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ON SOME NEW SHARP EMBEDDING THEOREMS FOR NEW
WEIGHTED SPACES OF HOLOMORPHIC FUNCTIONS IN

PRODUCT DOMAINS

R. SHAMOYAN1 AND O. MIHIĆ2

Abstract. We introduce mixed norm analytic spaces in polyball and provide some
new sharp embedding theorems for them, extending previously known assertions in
the unit disk.

1. Introduction

A complete characterization of positive Borel µ measures in the unit polydisk for
which the differentiation operator maps anisotropic weighted space of holomorphic
functions with mixed norm into the Lebesgue space Lq(µ) was obtained in [29]. Later
in [30] these results were partially generalized to so called mixed norm spaces in
polydisk. We need some definitions.

Let
Un = {z = (z1, z2, . . . , zn) : |zj| < 1, 1 ≤ j ≤ n} ,

be the unit polydisk of n-dimensional complex space Cn, T n be the Shilov boundary of
Un, ~p = (p1, . . . , pn), 0 < pj < +∞, j = 1, . . . , n, ~w(t) = (w1(t), . . . , wn(t)), t ∈ (0, 1),
where wj(t) are positive integrable functions on (0, 1). We denote by A~p(~w) the set
of all holomorphic functions in Un for which

‖f‖A~p(~ω) =
∫

U

[
· · ·

(∫
U
|f(z1, . . . , zn)|p1ω1(1− |z1|)dm2(z1)

) p2
p1 · · ·

] pn
pn−1
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× ωn(1− |zn|)dm2(zn)
 1

pn

< +∞,

(see [37]), where m2 is planar Lebesgue measure on U := U1. Assume further ~µ =
(µ1, . . . , µn), where µj is the Borel nonnegative finite measure on U , L~p(~µ) is related
space with mixed norm (see [4], [5]) that is, the space of all measurable functions Un

for which

‖f‖L~p(~µ) =
∫

U

[
· · ·

(∫
U
|f(ζ1, . . . , ζn)|p1dµ2(ζ1)

) p2
p1
. . .

] pn
pn−1

dµn(ζn)


1
pn

< +∞,

0 < pi ≤ ∞, i = 1, . . . , n, with usual modification for pi = ∞. Such space in Rn

studied by Nikolski and coauthors (see [23]).
In [30] the author obtains a complete characterization of the measure ~µ for which

the operator

D
m
f(z1, . . . , zn) = ∂|m|f(z1, . . . , zn)

∂zm1
1 · · · ∂zmnn

, z = (z1, . . . , zn) ∈ Un,

maps A~p(~ω) into L~q(~µ), where ~p = (p1, . . . , pn), ~q = (q1, . . . , qn), 0 < pj ≤ qj, j =
1, . . . , n. In addition, they obtain a description of the measures ν on Un for which
the operator Dm maps A~p(~ω) into Lq(ν), where 0 < pj ≤ q, j = 1, . . . , n. We will
extend in this paper these results to the unit ball case. In connection with these
results, we recall that at n = 1, m = 0 in Hardy classes Hp(U) case corresponding
description was obtained in the classical work of L. Carleson [6] and in the case of the
Hardy space Hp(Bk) in the ball was obtained by Hörmander in [16]. We also note
the work of F. A. Shamoyan [29], where he studied the Hardy space Hp(Un), there
supposed ~m = (m1, . . . ,mn), mj 6= 0, j = 1, . . . , n. The case of weighted Bergman
spaces investigated in [25].

Various related assertions (sharp embedding theorems in analytic function spaces)
can be seen in [9, 11,12,18,19,21,26].

The theory of analytic spaces in unit ball is well-developed by various authors
during last decades (see [18, 19,21] and various references there).

One of the goals of this paper among other things is to define new mixed norm
analytic spaces in polyballs and to establish some basic properties of these spaces.
We believe this new interesting object can serve as a base for further generalizations
and investigations in this active research area. This paper can be seen as direct
continuation of our paper in polyball (see [22]). Spaces we mentioned above are
closely connected also with so-called multifunctional analytic function spaces on unit
ball. Various such connections in analytic and harmonic function spaces were found
and mentioned in [3, 19, 34]. We note basic properties of last spaces on product
domains are closely connected on the other hand with so-called Trace operator (see
[3, 34]). In main part of paper we will turn to study of certain embedding theorems
for some new mixed norm analytic classes in unit ball in Cn. We note that in this
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paper we extend some mentioned theorems from [29] and [30] where they can be seen
in context of polydisk and unit disk. Proving embedding theorems in unit ball we
heavily use the technique which was developed recently in [1], [2]. Moreover, some
results of this paper can be expanded to bounded pseudoconvex domains and even
to tube domains based on results of [1, 2, 35] and this will be a topic of our further
work. In our embeddings theorems and inequalities for analytic function spaces in
unit polyball the so-called Carleson-type measures constantly appear. We add some
historical remarks on this important topic now. Carleson measures were introduced
by Carleson (see [6]) in his solution of the corona problem in the unit disk of the
complex plane, and, since then, have become an important tool in analysis, and an
interesting object of study per se.

Throughout the paper, we write C (sometimes with indexes) to denote a positive
constant which might be deferent at each occurrence (even in a chain of inequalities)
but is independent of the functions or variables being discussed. The notation A � B
means that there is a positive constant C, such that B

C
≤ A ≤ CB.

Let A be a Banach space of holomorphic functions on a domain D ⊂ Cn, given
p ≥ 1, a finite positive Borel measure µ on D is a Carleson measure of A (for p) if
there is a continuous inclusion A ↪→ Lp(µ), that is there exists a constant C > 0 such
that ∫

U
|f(z)|pdµ(z) ≤ C‖f‖pA, for all f ∈ A.

We shall furthermore say that µ is a vanishing Carleson measure of A if the inclusion
A ↪→ Lp(µ) is compact.

Carleson studied this property (see [6]) taking as Banach space A the Hardy spaces
in unit disk ∆ Hp(∆), and proved that a finite positive Borel measure µ is a Carleson
measure of Hp(∆) for p if and only if there exists a constant C > 0 such that
µ(Sθ0,h) ≤ Ch for all sets

Sθ0,h =
{
reiθ ∈ ∆ : 1− h ≤ r < 1, |θ − θ0| < h

}
,

(see also [12,25]). In particular the set of Carleson measures of Hp(∆) does not depend
on p.

In 1975, Hastings [15] (see also [24] and [25]) proved a similar characterization for
the Carleson measures of the Bergman Ap(∆), still expressed in terms of the sets Sθ0,h.
Later Cima and Wogen (see [10]) characterized Carleson measures for Bergman spaces
in the unit ball Bn ⊂ Cn, and Cima and Mercer (see [21]) characterized Carleson
measures of Bergman spaces in strongly pseudoconvex domains, showing in particular
that the set of Carleson measures of Ap(D) is independent of p ≥ 1.

Cima and Mercer’s characterization of Carleson measures of Bergman spaces is
expressed using interesting generalizations of the sets Sθ0,h. Given z0 ∈ D and
0 < r < 1, let BD(z0, r) denote the ball of center z0 (usual Kobayashi ball which is
Bergman ball in the unit ball) and radius 1

2 log 1+r
1−r for the Kobayashi distance kD of

D (that is, of radius r with respect to the pseudohyperbolic distance p = tanh(kD).
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Then it is possible to prove (see Luecking [20] for D = ∆, Duren and Weir [13] and
Kaptanoǧlu [17] for D = Bn, and [1, 2] for D strongly pseudoconvex) that a finite
positive measure µ is a Carleson measure of Ap(D) for p if and only if (and hence all)
0 < r < 1 there is a constant Cr > 0 such that

µ(BD(z0, r)) < Crν(BD(z0, r)),

for all z0 ∈ D. (The proof of this equivalence in [1] relied on Cima and Mercer’s
characterization [21]).

Thus we will have a new geometrical characterization of Carleson measures of
Bergman spaces, and it turns out that this geometrical characterization is very im-
portant for the study of the various properties of Toeplitz operators. Given θ > 0, we
say that a finite positive Borel measure µ is a (geometric) θ-Carleson measure if for
some (and hence all) 0 < r < 1 there is a constant cr > 0 such that

µ(BD(z0, r)) < crν(BD(z0, r))θ,

for all z0 ∈ D. Note a 1-Carleson measures are usual Carleson measures of Ap(D),
and we know (see [1, 2]) that θ-Carleson measures are exactly the Carleson measures
of suitably weighted Bergman spaces. Note also that when D = Bn a q-Carleson
measure in the sense of [17], [39] is a

(
1 + q

n+1

)
-Carleson measure in our sense.

In this paper we are however more interested in Carleson type measure for some
new Bergman-type mixed norm spaces in product domains (polyballs Bn × · · · ×Bn).

2. Preliminaries

In this section we introduce notations and provide formulations of several lemmas
needed for proofs, some short review of embedding theorems related with our results
in the unit ball, will be also discussed.

Let Cn = C × · · · × C denote the Euclidean space of complex dimension n. The
open unit ball in Cn is the set Bn = {z ∈ Cn : |z| < 1}. The boundary of Bn will
be denoted by Sn, Sn = {z ∈ Cn : |z| = 1}. Moreover, let dν denote the Lebesgue
measure on Bn normalized such that ν(Bn) = 1, and let dµ denote the positive Borel
measure. For any α ∈ R, let dνα(z) = cα(1 − |z|2)αdν(z), for z ∈ Bn. Here, if
α ≤ 1, cα = 1 and α > −1, cα = Γ(n+α+1)

Γ(n+1)Γ(α+1) , is the normalizing constant so that να
has unit total mass. The Bergman metric on Bn is β(z, w) = 1

2 log 1+|ϕz(w)|
1−|ϕz(w)| , where

ϕz(w) = z−Pzw−szQzw
1−<w,z> is the Mobius transformation of Bn that interchanges 0 and

z, where sz = (1 − |z|) 1
2 , Pz is the orthogonal projection into the space spanned by

z ∈ Bn, i.e. Pzw = <w,z>z
|z|2 , P0w = 0 and Qz = I − Pz (see, for example, [39]). Let

D(a, r) = {z ∈ Bn : β(z, a) < r} denote the Bergman metric ball centered at a ∈ Bn

with radius r > 0.
As usual, we denote by H(Bn) the class of all holomorphic functions on Bn. For

0 < p <∞ we define the Hardy space Hp(Bn) consist of holomorphic functions f in
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Bn such that
‖f‖pp = sup

0<r<1

∫
Sn
|f(rζ)|pdσ(ζ) <∞.

Here dσ denotes the surface measure on Sn normalized so that σ(Sn) = 1.
For every function f ∈ H(Bn) having a series expansion f(z) = ∑

|k|≥0 akz
k, we

denote the operator of fractional differentiation by

D̃αf(z) =
∑
|k|≥0

(|k|+ 1)αakzk,

where α is any real number.
For a fixed α > 1 let Γα(ζ) = {z ∈ Bn : |1 − ζz| < α(1 − |z|)} be the admissible

approach region vertex is at ζ ∈ Sn, (so called Lusin cone).
The well known Littlewood-Paley inequality in the unit ball of Cn for functions

f ∈ Hp(Bn) is the following.

Theorem A. If 2 ≤ p <∞, β > 0, then for any f ∈ Hp(Bn)

(2.1)
∫
Bn
|D̃βf(z)|p(1− |z|)βp−1dν(z) ≤ C‖f‖pHp(Bn).

Note it is well known

(2.2) ‖f‖Hp(Bn) �
∫
Sn

(∫
Γδ(ζ)
|D̃kf(z)|2(1− |z|)2k−2dν(z)

) p
2

dσ(ζ)

and

(2.3)
∫
Bn
|f(z)|pdµ(z) �

∫
Sn

(∫
Γδ(ζ)

|f(z)|p
(1− |z|)ndµ(z)

)
dσ(ζ),

for 0 < p <∞, where µ is a positive Borel measure on Bn.

Looking at estimates (2.1)-(2.3) it is natural to pose a general problem (see [7–9,11]).
Describe all positive Borel measures µ in the unit ball such that

(2.4)∫
Sn

(∫
Γδ(ζ)

|Dβf(z)|p
(1− |z|)n dµ(z)

) q
p

dσ(ζ)


1
q

≤ C

(∫
X

(∫
G
|f(z)|q1dνα(z)

) s
q1
dm

) 1
s

,

where α > −1, β ≥ 0, 0 < p, q, q1, s < ∞, where G is a subset of Sn or Bn, i.e.,
G = G(ζ), ζ ∈ Sn or G = G(z), z ∈ Bn, X = Sn or X = Bn and dm is adequate
measure.

For example G = Qr(ζ) = {z ∈ Bn : d(z, ζ) < r}, where d is a non-isotropic metric
on Sn, d(z, w) = |1− < z,w > | 12 , or G = D(z, r).

For z ∈ Bn and r > 0 set D(z, r) is called the Bergman metric ball at z, and for
ζ ∈ Sn and r > 0 set Qr(ζ) is called the Carleson tube at ζ (see [39]).

We are interested in this paper to similar type sharp embeddings in analytic function
spaces but on product domains so called polydomains. Note the simplest case here is
the unit polydisk and in this case some sharp embedding theorems are well known in
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literature (see, for example, [31] and various references there also). We mention that in
harmonic function spaces such type results on polydomains and related multifunctional
spaces obtained recently in [3].

The proofs of the following properties the Bergman balls can be found in [39] (see
Lemmas 1.24, 2.20, 2.24 and 2.27 in [39]). We need them for proofs for all our main
results.

Lemma 2.1. (a) There exists a positive number N > 1 such that, for any 0 < r ≤ 1,
we can find a sequence {vk}∞k=1 in Bn, to be r-lattice in the Bergman metric of
Bn. This means that Bn = ⋃∞

k=1D(vk, r), D
(
vl,

r
4

)
∩D

(
vk,

r
4

)
= ∅ if k 6= l and

each z ∈ Bn belongs to at most N of the sets D(vk, 2r)
(b) For any r > 0, there is a constant C > 0 so that 1

C
≤
∣∣∣1−<z,w>1−<z,v>

∣∣∣ ≤ C, for all
z ∈ Bn and all w, v with β(w, v) < r.

(c) For any α > −1 and r > 0,
∫
D(z,r) (1− |w|2)α dν(w) is comparable with

(1− |z|2)n+1+α for all z ∈ Bn.
(d) Suppose r > 0, p > 0 and α > −1. Then there is a constant C > 0 such that
|f(z)|p ≤ C

(1−|z|2)n+1+α
∫
D(z,r) |f(w)|pdν(w), for all f ∈ H(Bn) and z ∈ Bn.

For α > −1 and p > 0, the weighted Bergman space Apα consists of holomorphic
functions f in Lp(Bn, dνα), that is, Apα = Lp(Bn, dνα) ∩H(Bn). It is well-known that
Apα is a closed subspace of Lp(Bn, dνα), (see [39], Chapter 2).

See [31] and [39] for more details of weighted Bergman spaces. Various sharp
embedding theorems in the unit ball and their numerous applications were given by
many authors in recent years (see, for example, [7–9,39]). The main purpose of this
paper is to provide new estimates and sharp embedding theorems of mentioned type
for the unit polyball. Let us finally note that the study of similar to (2.4) embeddings
in particular cases in the unit disk started recently in papers of W. Cohn [11] and Z.
Wu [38]. We will also study general embeddings like (2.4), but in the polyball and
with some restrictions on parameters.

Lemma 2.2 (see [39]). For each r > 0 there exists a positive constant Cr such that

C−1
r ≤

1− |a|2
1− |z|2 ≤ Cr, C−1

r ≤
1− |a|2

|1− < z, a >
| ≤ Cr,

for all a and z such that β(a, z) < r. Moreover, if r is bounded above, then we may
choose Cr independent of r.

Obviously using properties of {D(ak, R)} Bergman balls we will have the following
estimates for Bergman space Apα(Bn)

‖f‖pApα =
∫
Bn
|f(w)|pδα(z)dν(w) �

∞∑
k=1

[
max

z∈D(ak,R)
|f(z)|p

]
ναD(ak, R)

�
∞∑
k=1

∫
D(ak,R)

|f(z)|pδα(z)dν(z), 0 < p <∞, α > −1,
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where (1− |z|)α = δα(z), α > −1.
Let now

A(p, q, α) =

f ∈ H(Bn) :
∞∑
k=1

(∫
D(ak,R)

|f(z)|pδα(z)dν(z)
) q
p

<∞

 ,
where 0 < p, q < ∞, α > −1. These are Banach spaces if min{p, q} ≥ 1, obviously
direct extensions of Apα(Bn) spaces in the ball. They were studied in [18,19,34].

We will however consider other natural extensions of Apα(Bn) to the case of m
product domains Bn × · · · ×Bn (polyballs).

We consider in this paper analytic spaces on product of balls Bm
n = Bn × · · · ×Bn.

We denote by H(Bn × · · · ×Bn) the space of analytic functions (by each variable) on
Bm
n , m ∈ N. For n = 1 case we have classical case of the unit polydisk (see [31]).

3. Formulations of the Main Results

The main goal of this section is to formulate main results of this paper, which were
proved earlier in less general case of unit disk in [30].

Let S be the set of all measurable and positive functions of L1(0, 1) for which there
exists numbers Mω, mω, qω with mω, qω ∈ (0, 1], that is

(3.1) mω ≤
ω(λr)
ω(r) ≤Mω, r ∈ (0, 1], λ ∈ [qω, 1].

Defined on (0,+∞) functions of this type were studied in detail in [27].
In this section we extend main results of [30]. The main idea is to replace r-lattices

of the unit disk heavily used in [30], by r-lattices in the unit ball (see previous section)
keeping main steps in old proof of less general case.

Let

L~p(~w,−→ν ) =
{
f ∈ L1

loc(Bn
k ) :

(∫
B
. . .

(∫
B
|f(z1, . . . , zn)|p1 (w1(1− |z1|)dν1(z1))p2/p1

)

. . . (wn(1− |zn|)dνn(zn))1/pn <∞
}

0 < pi <∞, i = 1, . . . , n, νj, j = 1, . . . , n, be the normalized Lebegues measures on
Bk, A~p(~w) = L~p(~w) ∩ H(Bn

k ). Replacing wjdνj by dµj we define similarly the new
general space Lp1,...,pn(µ1, . . . , µn).

Let
D̃
−→α f(−→z ) =

∑
|
−→
k |≥0

m∏
j=1

(|kj|+ 1)αjak1···kmz
k1
1 · · · zkmm ,

where ∑|−→k |≥0 means ∑k1≥0 · · ·
∑
km≥0.

We extend in a natural way (as in polydisk case) the definition of differential
operator D̃m to differential operators acting on analytic functions defined on product
domains for all real αj, j = 1, . . . ,m.
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Theorem 3.1. Let {ak} be r-lattice of Bk. Let ~ω = (ω1, . . . , ωn), ~µ = (µ1, . . . , µn),
ωj ∈ S, m = (m1, . . . ,mn) ∈ Zn+, ~p = (p1, . . . , pn), ~q = (q1, . . . , qn) ∈ Rn

+ with
0 < pj ≤ qj, j = 1, . . . , n. Then the following assertions are equivalent:
1) ‖D̃mf‖L~q(~µ) ≤ C(~µ)‖f‖A~p(~ω);

2) µj(D(ak, r)) ≤ c(1− |ak|)
(n+1)

qj
pj

+mjqj [ωj(1− |ak|)]
qj
pj , j = 1, . . . , n, k = 0, 1, 2, . . ..

Remark 3.1. In the case of the unit disk Theorem 3.1 can be seen in [30].

In the case of measures ν defined on Bn
k = Bk × · · · ×Bk there is following result.

Theorem 3.2. Let pj ≤ q < +∞, ν̃ be the Borel nonnegative measure on Bn
k ,

~ω = (ω1, . . . , ωn), ωj ∈ S, j = 1, . . . , n, m = (m1, . . . ,mn) ∈ Zn+. Then the following
assertion are equivalent:

1)
(∫
Bn
k

∣∣∣D̃mf(z)
∣∣∣q dν̃(z)

) 1
q ≤ C‖f‖A~p(~ω);

2) ν̃(D(ak1 , r)× · · · ×D(akn , r)) ≤ c
∏n
j=1(1− |akj |)

(n+1) q
pj

+mjq[ωj(1− |akj |)]
q
pj .

Remark 3.2. In the case of the unit disk Theorem 3.2 can be seen in [30].

To prove Theorems 3.1 and 3.2 we need some auxiliary results for the proof. All
preliminaries below needed for the proof are classical assertions for unit disk, polydisk
for particular values of parameters. Moreover even the general case (general version of
these assertions) of arbitrary pj, j = 1, . . . , n, can be seen in the case of the unit disk
in [30] and [37]. We provide same type results in the unit ball based on properties of
r lattices in the unit ball (see [39]). Proofs are similar and will be omitted (we readers
refer to [30] and [37]). Some lemmas are valid even in context of bounded strongly
pseudoconvex domains with smooth boundary under some condition on Bergman
kernel.

These lemmas are interesting also as separate assertions on these new mixed norm
spaces in polyballs we defined and study in this paper.

Lemma 3.1. Let f ∈ A~p(~ω), 0 < pj < +∞, ωj ∈ S, j = 1, . . . , n. Then the following
estimate holds

+∞∑
kn=0

 max
ζn∈D(akn ,r)

· · · +∞∑
k2=0

 max
ζ2∈D(ak2 ,r)

 +∞∑
k1=0

 max
ζ1∈D(ak1 ,r)

|f(ζ1, . . . , ζn)|p1

× ω1

|D(ak1 , r)|
1

n+1

|D(ak1 , r)|


p2
p1

ω2

|D(ak2 , r)|
1

n+1

|D(ak2 , r)|


p3
p2

· · ·


pn
pn−1

× |D(akn , r)|) ≤ C(~ω, ~p)‖f‖A~p(~ω),

where |D(akj , r)| Lebesgues measure of D(akj , r), j = 1, . . . , n.

Remark 3.3. Lemma 3.1 is valid also in more general situation when our function is
subharmonic by each variable (n-subharmonic) in polyball.
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Note, this Lemma is valid when f is n-subharmonic in product domains. Also, this
Lemma 3.1 for pj = p, j = 1, . . . , n, is valid even in pseudoconvex domains (see [2]
for pj = p, j = 1, . . . , n and for spaces with standard weights). The general case for
~p = (p1, . . . , pm) can be seen in [30,36,37] in polydisk and with same proof in polyball.

The following lemma is known for n = 1 in disk and polydisk (see [30,31]).

Lemma 3.2. In the context of the previous lemma we have the estimate

|f(z1, . . . , zn)| ≤ C
‖f‖A~p(~ω)∏n

j=1(1− |zj|)
n+1
pj ω

1
pj

j (1− |zj|)
, z = (z1, . . . , zn) ∈ Bn

k .

The proof of Lemma 3.2 is based on application of one functional result and use
induction by variables.

This lemma is well known for particular values of parameters in case of the unit
polydisk (see [30,31,37] and various references there).

In the future, we need an integral representation of the class A~p(~ω).
We first add some facts on ω function from S class (see, for example, [27,28,37]). We

note that if ωj ∈ S then ωj admits the representation ωj(t) = exp
(
ηj(t) +

∫ 1
t
εj(u)
u
du
)
,

t ∈ (0, 1), where ηj, εj is bounded measurable functions on (0, 1), while

lnmωj

ln 1
qωj

≤ εj(u) ≤
lnMωj

ln 1
qωj

,

where mωj , Mωj , qωj is the number corresponding to the functions ωj in the estimates
(3.1) (see [27, 28, 37]). Assuming that αωj = lnmωj

ln 1
qωj

, βωj = lnMωj

ln 1
qωj

, where αωj > −1,

0 < βωj < 1, thus, without limiting the generality, also we assume that η(x) ≡ 0,
x ∈ (0, 1). Also, mωj <

ωj(λr)
ωj(r) < Mωj , r ∈ (0, 1), λ ∈ (qωj , 1], qωj ,mωj ∈ (0, 1),

Mωj > 0 and if ωj ∈ S, then ωj(t) ∈ [t−αωj , t−βωj ], where t ∈ (0, 1).
We introduce the kernel Dα(ζ, z), one-dimensional analogues of which were intro-

duced by M. M. Dzhrbashyan in the work [14]:

Dα(ζ, z) =
n∏
j=1

αj + 1
π

(1− |ζ|2)α(
1− ζ̄jzj

)α+n+1 ,

ζ = (ζ1, . . . , ζn), z = (z1, . . . , zn) ∈ Bn
k , α = (α1, . . . , αn), αj > −1, j = 1, . . . , n.

Lemmas 3.3, 3.4, 3.5 are known in polydisk (see [28, 30,37]). Proofs are similar for
polyballs.

Lemma 3.3. Let

(3.2) f ∈ A~p(~ω), ~ω = (ω1, . . . , ωn), αj >
αωj + n+ 1

pj
− 1, j = 1, . . . , n.

Then the following representation holds
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(3.3) f(z) =
∫
Bn
k

D−→α (~ζ, z)f(ζ)dν(ξ1) · · · dν(ξn), z ∈ Bn
k .

Sketch of proof. Using Lemma 3.2, we obtain

|f(z1, . . . , zn)| ≤ C
‖f‖A~p(~ω)∏n

j=1 (1− |zj|)
n+1
pj ω

1
pj

j (1− |zj|)
, z = (z1, . . . , zn) ∈ Bn

k .

We obtain that the space A~p(~ω) is embedded in A1(−→α ), where A1(−→α ) coincides
with the class A~p(~ω) at ωj(t) = tαj , j = 1, . . . , n, ~p = (p1, . . . , pn).

Using the result in ball by each variable, we obtain that f admits a representation
(3.3). The lemma is proved. �

The following lemma is proved in [37] in the unit polydisk. The general case use
same ideas based on same estimates related with r-lattices but in the unit ball case.

Lemma 3.4. Let ~p = (p1, . . . , pn), 0 < pj < +∞, αj >
αωj+n+1

pj
−1, ~ω = (ω1, . . . , ωn),

ωj ∈ S, j = 1, . . . , n. Then the operator

(3.4) Tα(f)(z) =
∫
Bn
k

∣∣∣D−→α (~ζ, z)
∣∣∣ |f(ζ)| dν(ξ1) . . . dν(ξn), z ∈ Bn

k ,

maps the space A~p(~ω) into L~p(~ω), where L~p(~ω) means the class L~p(~µ) with dµj =
ωj(1− |ζj|)dν(ζj), ζj ∈ Bk, j = 1, . . . , n.

Lemma 3.5. Let ~p = (p1, . . . , pn), 0 < pj < +∞, ~ω = (ω1, . . . , ωn), ωj ∈ S, j =
1, . . . , n, m = (m1, . . . ,mn) ∈ Zn+. Then the following estimate holds(∫

Bk

ωn(1− |ζn|)(1− |ζn|)mnpn
[
· · ·

(∫
Bk

ωn(1− |ζ2|)(1− |ζ2|)m2p2

×
[∫
Bk

|D̃mf(ζ1, . . . , ζn)|p1ω1(1− |ζ1|)(1− |ζ1|)m1p1dν(ζ1)
] p2
p1

×dν(ζ2))
p3
p2 · · ·

] pn
pn−1

dν(ζn)
) 1
pn

≤ C(m, ~ω, ~p)‖f‖A~p(~ω).

Sketch of proof. We prove the lemma for n = 2, since n > 2 there are similar
arguments. Let αj >

αωj+n+1
pj

− 1, j = 1, . . . , n+ 1, then by Lemma 3.3 f admits the
integral representation

f(z1, z2) = C(α)
∫
B2
k

(1− |ζ1|2)α1(1− |ζ2|2)α2

(1− ζ1z1)α1+n+1(1− ζ2z2)α2+n+1f(ζ1, ζ2)dν(ζ1)dν(ζ2).

Consequently,∣∣∣D̃m1,m2f(z1, z2)
∣∣∣

≤C(α)
∫
B2
k

(1− |ζ1|2)α1(1− |ζ2|2)α2∣∣∣(1− ζ1z1)α1+m1+n+1
∣∣∣ ∣∣∣(1− ζ2z2)α2+m2+n+1

∣∣∣ |f(ζ1, ζ2)| dν(ζ1)dν(ζ2).
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Therefore,

(1− |z1|2)m1(1− |z2|2)m2
∣∣∣D̃mf(z1, z2)

∣∣∣
≤C(α,m)

∫
B2
k

(1− |ζ1|2)α1(1− |ζ2|2)α2∣∣∣(1− ζ1z1)α1+n+1
∣∣∣ ∣∣∣(1− ζ2z2)α2+n+1

∣∣∣ |f(ζ1, ζ2)| dν(ζ1)dν(ζ2),

where z1, z2 ∈ B2
k. Using Lemma 3.4, we obtain assertion of Lemma 3.5. �

The following lemma is also important for this paper. We provide the simplest
model of the unit disk case (the case of more general domains can be covered similarly
based on basic results on subharmonic functions in general bounded domains in higher
dimension). We remind the reader we denote by D1 the unit disk in C and by D2

1
the bidisk (a product of two disks). Note even a little bit more general version of this
lemma with the same proof is valid for |F |p · |G|q, where p and q are positive and
where both functions are analytic in bidisk.

We denote by dm2 Lebegues measure on D1.

Lemma 3.6. Let F ∈ H (D2
1), F = f1 · f2. Then

ψαβ (z2) =
(∫

D1
|F (z1, z2)|p1 · (1− |z1|)α dm2(z1)

)β
,

β ≥ 0, α > −1, z2 ∈ D1 is subharmonic function in D1, where p1 is an arbitrary
positive number.

Sketch of the proof. For the proof of Lemma (3.6) we will use basic facts on subhar-
monic function spaces. Let Dr = {z1 : |z1| < r}, δ > 0. We show first

ψr(z2) = lg
∫
Dr

(|F (ζ1, z2)|+ δ)α dm2(ζ1)

is subharmonic for all α ≥ 0, where lg is a logarithm of function. Then we have
by known properties of subharmonic functions that the following function ψ(z2) =
limr→1−0 ψr(z2) is also subharmonic.

To show this we note that if Dr = ⋃mn
k=1 Mk where Mk is any decomposition of Dr

circle such that diam(Mk) ≤ 1
n
,

un(z2) = lg
{

n∑
k=1

(|F (ζk, z2)|+ δ)α|∆k|
}
,

| Mk | is a Lebesgue measure of Mk, then un(z2) is uniformly tending to ψr(z2) on Dr.
So now to show the subharmonicity of ψr(z2), we show the subharmonicity of un(z2).

We have
lg(|F (ζk, z2)|+ δ)α|∆k| = lg(|F (ζk, zk)|+ δ)α + lg |∆k|

=α lg(|F (ζk, zk)|+ δ) + lg |∆k|.

Since both function lg(|F (ζk, z2)|) and lg δ are subharmonic
α lg(|F (ζk, zk)|+ δ) + lg |∆k|, α ≥ 0,
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is also subharmonic. Hence lg(|F (ζk, z2)|+ δ)α|∆k| is subharmonic.
Hence un(z2) is also subharmonic by known properties of subharmonic functions

βψr(z2), z2 ∈ D1, hence and ψβ(z2) = limr→1−0 ψr(z2) are subharmonic and the
limit is attained uniformly in D1. Hence we have that

Vα,β,δ(z2) = exp(ψβ(z2)) =
(∫

D
(|F (z1, z2)|+ δ)αdm2(z1))

)β
, z2 ∈ D1,

is also subharmonic.
Obviously Vα,β,δ ↘ Vα,β,0(z2), when δ → 0, Vα,β,δ1 ≥ Vα,β,δ2 , δ1 < δ2 (Vα,β,δ is

decreasing to Vα,β,0). Hence using again known properties of subharmonic functions

ψα,β(z2) =
(∫

D1
|F (z1, z2)|αdm2(z1)

)β
is subharmonic. So we proved this lemma. �

Remark 3.4. Note it is enough to only assume in our proof that |F (z)| is subharmonic
and our assertion is still valid.

4. Proofs of Main Theorems

In this section we provide proofs of our main results.
Proof of Theorem 3.1. The biball case (n = 2) is typical for the proof of the general
case and we will restrict ourselves for this less general case. First we note that the
implication 2)⇒ 1) can be checked by the standard way using standard test function
and properties of r-lattices of ball (see [30, 39] for similar arguments in embedding
theorem and Lemma (2.1)).

ez(ζ) =
n∏
j=1

1
(1− ζjzj)βj+1 , z = (z1, . . . , zn), ζ = (ζ1, . . . , ζn) ∈ Bn

k ,

for sufficiently large βj, (see [4, 18,19,30]).
Therefore, we turn to the proof of the implication 1)⇒ 2). Presenting the unit ball

as the union of dyadic Bergman balls (see Lemma 2.1), we obtain

I(f, z2) =
(∫

Bk

∣∣∣D̃mf(z1, z2)
∣∣∣q1
dµ1(z1)

) 1
q1

≤C

 ∞∑
k1=0

max
z1∈D(ak,r)

{∣∣∣D̃mf(z1, z2)
∣∣∣q1 (1− |z1|)m1q1+ (n+1)q1

p1 w
q1
p1
1 (1− |z1|)

} 1
q1

.

Taking into account that p1
q1
≤ 1, we have

I(f, z2) ≤ C

 ∞∑
k1=0

max
z1∈D(ak1 ,r)

{∣∣∣D̃mf(z1, z2)
∣∣∣p1 (1− |z1|)m1p1+n+1w1(1− |z1|)

} 1
p1

.
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Now, applying Lemma (3.1) to the function Dmf(z1, z2) for fixed z2 ∈ Bk, we obtain
the estimate

I(f, z2) ≤ C
(∫

Bk

∣∣∣D̃mf(z1, z2)
∣∣∣p1
w1(1− |z1|)(1− |z1|)m1p1dν(z1)

) 1
p1
.

Raising to the power q2 both sides of the last inequality and integrating over µ2, we
obtain(∫

Bk

(I(f, z2)q2dµ2(z2))
) 1
q2

≤C
(∫

Bk

(∫
Bk

∣∣∣D̃mf(z1, z2)
∣∣∣p1
w1(1− |z1|)(1− |z1|)m1p1dν(z1)

) q2
p1
dµ2(z2)

) 1
q2

.

Again using partition of the ball at dyadic balls and take into account (3.4):(∫
Bk

(I(f, z2)q2dµ2(z2))
) 1
q2

≤C1

 ∞∑
k2=0

max
z2∈D(ak2 ,r)

(∫
Bk

∣∣∣D̃mf(z1, z2)
∣∣∣p1
w1(1− |z1|)(1− |z1|)m1p1dν(z1)

) q2
p1

× µ2(D(ak2 , r))
 1

q2

≤C2

 ∞∑
k2=0

max
z2∈D(ak2 ,r)

(∫
Bk

∣∣∣D̃mf(z1, z2)
∣∣∣p1
w1(1− |z1|)(1− |z1|)m1p1dν(z1)

) q2
p1

× w
q2
p2
2 (1− |z2|)(1− |z1|)m2q2+(n+1) q2

p2

 1
q2

.

Considering equality 1
q2

= p2
q2

1
p2

and p2
q2
≤ 1, we have the estimate(∫

Bk

(I(f, z2)q2dµ2(z2))
) 1
q2

≤C2

 ∞∑
k2=0

max
z2∈D(ak2 ,r)

(∫
Bk

∣∣∣D̃mf(z1, z2)
∣∣∣p1
w1(1− |z1|)(1− |z1|)m1p1dν(z1)

) p2
p1

× w2(1− |z2|)(1− |z1|)m2q2+n+1

 1
q2

.

To prove the theorem it remains to apply Lemma 3.1 and Lemma 3.5.
Let further as above να(z) = (1− |z|)αdν(z), α > −1.
Note now the amount of variables is not important at all when we talk about the

necessity of the condition on measure, namely the proof of the general case in this
part is the same as in m = 2 case which we provided above. We simply must repeat
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same arguments concerning the other implication we apply induction. To prove this
it is enough to consider only a particular case of spaces with zero smoothness (spaces
without fractional Dm derivatives and spaces with ordinary (1− |z|)α weights).

Note for p3 ≤ q3 and for any positive subharmonic φ̃ function we have(∫
Bk

|φ̃(z3)|q3dµ3(z3)
) 1
q3 ≤ c̃1

(∫
Bk

|φ̃(z3)|p3dνα3(z3)p3 |
) 1
p3
.

Simply, since our theorem is valid for simplest m = 1 case. Then we also note that(∫
Bk

(∫
Bk

|f(z1, z2, z3)|q1dµ1(z1)
) q2
q1
dµ2(z2)

) 1
p2

≤c̃φ(z3) = c̃

(∫
Bk

(∫
Bk

|f(z1, z2, z3)|p1dνα1(z1)
) p2
p1
dνα2(z2)

) 1
p2

,

for a constant c̃ and for fixed z3 ∈ Bk as we proved above already for all pj ≤ qj,
j = 1, 2. As we see from discussion above φ function is subharmonic.

Note now combining both estimates we get what we need, so our theorem based on
m = 1, 2 cases is now proved for m = 3. Add hence using now induction for all m.

Theorem 3.1 is proved. �
Proof of Theorem 3.2. As in the proof of Theorem 3.1, the implication 2) ⇒ 1) is
verified in a standard way, so its proof is omitted. It is based on properties of r-
lattices in the ball and similar arguments can be seen in [30,39] for various embedding
theorems proved there.

We proceed to the proof of 1)⇒ 2). Again, we prove the theorem for n = 2, since
n > 2 there are similar arguments. First suppose that
(4.1) p2 ≤ p1 ≤ q.

Using the arguments used in the proof of Theorem 3.1, we have

I(f) =
(∫

B2
k

∣∣∣D̃mf(z1, z2)
∣∣∣q dν̃(z1, z2)

) 1
q

≤C

∫
B2
k

∣∣∣D̃mf(z1, z2)
∣∣∣q w q

p1
1 (1− |z1|)w

q
p2
2 (1− |z2|)(1− |z1|)m1q+(n+1) q

p1
−(n+1)

× (1− |z2|)m2q+(n+1) q
p2
−(n+1)

dν(z1)dν(z2)
 1

q

.

Using Lemma 3.6 and taking into account that p1 ≤ q, we obtain

I ≤C
(∫

Bk

w
p1
p2
2 (1− |z2|)(1− |z2|)

m2p1+(n+1) p1
p2
−(n+1)

×
(∫

B2
k

∣∣∣D̃mf(z1, z2)
∣∣∣q w q

p1
1 (1− |z1|)(1− |z1|)

m1q+(n+1) q
p1
−(n+1)

dν(z1)
) p1

q

dν(z2)
) 1
p1

.
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Again, using similar arguments to the inner integral, we obtain the estimate (see
Lemma 3.6)

I(f) ≤C
(∫

Bk

w
p1
p2
2 (1− |z2|)(1− |z2|)m2p1+(n+1) p1

p2
−(n+1)

×
(∫

B2
k

∣∣∣D̃mf(z1, z2)
∣∣∣p1
w1(1− |z1|)(1− |z1|)m1p1dν(z1)

)
dν(z2)

) 1
p1
.

Taking into account that p2
p1
≤ 1, as above, we obtain using the fact that the function

in brackets is subharmonic

I(f) ≤C
∫

Bk

w2(1− |z2|)(1− |z2|)m2p2

×
(∫

B2
k

∣∣∣D̃mf(z1, z2)
∣∣∣p1
w1(1− |z1|)(1− |z1|)m1p1dν(z1)

) p2
p1
dν(z2)

 1
p2

.

It remains to apply Lemma 3.5. The theorem is proved under the condition (4.1).
Now we turn to the case

(4.2) p1 ≤ p2 ≤ q.

If (zk1 , zk2) ∈ D(ak1 , r)×D(ak2 , r) then (see [36])∣∣∣D̃mf(zk1 , zk2)
∣∣∣q ≤ C

(1− |zk1|)
m1q+(n+1) q

p1 (1− |zk2|)m2q

×
(∫

D∗(ak1 ,r)
|f(ζ1, zk2)|p1 dν(ζ1)

) q
p1
,

where D∗(ak1 , r) is expansion of the dyadic ball at the same center D(ak1 , r), (see
[39]). Therefore, as in the proof of the first part:

I(f) =
(∫

B2
k

∣∣∣D̃mf(z1, z2)
∣∣∣q dν̃(z1, z2)

) 1
q

≤

∑
k2≥0

∑
k1≥0

∣∣∣D̃mf(zk1 , zk2)
∣∣∣q ν̃(D(ak1 , r)×D(ak2 , r))

 1
q

≤C1

∑
k2≥0

∑
k1≥0

w
q
p1
1 (1− |zk1|)w

q
p2
2 (1− |zk2|)(1− |zk2|)

(n+1) q
p2

×
(∫

D∗(ak1 ,r)
|f(ζ1, zk2)|p1 dν(ζ1)

) q
p1


1
q
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≤C2

∑
k2≥0

∑
k1≥0

w
q
p2
2 (1− |zk2|)(1− |zk2|)

(n+1) q
p2

×
(∫

D∗(ak1 ,r)
|f(ζ1, zk2)|p1 w1(1− |ζ1|)dν(ζ1)

) q
p1


1
q

.

Using the inequality (4.2), we obtain

Ip2 ≤Cp2
2

∑
k2≥0

∑
k1≥0

w2(1− |zk2|)(1− |zk2 |)n+1

×
(∫

D∗(ak1 ,r)
|f(ζ1, zk2)|p1 w1(1− |ζ1|)dν(ζ1)

) p2
p1

 .
Now apply Lemma 3.1, we have

Ip2(f) ≤Cp2
2

∫
Bk

∑
k1≥0

(∫
D∗(ak1 ,r)

|f(ζ1, z2)|p1 w1(1− |ζ1|)dν(ζ1)
) p2
p1

(4.3)

× w2(1− |ζ2|)dν(ζ2).

By the condition (4.2) p2
p1

= α ≥ 1. Hence
∞∑
k=0

bαk ≤
( ∞∑
k=0

bk

)α
, for all bk ≥ 0, k ∈ N.

Therefore, by (4.3) we obtain

Ip2(f) ≤Cp2
2

∫
Bk

∑
k1≥0

(∫
D∗(ak1 ,r)

|f(ζ1, z2)|p1 w1(1− |ζ1|)dν(ζ1)
) p2
p1


× w2(1− |ζ2|)dν(ζ2)

≤C3

∫
Bk

(∫
Bk

|f(z1, z2)|p1 w1(1− |z1|)dν(z1)
) p2
p1
w2(1− |ζ2|)dν(ζ2).

Note now it is easy to see the necessity of condition on measure is valid for any
m (we discussed shortly m = 2 case above) and the proof is simply repetition of
arguments of m = 2 case which was given above, and no new idea is needed here.
Let us turn to the proof of other implication, for this theorem. Again, we consider
only a particular case of spaces with zero smoothness (spaces without fractional Dm

derivatives and spaces with ordinary (1−|z|)α weights). We simply modify arguments
based on induction we provided at the end of proof of previous theorem. Note that
we have proved above that for m = 2 (we below denote by δ(z) = (1− |z|))

I(f) =
(∫

B2
k

|f(z1, z2)|qdν̃(z1, z2)
) 1
q
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≤c
(∫

B2
k

|f(z1, z2)|qδ(z1)α1
q
p1 δ(z2)α2

q
p2 (δ(z1))(ñ+1) q

p1 (δ(z2))(ñ+1) q
p2 dν(z1)dν(z2)

) 1
q

=cJ.

Based on properties of r-lattice the same proof can be given by repetition of
arguments for any m = 1, 2, . . .. Than we showed

J ≤ c̃

(∫
Bk

(∫
Bk

|f(z1, z2)|p1δ(z1)α1dν(z1)
) p2
p1
δ(ξ2)α2dν(ξ2)

) 1
p2

.

The question is how to show that
∫
B3
k

|f(z1, z2, z3)|q
 3∏
j=1

(δ(zj))
αj

q
pj

+(n+1)q( 1
pj

)
 dν(zj)

≤c

∫
Bk

(∫
Bk

(∫
Bk

|f(z1, z2, z3)|p1(δ(z1))α1dν(z1)
) p2
p1
δ(ξ2)α2dν(ξ2)

) p3
p2

×δ(ξ3)α3dν(ξ3))
1
p3 ,

when we have this estimate for m = 1, 2. We use induction. We have first for m = 2(∫
B2
k

|f(z1, z2, z3)|q)δτ1(z1)δτ2(z2)dν(z1)dν(z2)
)

≤c
∫
Bk

(∫
Bk

|f(z1, z2, z3|p1δ(z1)α1dν(z1)
) p2
p1 (δ(ξ2)α2)dν(ξ2))

1
p2 = c(φ(z3)),

then we have also that∫
Bk

|φ(z3)|q (δτ3(z3)) dν(z3) ≤ c
(∫

Bk

|φ(z3)|p3δ(z3)α3dν(z3)
) 1
p3
,

since φ is subharmonic (see discussion above) and the result is valid for m = 1 case.
It remains to combine this two estimates and use induction to set the result for all
m = 1, 2, 3.

The theorem is completely proved. �

Remark 4.1. We finally note analogues of these results based on same approaches are
valid with some restrictions in tubular domains and in pseudoconvex domains with
smooth boundary. Proofs are again based on properties of r-lattices in these domains
(see, for example, [1, 2] for lattices in pseudoconvex domains). We refer to [32,33] for
some analogues results in tubular and pseudoconvex domains.

Acknowledgements. Author 2 supported by MNTR Serbia, Project 174017.



368 R. SHAMOYAN AND O. MIHIĆ

References
[1] M. Abate and A. Saracco, Carleson measures and uniformly discrete sequences in strongly

pseudoconvex domains, J. Lond. Math. Soc. 2(83) (2011), 587–605.
[2] M. Abate, J. Raissy and A. Saracco, Toeplitz operators and Carleson measures in strongly

pseudoconvex domains, J. Funct. Anal. 263(11) (2012), 3449–3491.
[3] M. Arsenović and R. Shamoyan, On multifunctional harmonic functional spaces, Math. Montisn-

igri (2012), 177–199.
[4] A. Benedek and R. Panzone, The spaces Lp with mixed norm, Duke Math. J. 28(3) (1961),

301–324.
[5] O. V. Besov, V. P. Illin and S. M. Nikolskij, Integralnye Predstavleniya Funktsii i Teoremy

Vlozheniya, 2nd ed. Fizmatlit, Nauka, Moscow, 1996.
[6] L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math.

76(3) (1962), 547–559.
[7] C. Cascante and J. Ortega, Imbedding potentials in tent spaces, J. Funct. Anal. 198(1) (2003),

106–141.
[8] C. Cascante and J. Ortega, On q-Carleson measures for spaces of M-harmonic functions, Canad.

J. Math. 49(4) (1997), 653–674.
[9] C. Cascante and J. Ortega, Carleson measures on spaces of Hardy-Sobolev type, Canad. J. Math.

47(6) (1995), 1177–1200.
[10] J. Cima and W. Wogen, A Carleson measure theorem for the Bergman space on the ball, J.

Operator Theory 7 (1982), 157–165.
[11] W. S. Cohn, Generalized area operators on Hardy spaces, J. Math. Anal. Appl. 216(1) (1997),

112–121.
[12] P. Duren, Extension of a theorem of Carleson, Bull. Amer. Math. Soc. 75(1) (1969), 143–146.
[13] P. Duren and R. Weir, The pseudohyperbolic metric and Bergman spaces in the ball, Trans.

Amer. Math. Soc. 359(1) (2007), 63–77.
[14] M. M. Dzhrbashyan, To the problem of representation of analytic functions, Posts Institute of

Mathematics and Mechanics of the Academy of Sciences of the Armenian SSR 2 (1948), 3–30.
[15] W. W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc. 52

(1975), 237–241.
[16] L. Hörmander, Lp estimates for (pluri-) subharmonic functions, Math. Scand. 20 (1967), 65–78.
[17] T. H. Kaptanoglu, Carleson measures for Besov spaces on the ball with applications, J. Funct.

Anal. 250(2) (2007), 483–520.
[18] S. Li and R. Shamoyan, On some properties of analytic spaces connected with Bergman metric

ball, Bull. Iranian Math. Soc. 34(2) (2008), 121–139.
[19] S. Li and R. Shamoyan, On some estimates and Carleson type measure for multifunctional

holomorphic spaces in the unit ball, Bull. Sci. Math. 134(2) (2010), 144–154.
[20] D. Luecking, A technique for characterizing Carleson measures on Bergman spaces, Proc. Amer.

Math. Soc. 87(4) (1983), 656–660.
[21] P. Mercer and J. Cima, Composition operators between Bergman spaces on convex domains in

Cn, J. Operator Theory 33(2) (1995), 363–369.
[22] O. Mihić and R. Shamoyan, On some new analytic function spaces in polyball, Palest. J. Math.

4(1) (2015), 105–107.
[23] S. M. Nikolski, The Approximation of Functions of Several Variables, Moscow Nauka (in Rus-

sian), Moscow, 1977.
[24] V. L. Oleinik, Embedding theorems for weighted classes of harmonic and analytic functions,

Journal of Soviet Mathematics 9(2) (1978), 228–243.
[25] V. L. Oleinik and B. S. Pavlov, Embedding theorems for weighted classes of harmonic and

analytic functions, J. Math. Sci. 2(2) (1974), 135–142.



ON SOME NEW SHARP EMBEDDING THEOREMS 369

[26] J. Ortega and J. Fabrega, Hardy’s inequality and embeddings in holomorphic Triebel-Lizorkin
spaces, Illinois J. Math. 43(4) (1999), 733–751.

[27] E. Seneta, Regularly Varying Functions, Springer-Verlag, Berlin, New York 1976.
[28] F. A. Shamoian, Diagonal mapping and problems of representation in anisotropic spaces of

holomorphic functions in the polydisk, Sib. Math. J. 31(2) (1990), 350–365.
[29] F. A. Shamoian, Embedding theorems for weighted anisotropic spaces of holomorphic functions

in the polydisk, Mathematics of the USSR-Sbornik 35(5) (1979), 709–725.
[30] F. A. Shamoian, Embedding theorems and a characterization of traces in the spaces Hp(Un),

0 < p <∞, Zh. Mat. Fiz. Anal. Geom. 10(1) (2003), 116–125.
[31] F. A. Shamoian and M. M. Djrbashian, Topics in the Theory of Bergman Apα Spaces, BSB

Teubner, Leipzig, 1988.
[32] R. Shamoyan and S. P. Maksakov, Embedding theorems for weighted anisotropic spaces of

holomorphic functions in strongly pseudoconvex domains, Romai J. 1(13) (2017), 71–92.
[33] R. Shamoyan and O. Mihić, Embedding theorems for weighted anisotropic spaces of holomorphic

functions in tubular domains, Romai J. 1(13) (2017), 93–115.
[34] R. Shamoyan and O. Mihić, In search of traces of some holomorphic spaces on polyballs, Revista

Notas de Matemática 4(1) (2008), 1–23.
[35] R. Shamoyan and O. Mihić, On some new sharp estimates in analytic Herz-type func-

tion spaces in tubular domains over symmetric cones, Czechoslovak Math. J. (2018), DOI:
10.21136/CMJ.2018.0059-17.

[36] R. Shamoyan and O. Mihić, On traces of Qp type spaces and mixed norm analytic function
spaces on polyballs, Šiauliai Math. Semin. 5(13) (2010), 101–119.

[37] F. A. Shamoian and O. V. Yaroslavtseva, Continuous projections, duality, and the diagonal
mapping in weighted spaces of holomorphic functions with mixed norm, J. Math. Sci. 101(3)
(2000), 3211–3215.

[38] Z. Wu, Area operator on Bergman spaces, Science in China Series A 49(7) (2006), 987–1008.
[39] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.

1Department of Mathematics,
Bryansk State Technical University,
Bryansk, Russia
Email address: rshamoyan@gmail.com

2Faculty of Organizational Sciences,
University of Belgrade,
Serbia
Email address: oliveradj@fon.rs


	1. Introduction
	2. Preliminaries
	3. Formulations of the Main Results
	4. Proofs of Main Theorems
	Acknowledgements.

	References

