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FRACTIONAL DIFFERENCE EQUATIONS OF VOLTERRA TYPE

JAGAN MOHAN JONNALAGADDA

Abstract. In this article, we devote our attention to study a few qualitative
properties of linear fractional nabla difference equations of Volterra type. Under
appropriate assumptions, we examine the existence, uniqueness, boundedness and
stability of the solutions by means of the resolvent kernel. Examples are provided
to demonstrate the applicability of established results.

1. Introduction

The theory of implicit and explicit Volterra difference equations has gained attention
due to its applicability in various fields of science and engineering. These equations
arise in the investigation of discretization methods for Volterra integrodifferential
equations. For a detailed discussion on this topic, we refer [4, 7, 17,28].

Fractional calculus [22] is a new branch of mathematics that deals with the gener-
alization of differentiation and integration to arbitrary order. It represents a natural
instrument to model non-local phenomena either in space or time. In various prob-
lems of science and engineering, fractional differential equations have been proved to
be valuable tools in modelling many phenomena. In recent times, the theory and
applications of fractional integrodifferential equations have been the focus of many
studies by virtue of its dense aspects in diverse fields such as signal processing, me-
chanics, econometrics, fluid dynamics, nuclear reactor dynamics, acoustic waves and
electromagnetics. However, it is quite difficult to obtain the closed form solutions
for various classes of fractional integrodifferential equations. But, the development of
high speed digital computing machinery has allowed the use of fractional nabla differ-
ence equations as approximations to their continuous counterparts. Therefore, many
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effective methods for obtaining numerical solutions of fractional integrodifferential
equations have been presented recently [3, 6, 8, 13,15,16,18–20,23–27,29,30].

On the other hand, the idea of fractional nabla difference is very recent. The
combined efforts of a number of researchers during the past two decades laid a fairly
strong basic theory of fractional nabla difference equations [5]. In spite of the existence
of a substantial mathematical theory of fractional nabla difference equations, the
theory of Volterra type fractional nabla difference equations is not yet initiated in
parallel. Motivated by the necessity to study the latter qualitatively, in this article,
we consider a particular class of Volterra fractional nabla difference equations of
convolution type which assumes the form(

∇α
0u
)
(t) =µu(t) +

t∑
s=0

b(t− s)u(s), t ∈ N1,(1.1)

(
∇α

0∗u
)
(t) =µu(t) +

t∑
s=0

b(t− s)u(s), t ∈ N1,(1.2)

where ∇α
0 , ∇α

0∗ are the αth-order Riemann-Liouville and Caputo type nabla difference
operators, respectively, u, b : N0 → R and α, µ ∈ R such that 0 < α < 1.

For this purpose, we analyse the alternative form of (1.1) and (1.2) which turns
out to be a Volterra difference equation of convolution type of the form

(1.3) u(t) = f(t) +
t∑

s=0
k(t− s;λ)u(s), t ∈ N0,

where f , k : N0 → R and λ ∈ R. For simplicity, we choose the convolution kernel

(1.4) k(t;λ) = λ(t+ 1)α−1

Γ(α) , t ∈ N0.

The significance of (1.3)-(1.4) lies in its association with fractional nabla calculus as
described follows.

Let u(0) = u0. Consider a linear fractional nabla difference equation of Riemann-
Liouville type
(1.5)

(
∇α

0u
)
(t) = λu(t), 0 < α < 1, λ 6= 1, t ∈ N1.

Then, u(t) is a solution of (1.5) if and only if

(1.6) u(t) = (t+ 1)α−1

Γ(α) u(0) + λ

Γ(α)

t∑
s=1

(t− s+ 1)α−1u(s), t ∈ N0.

We observe that (1.6) belongs to the class of (1.3)-(1.4) with

f(t) = (1− λ)(t+ 1)α−1

Γ(α) u(0).

If we consider a fractional nabla difference equation of Caputo type of the form
(1.7)

(
∇α

0∗u
)
(t) = λu(t), 0 < α < 1, λ 6= 1, t ∈ N1,
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then u(t) is a solution of (1.7) if and only if

(1.8) u(t) = u(0) + λ

Γ(α)

t∑
s=1

(t− s+ 1)α−1u(s), t ∈ N0.

Clearly, (1.8) also belongs to the class of (1.3)-(1.4) with

f(t) =
[
1− λ(t+ 1)α−1

Γ(α)

]
u(0).

Consequently, the qualitative properties of solutions of (1.5) and (1.7) are similar to
that of (1.3)-(1.4).

The present article is organized as follows: Section 2 contains preliminaries on
fractional nabla calculus. In section 3, we construct the resolvent kernel associated
with (1.3)-(1.4) using discrete Laplace transform. In Section 4, we establish sufficient
conditions on boundedness and stability properties of solutions of (1.3)-(1.4). As an
application, we study a few qualitative properties of the following linear nonhomoge-
neous fractional nabla difference equations in Section 5(

∇α
0u
)
(t) =λu(t) + g(t), t ∈ N1,(1.9) (

∇α
0∗u
)
(t) =λu(t) + g(t), t ∈ N1,(1.10)

where g : N0 → R. Using the results obtained in Sections 3 and 4, we establish
sufficient conditions on the qualitative behaviour of (1.1) and (1.2) in Section 6.

2. Preliminaries

Throughout this article, we use the following notations, definitions and known
results of fractional nabla calculus [1, 5, 7, 14]. Denote the set of all real numbers and
complex numbers by R and C, respectively. For any a, b ∈ R such that a < b, define
Na = {a, a+ 1, a+ 2, . . . } and Nb

a = {a, a+ 1, a+ 2, . . . , b}. Assume that empty sums
and products are taken to be 0 and 1, respectively.

Definition 2.1 (Gamma Function). For any t ∈ R \ {. . . ,−2,−1, 0}, the gamma
function is defined by

Γ(t) =
∫ ∞

0
e−sst−1ds, t > 0,

Γ(t+ 1) = tΓ(t).

Definition 2.2 (Rising Factorial Function). For any t ∈ R \ {. . . ,−2,−1, 0} and
α ∈ R such that (t+ α) ∈ R \ {. . . ,−2,−1, 0}, the rising factorial function is defined
by

tα = Γ(t+ α)
Γ(t) , 0α = 0.

We observe the following properties of rising factorial functions.

Theorem 2.1. Assume that the following factorial functions are well defined:
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(a) tα(t+ α)β = tα+β;
(b) if t ≤ r then tα ≤ rα;
(c) if α < t ≤ r then r−α ≤ t−α;
(d) (t+ 1)α−1 ≤ (t+ 1)α−1 ≤ tα−1, 0 ≤ α ≤ 1;
(e) (t+ b)a−b = ta−b

[
1 +O

(
1
t

)]
, |t| → ∞.

Definition 2.3. Let u : Na → R and α ∈ R+. The αth-order backward (nabla) sum
of u is given by (

∇−αa u
)

(t) = 1
Γ(α)

t∑
s=a

(t− s+ 1)α−1u(s), t ∈ Na.

Definition 2.4. Let u : Na → R, α ∈ R and choose N ∈ N1 such that N−1 < α < N .
(a) (Nabla Difference) The first order backward (nabla) difference of u is defined

by
(∇u) (t) = u(t)− u(t− 1), t ∈ Na+1,

and the N th-order nabla difference of u is defined recursively by(
∇Nu

)
(t) =

(
∇
(
∇N−1u

))
(t), t ∈ Na+N .

(b) (R-L Fractional Nabla Difference) The Riemann-Liouville type αth-order nabla
difference of u is given by

(∇α
au) (t) =

(
∇N

(
∇−(N−α)
a u

))
(t), t ∈ Na+N .

(c) (Caputo Fractional Nabla Difference) The Caputo type αth-order nabla differ-
ence of u is given by

(∇α
a∗u) (t) =

(
∇−(N−α)
a

(
∇Nu

))
(t), t ∈ Na+N .

Theorem 2.2 (Power Rule). Let α ∈ R+ and ν ∈ R. Assume that the following
factorial functions are well defined

∇−αa (t− a+ 1)ν = Γ(ν + 1)
Γ(ν + α + 1)(t− a+ 1)ν+α.

Theorem 2.3. [9] For any α > 0, the following equality holds:

∇−αa+1∇u(t) = ∇∇−αa u(t)− (t− a+ 1)α−1

Γ(α) u(a).

Mittag-Leffler [22] and Agarwal [22] introduced the one and two parameter Mittag-
Leffler functions which play a very important role in the theory of fractional calculus.

Definition 2.5. [22] The one and two parameter Mittag-Leffler functions are defined
by

Eα(t) =
∞∑
k=0

tk

Γ(αk + 1) , Eα,β(t) =
∞∑
k=0

tk

Γ(αk + β) ,

where α, β > 0 and t ∈ R.
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Recently, Wang et al. [12] have obtained the following estimations on Eα, Eα,α and
Eα,α+β.
Lemma 2.1. [12] Let 0 < α, β < 1. The functions Eα, Eα,α and Eα,α+β are non-
negative and for any λ > 0 and t ∈ [0, T ], T > 0,

Eα(−λtα) ≤ 1, Eα,α(−λtα) ≤ 1
Γ(α) , Eα,α+β(−λtα) ≤ 1

Γ(α + β) .

Atsushu Nagai [2] and Atici & Eloe [10] defined the one and two parameter nabla
Mittag-Leffler functions of fractional nabla calculus as follows.
Definition 2.6. [2,10] The one and two parameter nabla Mittag-Leffler functions are
defined by

Fα(λ, tα) =
∞∑
k=0

λktαk

Γ(αk + 1) , Fα,β(λ, tα) =
∞∑
k=0

λktαk

Γ(αk + β) ,

where α, β > 0, |λ| < 1 and t ∈ N0.
Analogous to Lemma 2.1, here we obtain the estimates on Fα, Fα,α and Fα,β.

Lemma 2.2. Let 0 < α, β < 1. The functions Fα, Fα,α and Fα,β are non-negative
and for any 0 < λ < 1 and t ∈ N0,

Fα(−λ, tα) ≤ 1, Fα,α(−λ, tα) ≤ 1
Γ(α) , Fα,α+β(−λ, tα) ≤ 1

Γ(α + β) .

Proof. Clearly Fα(−λ, 0α) = 1. For t ∈ N1, consider

Fα(−λ, tα) =
∞∑
k=0

(−λ)ktαk
Γ(αk + 1)

=
∞∑
k=0

(−λ)k
Γ(αk + 1)

Γ(t+ αk)
Γ(t)

= 1
Γ(t)

∞∑
k=0

(−λ)k
Γ(αk + 1)

[ ∫ ∞
0

e−ss(t+αk)−1ds
]

= 1
Γ(t)

∫ ∞
0

e−sst−1
[ ∞∑
k=0

(−λsα)k
Γ(αk + 1)

]
ds

= 1
Γ(t) lim

T→∞

∫ T

0
e−sst−1Eα(−λsα)ds

≤ 1
Γ(t)

∫ ∞
0

e−sst−1ds

= 1.
Similarly, we can prove the other results. Hence the proof. �

Acar & Atici [21] studied exponential functions of fractional nabla calculus along
with some relations to the nabla Mittag-Leffler functions.
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Definition 2.7. [21] The exponential function of fractional nabla calculus is defined
by

êα,α(λ, tα) = (1− λ)
∞∑
k=0

λk(t+ 1)(k+1)α−1

Γ((k + 1)α) ,

where 0 < α < 1, |λ| < 1 and t ∈ N0.
We observe the following properties of exponential functions from the literature [21].

Theorem 2.4. [21] Let 0 < α < 1, |λ| < 1 and t ∈ N0. Then we have the following:
(a) êα,α(λ, tα) ≥ 0;
(b) êα,α(λ, 0α) = 1;
(c) êα,α(λ, tα) = (1− λ)(t+ 1)α−1Fα,α(λ, (t+ α)α).
Atici & Eloe [10] introduced the discrete Laplace transform, known as N -transform,

to solve fractional nabla difference equations.
Definition 2.8. [10] For any u : Na → R, the N -transform of u is defined by

Na

[
u(t)

]
=
∞∑
j=a

u(j)(1− z)j−1,

for each z ∈ C for which the series converges.
Definition 2.9. [11] Let u : Na → R. u is said to be of exponential order r, r > 0, if
there exists a constant A > 0 such that∣∣∣u(t)

∣∣∣ ≤ Ar−t,

for sufficiently large t ∈ Na.
Theorem 2.5. [11] Suppose u is of exponential order r, r > 0. Then, Na [u(t)] exists
for each z lies inside the open ball B1(r) = {z ∈ C : |1− z| < r}.

Definition 2.10. [10] For any u, v : Na → R, the convolution of u and v is defined
by

(u ∗a v) (t) =
t∑

s=a
u(t+ a− s+ 1)v(s).

Theorem 2.6. [10] We observe the following properties of N-transform.
(a) Na [(u ∗a v) (t)] = N1 [u(t+ a)]Na [v(t)].
(b) Na

[
(t− a+ 1)α

]
= (1− z)a−1 Γ(α+1)

zα+1 , |1− z| < 1, α ∈ R \ {. . . ,−3,−2,−1}.
(c) Na

[
(t− a+ 1)αµ−t

]
= (1− z)a−1 µα+1−aΓ(α+1)

(z+µ−1)α+1 , |1− z| < µ.
(d) Na [(∇−αa u) (t)] = z−αNa [u(t)], α > 0.
(e) Na [(∇α

au) (t)] = zαNa [u(t)], 0 < α < 1.
(f) Na+1 [(∇α

au) (t)] = zαNa [u(t)]− (1− z)a−1u(a), 0 < α < 1.
(g) Na

[
Fα(λ, (t− a+ 1)α)

]
= (1−z)a−1zα−1

(zα−λ) , |zα| > |λ|.
(h) Na

[
êα,α(λ, (t− a)α)

]
= (1−z)a−1(1−λ)

(zα−λ) , |zα| > |λ|.
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3. Resolvent Kernel of (1.3)–(1.4)

In this section, we obtain the resolvent kernel associated with (1.3)-(1.4), using
N -transform.

Definition 3.1. [28] The resolvent kernel r(t;λ) for the kernel k(t;λ) in (1.3) is
defined as the solution of the summation equation

(3.1) r(t) = −k(t) +
t∑

s=0
r(t− s;λ)k(s), t ∈ N0.

The equivalent form of (3.1) is given by

r(t) = −k(t) +
t∑

s=0
k(t− s;λ)r(s), t ∈ N0.

Clearly r : N0 → R. The condition λ 6= 1 guarantees the existence of unique
solution r(t;λ) of (3.1). Further, the solution of (1.3) is given by

(3.2) u(t) = f(t)−
t∑

s=0
r(t− s;λ)f(s), t ∈ N0.

Now we express the N -transform of r(t;λ) in terms of the N-transform of k(t;λ).
Applying the N0-transform to (1.3), we get

(3.3) N0 [u(t)] = N0 [f(t)] +N1 [k(t− 1)]N0 [u(t)] .

Applying the N0-transform to (3.2), we get

(3.4) N0 [u(t)] = N0 [f(t)]−N1 [r(t− 1)]N0 [f(t)] .

Eliminating N0 [u(t)] and N0 [f(t)] from (3.3) and (3.4), we obtain

(3.5) N1
[
r(t− 1)

]
= N1 [k(t− 1)]
N1 [k(t− 1)]− 1 .

Next, we determine r(t;λ) from (3.5). Applying inverse N1-transform to (3.5), we get

r(t− 1;λ) = N−1
1

[
N1 [k(t− 1)]

N1 [k(t− 1)]− 1

]

= −λN−1
1

[ 1
zα − λ

]
= − λ

(1− λ) êα,α(λ, (t− 1)α),

implies

(3.6) r(t;λ) = − λ

(1− λ) êα,α(λ, tα), |λ| < 1, t ∈ N0.
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Thus, a necessary and sufficient condition for the existence and unicity of the solution
of (1.3)-(1.4) is that |λ| < 1. Finally, using (3.6) in (3.2), the unique solution of
(1.3)-(1.4) is given by

(3.7) u(t) = f(t) + λ

(1− λ)

t∑
s=0

êα,α(λ, (t− s)α)f(s), |λ| < 1, t ∈ N0.

4. Boundedness and Stability of (1.3)-(1.4)

This section deals with boundedness and stability properties of (1.3)-(1.4) in l∞,
the Banach space comprising of bounded sequences of real numbers with respect to
the supremum norm defined by

‖u‖∞ = sup
t∈N0

|u(t)|,

for any u = {u(t)}t∈N0 ∈ l∞. Let f ∈ l∞. From (3.7), we have

|u(t)| ≤ |f(t)|+ |λ|
(1− λ)

t∑
s=0

êα,α(λ, (t− s)α)|f(s)|

≤ ‖f‖∞ + |λ|
(1− λ)‖f‖∞

t∑
s=0

êα,α(λ, (t− s)α)

= ‖f‖∞ + |λ|‖f‖∞
t∑

s=0
(t− s+ 1)α−1Fα,α(λ, (t− s+ α)α)

= ‖f‖∞ + |λ|‖f‖∞
t∑

s=0
(t− s+ 1)α−1

∞∑
k=0

λk(t− s+ α)αk
Γ(αk + α)

= ‖f‖∞ + |λ|‖f‖∞
∞∑
k=0

λk

Γ(αk + α)

t∑
s=0

(t− s+ 1)α−1(t− s+ α)αk

= ‖f‖∞ + |λ|‖f‖∞
∞∑
k=0

λk

Γ(αk + α)

t∑
s=0

(t− s+ 1)αk+α−1

= ‖f‖∞ + |λ|‖f‖∞
∞∑
k=0

λk(t+ 1)αk+α

Γ(αk + α + 1)

= ‖f‖∞ + |λ|
λ
‖f‖∞

[
Fα(λ, (t+ 1)α)− 1

]
.(4.1)

We make the following observations from (4.1).
(a) If λ ∈ (−1, 0] then ‖u‖∞ ≤ 2‖f‖∞. So, the unique solution of (1.3)-(1.4) is

bounded in l∞ if λ ∈ (−1, 0].
(b) The unique solution of (1.3)-(1.4) is uniformly stable in l∞ if λ ∈ (−1, 0].

We also define
l∞0 =

{
u : u ∈ l∞ such that lim

t→∞
u(t) = 0

}
.
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Then, l∞0 is also a Banach space with respect to the supremum norm. Now, assume
that −1 < λ ≤ 0 and f ∈ l∞0 . Then, for any ε > 0, there exists N = N(ε) such that

|f(t)| < ε, t ∈ NN .

From (3.7), we have

|u(t)| =
∣∣∣∣f(t) + λ

(1− λ)

t∑
s=0

êα,α(λ, (t− s)α)f(s)
∣∣∣∣

=
∣∣∣∣f(t) + λ

(1− λ)

N−1∑
s=0

êα,α(λ, (t− s)α)f(s)

+ λ

(1− λ)

t∑
s=N

êα,α(λ, (t− s)α)f(s)
∣∣∣∣

≤|f(t)|+ |λ|
(1− λ)

N−1∑
s=0

êα,α(λ, (t− s)α)|f(s)|

+ |λ|
(1− λ)

t∑
s=N

êα,α(λ, (t− s)α)|f(s)|

≤|f(t)|+ |λ|‖f‖∞
N−1∑
s=0

(t− s+ 1)α−1Fα,α(λ, (t− s+ α)α)

+ ε|λ|
t∑

s=N
(t− s+ 1)α−1Fα,α(λ, (t− s+ α)α)

≤|f(t)|+ |λ|‖f‖∞
1

Γ(α)

N−1∑
s=0

(t− s+ 1)α−1

+ ε|λ|
t∑

s=0
(t− s+ 1)α−1Fα,α(λ, (t− s+ α)α)

≤|f(t)|+ |λ|‖f‖∞
1

Γ(α)

N−1∑
s=0

(
t

N

)α−1
(N − 1− s+ 1)α−1

+ ε
|λ|
λ

[
Fα(λ, (t+ 1)α)− 1

]
=|f(t)|+

( |λ|‖f‖∞NαN1−α

Γ(α + 1)

)
tα−1 + ε

|λ|
λ

[
Fα(λ, (t+ 1)α)− 1

]
.

Consequently, we get
lim
t→∞

u(t) = 0.

Based on the above discussion, we frame the following result.

Theorem 4.1. Assume that −1 < λ ≤ 0 and f ∈ l∞0 . Then, the unique solution of
(1.3)-(1.4) is uniformly asymptotically stable in l∞0 .
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5. Applications

In this section, we discuss a few qualitative properties of solutions of (1.5), (1.7),
(1.9) and (1.10) using the main results established in previous section.

Consider (1.5). Clearly,
sup
t∈N0

|f(t)| = (1− λ)|u(0)| and lim
t→∞

f(t) = 0.

Thus, we have the following result.

Corollary 5.1. Assume that −1 < λ ≤ 0. Then, all solutions of (1.5) are bounded
and asymptotically stable.

The following example illustrates this fact.

Example 5.1. Consider the linear fractional nabla difference equation(
∇0.5

0 u
)

(t) = (−0.5)u(t), t ∈ N1.(5.1)

Solution: Here α = 0.5 ∈ (0, 1) and λ = −0.5 ∈ (−1, 0]. Thus, by Corollary 5.1,
all solutions of (5.1) are bounded and asymptotically stable. A particular solution of
(5.1) for u(0) = 1 is shown in Figure 1.

Figure 1.

Next, consider (1.7). Clearly,
sup
t∈N0

|f(t)| = |u(0)| and lim
t→∞

f(t) = u(0).

Thus, we have the following result.
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Corollary 5.2. Assume that −1 < λ ≤ 0. Then, all solutions of (1.7) are bounded
and stable. Only, the zero solution of (1.7) is asymptotically stable.

Next, consider (1.9). Clearly, u(t) is a solution of (1.9) if and only if

(5.2) u(t) = (t+ 1)α−1

Γ(α) u(0) + 1
Γ(α)

t∑
s=1

(t− s+ 1)α−1[λu(s) + g(s)], t ∈ N0.

We observe that (5.2) belongs to the class of (1.3)-(1.4) with

f(t) = (1− λ)(t+ 1)α−1

Γ(α) u(0) + 1
Γ(α)

t∑
s=1

(t− s+ 1)α−1g(s).

Hence, we have the following results.

Corollary 5.3. Assume that −1 < λ ≤ 0 and

sup
t∈N0

∣∣∣∣ 1
Γ(α)

t∑
s=1

(t− s+ 1)α−1g(s)
∣∣∣∣ <∞.

Then, all solutions of (1.9) are bounded and stable. Further, if

lim
t→∞

[ 1
Γ(α)

t∑
s=1

(t− s+ 1)α−1g(s)
]

= 0

holds, then all solutions of (1.9) are asymptotically stable.

The following example demonstrates this corollary.

Example 5.2. The solution of(
∇0.5

0 u
)

= (−0.5)u+ 1
(t+ 1)0.75 , t ∈ N1.(5.3)

Here α = 0.5 ∈ (0, 1) and λ = −0.5 ∈ (−1, 0]. Since (t + 1)α−1 ≤ (t + 1)α−1 for
0 ≤ α ≤ 1, we have

1
Γ(α)

t∑
s=1

(t− s+ 1)α−1g(s) = 1
Γ(0.5)

t∑
s=1

(t− s+ 1)−0.5(s+ 1)−0.75

≤ 1
Γ(0.5)

t∑
s=1

(t− s+ 1)−0.5(s+ 1)−0.75

= ∇−0.5
0 (t+ 1)−0.75 − 1

Γ(0.5)(t+ 1)−0.5

= Γ(0.25)
Γ(0.75)(t+ 1)−0.25 − 1

Γ(0.5)(t+ 1)−0.5

≤ Γ(0.25)
Γ(0.75) .

We know that
lim
t→∞

(t+ 1)−0.25 = lim
t→∞

(t+ 1)−0.5 = 0.
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Thus, we have

sup
t∈N0

∣∣∣∣ 1
Γ(α)

t∑
s=1

(t− s+ 1)α−1g(s)
∣∣∣∣ <∞

and
lim
t→∞

[ 1
Γ(α)

t∑
s=1

(t− s+ 1)α−1g(s)
]

= 0,

implies, by Corollary 5.3, all solutions of (5.3) are bounded and asymptotically stable.
A particular solution of (5.3) for u(0) = 1 is shown in Figure 2.

Figure 2.

Finally, consider (1.10). Clearly, u(t) is a solution of (1.10) if and only if

(5.4) u(t) = u(0) + 1
Γ(α)

t∑
s=1

(t− s+ 1)α−1[λu(s) + g(s)], t ∈ N0.

We observe that (5.4) belongs to the class of (1.3)-(1.4) with

f(t) =
[
1− λ(t+ 1)α−1

Γ(α) u(0)
]

+ 1
Γ(α)

t∑
s=1

(t− s+ 1)α−1g(s).

Consequently, we have the following result.

Corollary 5.4. Assume that −1 < λ ≤ 0 and

sup
t∈N0

∣∣∣∣ 1
Γ(α)

t∑
s=1

(t− s+ 1)α−1g(s)
∣∣∣∣ <∞.
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Then, all solutions of (1.10) are bounded and stable. Further, if

lim
t→∞

[ 1
Γ(α)

t∑
s=1

(t− s+ 1)α−1g(s)
]

= 0

holds, then only the zero solution of (1.10) is asymptotically stable.

6. Extension

In this section, we establish sufficient conditions on the qualitative behaviour of
(1.1) and (1.2) using the results obtained in Sections 3 and 4. For this purpose, first
we show that (1.1) and (1.2) can be expressed in the form of (1.3).

Lemma 6.1. u is a solution of (1.1) if and only if u is a solution of

(6.1) u(t) = F1(t) +
t∑

s=0
K(t− s;µ)u(s),

where

F1(t) = (t+ 1)α−1

Γ(α) u(0) [1− µ− b(0)]

and

K(t;µ) = µ
(t+ 1)α−1

Γ(α) +
(
∇−α0 b

)
(t).

Proof. Consider (1.1). Applying the operator ∇−α1 on both sides of (1.1), we get

∇−α1 ∇α
0u(t) = µ

(
∇−α1 u

)
(t) +∇−α1

[
t∑

s=0
b(t− s)u(s)

]
,

which can be written in the form

∇−α1 ∇∇
−(1−α)
0 u(t) = µ

(
∇−α1 u

)
(t) + 1

Γ(α)

t∑
s=1

(t− s+ 1)α−1
[

s∑
r=0

b(s− r)u(r)
]
.

Applying Theorem 2.3 on left hand side and changing the order of summation on
right hand side, we obtain

∇∇−α0 ∇
−(1−α)
0 u(t)− (t+ 1)α−1

Γ(α)
[
∇−(1−α)

0 u(t)
]
t=0

=−(t+ 1)α−1

Γ(α) u(0) [µ+b(0)]+µ
(
∇−α0 u

)
(t)+

t∑
r=0

u(r)
[

1
Γ(α)

t∑
s=r

(t−s+ 1)α−1b(s− r)
]
.

Hence we have
∇∇−α0 ∇

−(1−α)
0 u(t)

=(t+ 1)α−1

Γ(α) u(0) [1− µ− b(0)] +
t∑

r=0

[
µ

(t− r + 1)α−1

Γ(α) +
(
∇−α0 b

)
(t− r)

]
u(r).
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It follows that
u(t) = F1(t) +

t∑
r=0

K(t− r;µ)u(r).

Hence the proof. �

Lemma 6.2. u is a solution of (1.2) if and only if u is a solution of

(6.2) u(t) = F2(t) +
t∑

s=0
K(t− s;µ)u(s),

where

F2(t) = u(0)− (t+ 1)α−1

Γ(α) u(0)
[
µ+ b(0)

]
.

A necessary and sufficient condition for the existence and unicity of the solutions of
(1.1) and (1.2) is that µ+b(0) 6= 1. Next, we obtain the resolvent kernel corresponding
to (6.1) and (6.2). The resolvent kernel R(t) for the kernel K(t) in (6.1) is given by

N1 [R(t− 1)] = N1 [K(t− 1)]
N1 [K(t− 1)]− 1 or N0 [R(t)] = N0 [K(t)]

(1− z)N0 [K(t)]− 1
or

N0 [R(t)] = (1− z)−1
(

µ+ (1− z)N0 [b(t)]
µ+ (1− z)N0 [b(t)]− zα

)
.(6.3)

Thus, the unique solution of (1.1) is given by

(6.4) u(t) = F1(t)−
t∑

s=0
R(t− s)F1(s), t ∈ N0.

Similarly, the unique solution of (1.2) is given by

(6.5) u(t) = F2(t)−
t∑

s=0
R(t− s)F2(s), t ∈ N0.

Finally, we conclude this article with a discussion on boundedness and stability of
(1.1) and (1.2) in l∞. We have

sup
t∈N0

|F1(t)| = |u(0)|
∣∣∣1− µ− b(0)

∣∣∣, lim
t→∞

F1(t) = 0

and
sup
t∈N0

|F2(t)| = |u(0)|, lim
t→∞

F2(t) = u(0).

So, F1, F2 ∈ l∞. From (6.4) and (6.5), we have

|u(t)| ≤ |F1(t)|+
t∑

s=0
|R(t− s)||F1(s)| ≤ ‖F1‖∞ + ‖F1‖∞

t∑
s=0
|R(s)|

and
|u(t)| ≤ |F2(t)|+

t∑
s=0
|R(t− s)||F1(s)| ≤ ‖F2‖∞ + ‖F2‖∞

t∑
s=0
|R(s)|,
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respectively. Then, we have the following observations.

Theorem 6.1. All solutions of (1.1) and (1.2) are bounded and stable in l∞ if

(6.6) sup
t∈N0

t∑
s=0
|R(s)| = M <∞.

Theorem 6.2. All solutions of (1.1) are asymptotically stable in l∞0 if (6.6) holds
and

(6.7) lim
t→∞

R(t) = 0.

Proof. We know that F1 ∈ l∞0 . Then, for any ε > 0, there exists N1 = N1(ε) such that

|F1(t)| < ε, t ∈ NN1 .

It follows from (6.7) that there exists N2 = N2(ε) such that
N1−1∑
s=0
|R(t− s)| < ε, t ∈ NN2 .

Then, for t > max{N1, N2}, we have

|u(t)| =
∣∣∣∣F1(t)−

t∑
s=0

R(t− s)F1(s)
∣∣∣∣

=
∣∣∣∣F1(t)−

N1−1∑
s=0

R(t− s)F1(s)−
t∑

s=N1

R(t− s)F1(s)
∣∣∣∣

≤ |F1(t)|+ ‖F1‖∞
N1−1∑
s=0
|R(t− s)|+ ε

t∑
s=N1

|R(t− s)|

≤ |F1(t)|+ ε‖F1‖∞ +Mε.

Consequently, we get
lim
t→∞

u(t) = 0.

Hence the proof. �

Theorem 6.3. The null solution corresponding to (1.2) is asymptotically stable in
l∞0 if (6.6) and (6.7) hold.

Example 6.1. Consider the fractional nabla difference equation of Volterra type(
∇0.5

0 u
)
(t) =

t∑
s=0

1
2t−s+1u(s), t ∈ N1.(6.8)

Here α = 0.5 ∈ (0, 1), µ = 0, b(t) = 1
2t+1 such that µ+ b(0) 6= 1. We have

(1− z)N0 [b(t)] = 1
2

∞∑
j=0

(1− z
2

)j
= 1

1 + z
.
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Then, from (6.3) we have

N0 [R(t)] = −(1− z)−1
∞∑
n=0

[
1

z0.5(1 + z)

]n+1

.

Applying inverse N0 on both sides, we get

R(t) = −
∞∑
n=0

N−1
0

N1

[
tn

2t+nΓ(n+ 1)

]
N0

 (t+ 1)0.5(n−1)

Γ((0.5)(n+ 1))


= −

∞∑
n=0

 tn

2t+nΓ(n+ 1) ∗0
(t+ 1)0.5(n−1)

Γ((0.5)(n+ 1))


= −

∞∑
n=0

t∑
s=0

(t− s+ 1)0.5(n−1)

Γ((0.5)(n+ 1))
(s+ 1)n

2s+nΓ(n+ 1)

= −
∞∑
n=0

1
2nΓ(n+ 1)∇

−(0.5)(n+1)
0

[
(t+ 1)n

2t

]
.

Since (t+1)n
2t ≤ (t+ 1)n for t ∈ N0, we have

∇−(0.5)(n+1)
0

[(t+ 1)n
2t

]
≤ ∇−(0.5)(n+1)

0 (t+ 1)n = Γ(n+ 1)
Γ((1.5)(n+ 1))(t+ 1)(1.5)n+0.5.

Then,

|R(t)| ≤
∞∑
n=0

1
2nΓ((1.5)(n+ 1))(t+ 1)(1.5)n+0.5.

Now, consider
t∑

s=0
|R(s)| ≤

t∑
s=0

∞∑
n=0

1
2nΓ((1.5)(n+ 1))(t+ 1)(1.5)n+0.5

=
∞∑
n=0

1
2n

[
1

Γ((1.5)(n+ 1))

t∑
s=0

(t− s+ 1)(1.5)(n+1)−1
]

=
∞∑
n=0

1
2n∇

−(1.5)(n+1)
0 (t+ 1)0

=
∞∑
n=0

1
2nΓ((1.5)n+ 2.5)(t+ 1)(1.5)(n+1).

Let
an = 1

2nΓ((1.5)n+ 2.5)(t+ 1)(1.5)(n+1) = 1
2n

Γ(t+ (1.5)n+ 2.5)
Γ(t+ 1)Γ((1.5)n+ 2.5) .

Consider

lim
n→∞

an+1

an
= 1

2 lim
n→∞

Γ((1.5)n+ 1)
Γ((1.5)n+ 2.5) lim

n→∞

Γ(t+ (1.5)n+ 2.5)
Γ(t+ (1.5)n+ 1) = 1

2 < 1.
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Then, by Ratio test,
∞∑
n=0

an

converges implies

sup
t∈N0

t∑
s=0
|R(s)| <∞.

Thus, by Theorem 6.1, all solutions of (6.8)) are bounded and stable in l∞.

Example 6.2. Consider the fractional nabla difference equation of Volterra type(
∇0.5

0 u
)
(t) = −(0.75)

t∑
s=0

(t− s+ 1)−0.75

Γ(0.25) u(s), t ∈ N1.(6.9)

Here α = 0.5 ∈ (0, 1), µ = 0, b(t) = −(0.75) (t+1)−0.75

Γ(0.25) such that µ + b(0) 6= 1. We
have

(1− z)N0 [b(t)] = −(0.75)z−0.25.

Then, from (6.6) we have

N0 [R(t)] = (1− z)−1 0.75
0.75 + z0.75 .

Applying inverse N0 on both sides, we get

R(t) = 0.75
1.75 ê0.75,0.75

(
−0.75, t0.75

)
.

Now, consider
t∑

s=0
|R(s)| = 0.75

1.75

t∑
s=0

ê0.75,0.75
(
−0.75, t0.75

)
= 1− F0.75

(
−0.75, (t+ 1)0.75

)
≤ 1.

Also,
lim
t→∞

R(t) = 0.

Thus, by Theorem 6.2, all solutions of (6.9) are asymptotically stable in l∞0 .

Conclusion

In this article, we analysed a particular class of convolution type Volterra fractional
nabla difference equations (1.1) and (1.2). For this purpose, we expressed (1.1)
and (1.2) in the form of a linear implicit difference equation of Volterra type (1.3)
and established sufficient conditions on the existence, uniqueness, boundedness and
stability of the solutions of (1.1) and (1.2) using resolvent kernel and N -transform
techniques. This work can be extended to study a more general class of Volterra
type fractional nabla difference equations using Lyapunov functions and fixed point
theorems.
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