))| ≤ A, for all u ∈ Ω,
t ∈ [0, 1]. For i = 0, 1, 2, 3, 0 ≤ t1 ≤ t2 ≤ 1, and u ∈ Ω, we put M(t) = (I −Q)Nu(t).
One has∣∣∣∣(KP,QNu

)(i)
(t2)−

(
KP,QNu

)(i)
(t1)

∣∣∣∣
= 1

Γ(α− i)

∣∣∣∣∣
∫ t2

0

(t2 − s)α−i−1

φ(s)

∫ s

0
M(r)drds−

∫ t1

0

(t1 − s)α−i−1

φ(s)

∫ s

0
M(r)drds

∣∣∣∣∣
≤ A

µΓ(α− i)

{∫ t1

0
(t2 − s)α−i−1 − (t1 − s)α−i−1ds+

∫ t2

t1
(t2 − s)α−i−1ds

}

= A

µΓ(α + 1− i)(tα−i2 − tα−i1 ),
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Furthermore, we have∣∣∣∣CDα
0+KP,QNu(t2)− CDα

0+KP,QNu(t1)
∣∣∣∣

=
∣∣∣∣∣ 1
φ(t2)

∫ t2

0
M(s)ds− 1

φ(t1)

∫ t1

0
M(s)ds

∣∣∣∣∣
=
∣∣∣∣∣
(

1
φ(t2) −

1
φ(t1)

)∫ t1

0
M(s)ds+ 1

φ(t2)

∫ t2

t1
M(s)ds

∣∣∣∣∣
≤ A
µ2

∣∣∣φ(t2)− φ(t1)
∣∣∣+ A

µ

(
t2 − t1

)
.

Since tα−i and φ(t) are uniformly continuous on [0, 1], we get thatKp(I−Q)N : Ω→ X
is compact. The lemma is proved. �

Theorem 3.1. Let f be a Caratheodory function, φ ∈ C1[0, 1], mint∈[0,1] φ(t) > µ > 0.
(H1) and (H2) hold. In addition, assume that the following conditions hold.
(H3) There exist non-negative functions θi(t) ∈ Y, i = 0, . . . , 5, such that∣∣∣∣f(t, x0, x1, x2, x3, x4

)∣∣∣∣ ≤ 4∑
i=0

θi(t)|xi|+ θ5(t),

where

Λ = 22 + Γ(α− 2)
µΓ(α− 2)

4∑
i=0
‖θi‖L1 < 1.

(H4) There exists a constant M > 0 such that for u ∈ domL\ kerL, if |u′(t)| > M or
|u′′(t)| > M or |u′′′(t)| > M for all t ∈ [0, 1], then T1(Nu) 6= 0 or T2(Nu) 6= 0
or T3(Nu) 6= 0.

(H5) There exists a constant M∗ > 0 such that for any δ1, δ2, δ3 ∈ R, if |δ1| > M∗,
|δ2| > M∗, |δ3| > M∗, then either

3∑
i=1

TiN

( 3∑
k=1

δkt
k

)
< 0

or
3∑
i=1

TiN

( 3∑
k=1

δkt
k

)
> 0.

Then (1.1) has at least one solution.

Proof. Consider the set

Ω1 = {u ∈ domL\ kerL : Lu = λNu, λ ∈ [0, 1]} .

Then for u ∈ Ω1, Lu = λNu, thus λ 6= 0, Nu ∈ ImL = kerQ ⊂ Y . Hence,
Q(Nu) = 0 that is, T1(Nu) = T2(Nu) = T3(Nu) = 0. We get from (H4) the existence
of t1, t2, t3 ∈ [0, 1], such that |u′(t1)| ≤M, |u′′(t2)| ≤M, |u′′′(t3)| ≤M.
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If t1 = t2 = t3 = 0, we have that |u′(0)| ≤M , |u′′(0)| ≤M, |u′′′(0)| ≤M. Otherwise,
if max{t1, t2, t3} 6= 0, by Lu = λNu, we obtain

u(t) =
3∑

k=1

u(k)(0)
k! tk + λ

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0
Nu(r)drds.

Then
u′′′(t) = u′′′(0) + λ

Γ(α− 3)

∫ t

0

(t− s)α−4

φ(s)

∫ s

0
Nu(r)drds.

If t3 6= 0, we get

u′′′(t3) = u′′′(0) + λ

Γ(α− 3)

∫ t3

0

(t3 − s)α−4

φ(s)

∫ s

0
Nu(r)drds,

together with |u′′′(t3)| ≤M, we have

|u′′′(0)| ≤ |u′′′(t3)|+ 1
Γ(α− 3)

∫ t3

0

(t3 − s)α−4

φ(s)

∫ s

0
|Nu(r)|drds ≤M + ‖Nu‖L1

µΓ(α− 2) .

Therefore,

|u′′′(0)| ≤M + ‖Nu‖L1

µΓ(α− 2) .(3.14)

If t2 6= 0, then

u′′(t2) = u′′(0) + u′′′(0)t2 + λ

Γ(α− 2)

∫ t2

0

(t2 − s)α−3

φ(s)

∫ s

0
Nu(r)drds,

from (3.14) and |u′′(t2)| ≤M, we find

|u′′(0)| ≤ |u′′(t2)|+ |u′′′(0)|+ 1
Γ(α− 2)

∫ t2

0

(t2 − s)α−3

φ(s)

∫ s

0
|Nu(r)|drds

≤ 2M + 2‖Nu‖L1

µΓ(α− 2) .

Consequently,

|u′′(0)| ≤ 2M + 2‖Nu‖L1

µΓ(α− 2) .(3.15)

If t1 6= 0, then

u′(t1) = u′(0) + u′′(0)t1 + u′′′(0)
2 t21 + λ

Γ(α− 1)

∫ t1

0

(t1 − s)α−2

φ(s)

∫ s

0
Nu(r)drds,

according to (3.14), (3.15) and |u′(t1)| ≤M, we get

|u′(0)| ≤ |u′(t1)|+ |u′′(0)|+ |u′′′(0)|+ 1
Γ(α− 1)

∫ t1

0

(t1 − s)α−2

φ(s)

∫ s

0
|Nu(r)|drds

≤ 4M + 4‖Nu‖L1

µΓ(α− 2) .
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So,

|u′(0)| ≤ 4M + 4‖Nu‖L1

µΓ(α− 2) .(3.16)

Again for u ∈ Ω1, we get

‖Pu‖X =
3∑
i=0

max
t∈[0,1]

∣∣∣(Pu)(i)(t)
∣∣∣+ max

t∈[0,1]

∣∣∣CDα
0+(Pu)(t)

∣∣∣
≤ 2|u′(0)|+ 3|u′′(0)|+ 4|u′′′(0)|.

From (3.14), (3.15) and (3.16), we obtain

‖Pu‖X ≤ 18M + 18‖Nu‖L1

µΓ(α− 2) .(3.17)

Again for all u ∈ Ω1, we have (I − P )u ∈ domL ∩ kerP . Thus, by (3.13) and (3.5),
we find

‖(I − P )u‖X = ‖KpL(I − P )u‖X ≤
4 + Γ(α− 2)
µΓ(α− 2) ‖L(I − P )u‖L1(3.18)

≤ 4 + Γ(α− 2)
µΓ(α− 2) ‖Lu‖L

1

≤ 4 + Γ(α− 2)
µΓ(α− 2) ‖Nu‖L

1 .

From (3.17) and (3.18), we obtain

‖u‖X ≤ ‖Pu‖X + ‖(I − P )u‖X ≤ 18M + 22 + Γ(α− 2)
µΓ(α− 2) ‖Nu‖L

1 .(3.19)

On the other hand, from (H4), we have

‖Nu‖L1 =
∫ 1

0

∣∣∣(Nu)(s)
∣∣∣ds =

∫ 1

0

∣∣∣∣f(t, u(t), u′(t), u′′(t), u′′′(t), CDα
0+u(t)

)∣∣∣∣ds
≤

3∑
i=0

∫ 1

0

∣∣∣θi(s)∣∣∣∣∣∣u(i)(s)
∣∣∣ds+

∫ 1

0

∣∣∣θ4(s)
∣∣∣∣∣∣CDα

0+u(s)
∣∣∣ds+

∫ 1

0

∣∣∣θ5(s)
∣∣∣ds

≤ ‖u‖X
4∑
i=0
‖θi‖L1 + ‖θ5‖L1 .(3.20)

Therefore, (3.19) and (3.20), yields

‖u‖X ≤
18µΓ(α− 2)M +

(
22 + Γ(α− 2)

)
‖θ5‖L1

µ
(
1− Λ

)
Γ(α− 2)

.

So, Ω1 is bounded.
Let

Ω2 = {u ∈ kerL : Nu ∈ ImL} .
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For u ∈ Ω2, then u ∈ kerL =
{
u : u(t) = ∑3

k=1 δkt
k, δ1, δ2, δ3 ∈ R

}
and Q(Nu) = 0,

that is, T1N
(∑3

k=1 δkt
k
)

= T2N
(∑3

k=1 δkt
k
)

= T3N
(∑3

k=1 δkt
k
)

= 0. From condition
(H5), we get |δ1| ≤M∗, |δ2| ≤M∗, |δ3| ≤M∗. Hence, Ω2 is bounded. Let

Ω3 = {u ∈ kerL : −λJu+ (1− λ)QNu = 0, λ ∈ [0, 1]} ,
if the first part of (H5) holds.

Or we’ll set
Ω3 = {u ∈ kerL : −λJu+ (1− λ)QNu = 0, λ ∈ [0, 1]}

if the second part of (H5) holds.
Here J : kerL→ ImQ is the linear isomorphism given by

J

( 3∑
k=1

δkt
k

)
= ω1 + ω2t+ ω3t

2, δ1, δ2, δ3 ∈ R,(3.21)

where
ω1 = 1

∆
(
e11|δ1|+ e12|δ2|+ e13|δ3|

)
,

ω2 = 1
∆
(
e21|δ1|+ e22|δ2|+ e23|δ3|

)
,

ω3 = 1
∆
(
e31|δ1|+ e32|δ2|+ e33|δ3|

)
.

Without loss of generality, we assume that the first part of (H5) holds. In fact u ∈ Ω3,
means that u = ∑3

k=1 δkt
k and −λJu+ (1− λ)QNu = 0. Then we obtain

−λJ
( 3∑
k=1

δkt
k

)
+ (1− λ)QN

( 3∑
k=1

δkt
k

)
= 0.(3.22)

If λ = 0, then |δ1| ≤M∗, |δ2| ≤M∗, |δ3| ≤M∗. If λ = 1, then

(3.23)


e11|δ1|+ e12|δ2|+ e13|δ3| = 0,
e21|δ1|+ e22|δ2|+ e23|δ3| = 0,
e31|δ1|+ e32|δ2|+ e33|δ3| = 0.

The determinant of coefficients for (3.23) is ∆2 6= 0. Thus, (3.23) only have zero
solutions, that is δ1 = δ2 = δ3 = 0.

Otherwise, if λ 6= 0 and λ 6= 1, again from (3.21), (3.22) becomes

λ
(
ω1 + ω2t+ ω3t

2
)

=(1− λ)
(
Q1N

( 3∑
k=1

δkt
k

)
+Q2N

( 3∑
k=1

δkt
k

)
t

+Q3N

( 3∑
k=1

δkt
k

)
t2
)

Hence,

λωi = (1− λ)Qi

( 3∑
k=1

δkt
k

)
, for i = 1, 2, 3.
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Thus,

λ|δi| = (1− λ)TiN
( 3∑
k=1

δkt
k

)
, for i = 1, 2, 3.

Then, we get

λ
3∑
i=1
|δi| = (1− λ)

3∑
i=1

TiN

( 3∑
k=1

δkt
k

)
< 0.

By the first part of (H5), we have |δ1| ≤ M∗, |δ2| ≤ M∗, |δ3| ≤ M∗. Here, Ω3 is
bounded.

Now, we shall prove that all the conditions of Theorem 2.1 are satisfied. Let Ω be
a bounded open set of X containing ⋃3

i=1 Ωi. By Lemma 3.3, N is L-compact on Ω,
because Ω1 and Ω2 are bounded sets, then
(1) Lu 6= λNu for each (u, λ) ∈ [(domL\ kerL) ∩ ∂Ω]× (0, 1);
(2) Nu /∈ ImL for each u ∈ kerL ∩ ∂Ω.
At least we will prove that the hypothesis (3) of Theorem 2.1 is satisfied. Let

H(u, λ) = ±λJu+ (1− λ)QNu.
The set Ω3 is bounded, then H(u, λ) 6= 0, for all u ∈ kerL ∩ ∂Ω. Appealing to the
homotopy property of the degree, we obtain

deg (QN |kerL,Ω ∩ kerL, 0) = deg (H(., 0),Ω ∩ kerL, 0)
= deg (H(., 1),Ω ∩ kerL, 0)
= deg (±J,Ω ∩ kerL, 0) 6= 0.

Then by Theorem 2.1, Lu = Nu has at least one solution in domL ∩ Ω, we conclude
that the boundary value problem (1.1) has at least one solution in X. The proof is
finished. �

Remark 3.1. It is very important to note that the condition ∆ 6= 0 is not necessary
since L still Fredholm even if this condition is dropped. Indeed the role of Q in
Mawhin’s theory is purely auxiliary and conditions like that usually arise from the
authors of hundreds of paper choosing ImQ just simply being kerL. Avoiding such an
assumption is just a matter of choosing Q differently, for more details see [14, 20,21].

.

4. Example

To illustrate our main results, we will present an example.

Example 4.1. Let us consider the following fractional boundary value problem

(4.1)


(
φ(t)CD

7
2
0+u(t)

)′
= f

(
t, u(t), u′(t), u′′(t), u′′′(t),CD

7
2
0+u(t)

)
, t ∈ [0, 1],

u(0) = 0, CDα
0+u(0) = 0, u′′′(0) = −u′′′(1

6) + 2u′′′(1
5),

u′′(0) = 4u′′(1
4)− 3u′′(1

3), u′(1) = u′(1
4)− 3u′(1

2) + 3u′(3
4),
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where φ(t) = e−12t and

100e12f
(
t, u(t), u′(t), u′′(t), u′′′(t),CD

7
2
0+u(t)

)
= |u′′′(t)|

1 + (u′′′(t))2 + cos CD
7
2
0+u(t)

(
1− sin u′(t)

)(
1− sin u′′(t)

)
+ 2
π

arctan
(
u(t)CD

7
2
0+u(t)

)
.

Corresponding to the problem (1.1), we have that α = 7
2 , l = 2, m = 2, n = 3, a1 =

−1, a2 = 2, ξ1 = 1
6 , ξ2 = 1

5 , b1 = 4, b2 = −3, η1 = 1
4 , η2 = 1

3 , c1 = 1, c2 = −3, c3 =
3, ρ1 = 1

4 , ρ2 = 1
2 , ρ3 = 3

4 , µ = e−12. Then we get a1 + a2 = b1 + b2 = c1 + c2 + c3 =
1, b1η1 + b2η2 = 0, c1ρ1 + c2ρ2 + c3ρ3 = c1ρ

2
1 + c2ρ

2
2 + c3ρ

2
3 = 1. Thus, the condition

(H1) holds.
Also, we find

T1(y) =−
∫ 1

6

0
e12s

(1
6 − s

)− 1
2
∫ s

0
y(r)drds+ 2

∫ 1
5

0
e12s

(1
5 − s

)− 1
2
∫ s

0
y(r)drds,

T2(y) =4
∫ 1

4

0
e12s

(1
4 − s

) 1
2
∫ s

0
y(r)drds− 3

∫ 1
3

0
e12s

(1
3 − s

) 1
2
∫ s

0
y(r)drds,

T3(y) =
∫ 1

0
e12s(1− s) 3

2

∫ s

0
y(r)drds−

∫ 1
4

0
e12s

(1
4 − s

) 3
2
∫ s

0
y(r)drds

+ 3
∫ 1

2

0
e12s

(1
2 − s

) 3
2
∫ s

0
y(r)drds− 3

∫ 3
4

0
e12s

(3
4 − s

) 3
2
∫ s

0
y(r)drds.

By calculations, we get

d11 =1881
1420 , d12 = 207

1669 , d13 = 143
9103 ,

d21 =− 920
1803 , d22 = − 484

6725 , d23 = − 277
20262 ,

d31 =15770
51 , d32 = 6489

50 , d33 = 5427
74 .

Then, ∆ = −655
539 6= 0. Therefore, the condition (H2) holds.

On the other hand, we have∣∣∣∣f(t, u(t), u′(t), u′′(t), u′′′(t),CD
7
2
0+u(t)

)∣∣∣∣ ≤ 0.01e−12|u′′′(t)|+ 0.05e−12.

We can get that the condition (H3) holds, where
θ0(t) = θ1(t) = θ2(t) = θ4(t) = 0, θ3(t) = 0.01e−12, θ5(t) = 0.05e−12

and Λ = 838
3245 < 1.

Let M = 1 and assume that |u′′′(t)| > 1 holds for all t ∈ [0, 1], we obtain

T3(y) >0.01e−12
∫ 1

0
e12s(1− s) 3

2 sds− 0.06e−12
∫ 1

4

0
e12s

(1
4 − s

) 3
2
sds
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+ 0.03e−12
∫ 1

2

0
e12s

(1
2 − s

) 3
2
sds− 0.18e−12

∫ 3
4

0
e12s

(3
4 − s

) 3
2
sds.

=43818
2900 e

−12 > 0,

so condition (H4) is satisfied.
Let M∗ = 1 and δ1, δ2, δ3 ∈ R be such that |δ1| > 1, |δ2| > 1, |δ3| > 1, we have

N
(
δ1t+ δ2t

2 + δ3t
3
)

=0.06e−12 |δ3|
1 + 36δ2

3
+ 0.01e−12 cos CD

7
2
0+

(
δ1t+ δ2t

2 + δ3t
3
)

×
(
1− sin

(
δ1 + 2δ2t+ 3δ3t

2
))
×
(
1− sin

(
2δ2 + 6δ3t

))
+ 0.02e−12

π
arctan

((
δ1t+ δ2t

2 + δ3t
3
)
CD

7
2
0+

(
δ1t+ δ2t

2 + δ3t
3
))

=0.06e−12 |δ3|
1 + 36δ2

3
.

Hence,

T1N
( 3∑
k=1

δkt
k
)

= 0.06e−12 |δ3|
1 + 36δ2

3
d11,

T2N
( 3∑
k=1

δkt
k
)

= 0.06e−12 |δ3|
1 + 36δ2

3
d12,

T3N
( 3∑
k=1

δkt
k
)

= 0.06e−12 |δ3|
1 + 36δ2

3
d13.

Thus,
3∑
i=1

TiN
( 3∑
k=1

δkt
k
)

= 0.06e−12 |δ3|
1 + 36δ2

3
(d11 + d12 + d13) > 0.

So, (H5) hold. Then, all the assumptions of Theorem 3.1 hold. Thus, the problem
(4.1) has at least one solution.
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