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ON TWO DIFFERENT CLASSES OF WARPED PRODUCT
SUBMANIFOLDS OF KENMOTSU MANIFOLDS
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Abstract. Warped product skew CR-submanifold of the form M = M1 ×f M⊥
of a Kenmotsu manifold M̄ (throughout the paper), where M1 = MT ×Mθ and
MT , M⊥, Mθ represents invariant, anti-invariant and proper slant submanifold
of M̄ , studied in [28] and another class of warped product skew CR-submanifold
of the form M = M2 ×f MT of M̄ , where M2 = M⊥ × Mθ is studied in [19].
Also the warped product submanifold of the form M = M3 ×f Mθ of M̄ , where
M3 = MT ×M⊥ and MT , M⊥, Mθ represents invariant, anti-invariant and proper
point wise slant submanifold of M̄ , were studied in [18]. As a generalization of the
above mentioned three classes, we consider a class of warped product submanifold
of the form M = M4 ×f Mθ3 of M̄ , where M4 = Mθ1 ×Mθ2 in which Mθ1 and Mθ2

are proper slant submanifolds of M̄ and Mθ3 represents a proper pointwise slant
submanifold of M̄ . A characterization is given on the existence of such warped
product submanifolds which generalizes the characterization of warped product
submanifolds of the form M = M1 ×f M⊥, studied in [28], the characterization
of warped product submanifolds of the form M = M2 ×f MT , studied in [19],
the characterization of warped product submanifolds of the form M = M3 ×f Mθ,
studied in [18] and also the characterization of warped product pointwise bi-slant
submanifolds of M̄ , studied in [17]. Since warped product bi-slant submanifolds of
M̄ does not exist (Theorem 4.2 of [17]), the Riemannian product M4 = Mθ1 ×Mθ2

cannot be a warped product. So, for studying the bi-warped product submanifolds of
M̄ of the formMθ1×f1Mθ2×f2Mθ3 , we have takenMθ1 , Mθ2 , Mθ3 as pointwise slant
submanifolds of M̄ of distinct slant functions θ1, θ2, θ3 respectively. The existence
of such type of bi-warped product submanifolds of M̄ is ensured by an example.
Finally, a Chen-type inequality on the squared norm of the second fundamental form
of such bi-warped product submanifolds of M̄ is obtained which also generalizes the
inequalities obtained in [33], [18] and [17], respectively.
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1. Introduction

The warped product [5] between two Riemannian manifolds (N1, g1) and (N2, g2)
is the Riemannian manifold N1 ×f N2 = (N1 ×N2, g), where

g = π∗1(g1) + (f ◦ π1)2π∗2(g2),
where π1 and π2 are canonical projections of M1 ×M2 onto M1 and M2, respectively
and π∗i (gi) is the pullback of gi via πi for i = 1, 2 and f : N1 → R+ is a smooth
function.

A warped product manifold N1 ×f N2 is said to be trivial if f is constant. For
M = N1 ×f N2, we have [5]

∇UX = ∇XU = (X ln f)U,(1.1)
for any X ∈ Γ(TN1) and U ∈ Γ(TN2).

The study of warped product submanifold was initiated in [8–10]. Then many
authors have studied warped product submanifolds of different ambient manifolds,
see [15–17, 20]. In [31], Tanno classified almost contact metric manifolds in three
different classes among which the third class was picked up by Kenmotsu in 1972
and he studied its differential geometric properties [21]. This class later named
after him by Kenmotsu manifold which is very important class to study. Warped
product submanifolds of Kenmotsu manifolds are also studied in ([1–3], [22], [23],
[26], [27], [32]-[38]). Multiply warped products (see [11, 12,38]) are generalizations of
warped product and Riemannian product manifolds and bi-warped products are special
classes of multiply warped products. Bi-warped product submanifolds of different
ambient manifolds are studied in [33,35]. For the study of slant immersion and slant
submanifolds in contact metric manifolds we refer [6, 7, 24]. In [29] Park studied
pointwise slant and pointwise semi slant submanifolds of almost contact Riemannian
manifolds.

Recently, Roy et al. studied the characterization theorem on warped product sub-
manifold of Sasakian manifolds in [30]. Motivated by the above studies, in this present
paper we have studied warped product submanifolds of M̄ of the formM = M4×fMθ3

of M̄ such that ξ ∈ Γ(TM4), where M4 = Mθ1 × Mθ2 , Mθ1 , Mθ2 are proper slant
submanifolds of M̄ and here Mθ3 represents a proper pointwise slant submanifold
of M̄ . Next we have studied bi-warped product submanifolds of M̄ of the form
Mθ1 ×f1 Mθ2 ×f2 Mθ3 , where Mθ1 , Mθ2 , Mθ3 are pointwise slant submanifolds of M̄ of
distinct slant functions θ1, θ2 and θ3, respectively.

The paper is organized as follows. Section 2 deals with some preliminary useful
results for construction of the paper, Section 3 is concerned with the study of a class
of submanifold M of M̄ such that TM = Dθ1 ⊕ Dθ2 ⊕ Dθ3 ⊕ 〈ξ〉, where Dθ1 ,Dθ2

are slant distributions and Dθ3 is pointwise slant distribution. In Section 4, we have
studied warped product submanifolds of the form M = M4 ×f Mθ3 of M̄ where
M4 = Mθ1 × Mθ2 such that ξ is orthogonal to Mθ3 with an supporting example.
In Section 5, a characterization theorem of the mentioned class has been obtained,
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Section 6 deals with bi-warped product submanifolds M = Mθ1 ×f1 Mθ2 ×f2 Mθ3 of
M̄ , where Mθ1 , ,Mθ2 , Mθ3 are pointwise slant submanifolds of M̄ and constructed an
example. In Section 7, we have obtained a generalized inequality for such class of
bi-warped product submanifolds of M̄ . The last section is the conclusion part of the
paper where we have shown how the results of this paper generalizes several results
of different works.

2. Preliminaries

An odd dimensional smooth manifold M̄2m+1 is said to be an almost contact metric
manifold [4] if it admits a (1, 1) tensor field φ, a vector field ξ, an 1-form η and a
Riemannian metric g which satisfy

φξ =0, η(φX) = 0, φ2X = −X + η(X)ξ,(2.1)
g(φX, Y ) =− g(X,φY ), η(X) = g(X, ξ), η(ξ) = 1,(2.2)
g(φX, φY ) =g(X, Y )− η(X)η(Y ),(2.3)

for all vector fields X, Y on M̄2m+1.
An almost contact metric manifold M̄2m+1(φ, ξ, η, g) is said to be Kenmotsu mani-

fold if the following conditions hold [21]:
∇̄Xξ =X − η(X)ξ,(2.4)

(∇̄Xφ)(Y ) =g(φX, Y )ξ − η(Y )φX,(2.5)

where ∇̄ denotes the Riemannian connection of g.
Let M be an n-dimensional submanifold of a Kenmotsu manifold M̄ . Throughout

the paper we assume that the submanifold M of M̄ is tangent to the structure vector
field ξ.

Let ∇ and ∇⊥ be the induced connections on the tangent bundle TM and the
normal bundle T⊥M of M respectively. Then the Gauss and Weingarten formulae
are given by
(2.6) ∇̄XY = ∇XY + h(X, Y )
and
(2.7) ∇̄XV = −AVX +∇⊥XV,
for all X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where h and AV are second fundamental
form and the shape operator (corresponding to the normal vector field V ) respectively
for the immersion of M into M̄ . The second fundamental form h and the shape
operator AV are related by g(h(X, Y ), V ) = g(AVX, Y ) for any X, Y ∈ Γ(TM) and
V ∈ Γ(T⊥M), where g is the Riemannian metric on M̄ as well as on M .

The mean curvature H of M is given by H = 1
n
traceh. A submanifold of a

Kenmotsu manifold M̄ is said to be totally umbilical if h(X, Y ) = g(X, Y )H for any
X, Y ∈ Γ(TM). If h(X, Y ) = 0 for all X, Y ∈ Γ(TM), then M is totally geodesic and
if H = 0, then M is minimal in M̄ .



968 S. K. HUI, M. H. SHAHID, T. PAL, AND J. ROY

Let {e1, . . . , en} be an orthonormal basis of the tangent bundle TM and {en+1, . . . ,
e2m+1} an orthonormal basis of the normal bundle T⊥M . We put

hrij = g(h(ei, ej), er) and ‖h‖2 = g(h(ei, ej), h(ei, ej)),

for r ∈ {n+ 1, . . . , 2m+ 1}, i, j = 1, 2, . . . , n.
For a differentiable function f on M , the gradient ∇f is defined by

g(∇f,X) = Xf,

for any X ∈ Γ(TM). As a consequence, we get

(2.8) ‖∇f‖2 =
n∑
i=1

(ei(f))2.

For any X ∈ Γ(TM) and V ∈ Γ(T⊥M), we can write
(a) φX = PX +QX;
(b) φV = bV + cV ,

where PX, bV are the tangential components and QX, cV are the normal components.
A submanifold M of an almost contact metric manifold M̄ is said to be slant if for

each non-zero vector X ∈ TpM , the angle θ between φX and TpM is constant, i.e., it
does not depend on the choice of p ∈M .

A submanifold M of an almost contact metric manifold M̄ is said to be pointwise
slant [13] if for any non-zero vectorX ∈ TpM at p ∈M , such thatX is not proportional
to ξp, the angle θ(X) between φX and T ∗pM = TpM−{0} is independent of the choice
of non-zero X ∈ T ∗pM .

For pointwise slant submanifold, θ is a function on M , which is known as slant
function of M . Invariant and anti-invariant submanifolds are particular cases of
pointwise slant submanifolds with slant function θ = 0 and π

2 respectively. Also a
pointwise slant submanifold M will be slant if θ is constant on M . Thus a pointwise
slant submanifold is proper if neither θ = 0, π2 nor constant. It may be noted that
[25] M is a pointwise slant submanifold of M̄ if and only if exists a constant λ ∈ [0, 1]
such that

(2.9) P 2 = λ(−I + η ⊗ ξ).

Furthermore, λ = cos2 θ for slant function θ. If M be a pointwise slant submanifold
of M̄ , then we have [34]:

(2.10) bQX = sin2 θ{−X + η(X)ξ}, cQX = −QPX.

Let M1, M2, M3 be Riemannian manifolds and let M = M1 ×f1 M2 ×f2 M3 be the
product manifold of M1, M2, M3 such that f1, f2 : M1 → R+ are real valued smooth
functions. For each i, denote by πi : M →Mi the canonical projection of M onto Mi,
i = 1, 2, 3. Then the metric on M , called a bi-warped metric is given by

g(X, Y ) = g(π1∗X, π2∗Y ) + (f1 ◦ π1)2g(π2∗X, π2∗Y ) + (f2 ◦ π1)2g(π3∗X, π3∗Y ),
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for any X, Y ∈ Γ(TM) and ∗ denotes the symbol for tangent maps. The manifold M
endowed with this product metric is called a bi-warped product manifold. Here f1, f2
are non-constant functions, called warping functions on M . Clearly, if both f1, f2 are
constant on M , then M is simply a Riemannian product manifold and if anyone of
the functions is constant, then M is a single warped product manifold. If neither f1
nor f2 is constant, then M is a proper bi-warped product manifold.

Let M = M1×f1 M2×f2 M3 be a warped product submanifold of M̄ . Then we have
[35]

∇XZ =
2∑
i=1

(X(ln fi))Zi,

for any X ∈ D1, the tangent space of M1 and Z ∈ Γ(TN), where N =f1 M2 ×f2 M3
and Zi is Mi components of Z for each i = 2, 3 and ∇ is the Levi-Civita connection
on M .

3. Submanifolds of M̄

In this section we consider submanifold M of M̄ such that
TM =Dθ1 ⊕Dθ2 ⊕Dθ3 ⊕ 〈ξ〉,
T⊥M =QDθ1 ⊕QDθ2 ⊕QDθ3 ⊕ ν,

where ν is a φ-invariant normal subbundle of T⊥M .
If M is such submanifold of M̄ , then for any X ∈ Γ(TM) we have

(3.1) X = T1X + T2X + T3X,

where T1, T2 and T3 are the projections from TM onto Dθ1 , Dθ2 and Dθ3 , respectively.
If we put P1 = T1 ◦ P , P2 = T2 ◦ P and P3 = T3 ◦ P then from (3.1), we get

(3.2) φX = P1X + P2X + P3X +QX,

for X ∈ Γ(TM).
From (2.9) and (3.2), we get

(3.3) P 2
i = cos2 θi(−I + η ⊗ ξ), for i = 1, 2, 3.

Now for the sake of further study we obtain the following useful results.

Lemma 3.1. Let M be a submanifold of M̄ such that TM = Dθ1 ⊕Dθ2 ⊕Dθ3 and
ξ ∈ Γ(Dθ1 ⊕Dθ2) then the following relations hold:

(sin2 θ1 − sin2 θ3)g(∇X1Y1, X3) =g(AQP1Y1X3 − AQY1P3X3, X1)(3.4)
+ g(AQP3X3Y1 − AQX3P1Y1, X1),

(sin2 θ2 − sin2 θ3)g(∇X2Y2, X3) =g(AQP2Y2X3 − AQY2P3X3, X2)(3.5)
+ g(AQP3X3Y2 − AQX3P2Y2, X2),

(sin2 θ2 − sin2 θ3)g(∇X1X2, X3) =g(AQP2X2X3 − AQX2P3X3, X1)(3.6)
+ g(AQP3X3X2 − AQX3P2X2, X1),
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(sin2 θ1 − sin2 θ3)g(∇X2X1, X3) =g(AQP1X1X3 − AQX1P3X3, X2)(3.7)
+ g(AQP3X3X1 − AQX3P1X1, X2),

for any X1, Y1 ∈ Γ(Dθ1 ⊕ 〈ξ〉), X2, Y2 ∈ Γ(Dθ2 ⊕ 〈ξ〉) and X3 ∈ Γ(Dθ3).

Proof. For any X1, Y1 ∈ Γ(Dθ1 ⊕ 〈ξ〉) and X3 ∈ Γ(Dθ3), we have from (2.3), (2.5) and
(3.2) that

g(∇X1Y1, X3) =g(∇̄X1P1Y1, φX3) + g(∇̄X1QY1, φX3)
=− g(φ∇̄X1P1Y1, X3) + g(∇̄X1QY1, P3X3) + g(∇̄X1QY1, QX3)
=− g(∇̄X1P

2
1 Y1, X3)− g(∇̄X1QP1Y1, X3) + g((∇̄X1φ)P1Y1, X3)

+ g(∇̄X1QY1, P3X3)− g(∇̄X1QX3, φY1) + g(∇̄X1QX3, P1Y1)
=− g(∇̄X1P

2
1 Y1, X3)− g(∇̄X1QP1Y1, X3) + g(∇̄X1QY1, P3X3)

+ g(∇̄X1bQX3, Y1) + g(∇̄X1cQX3, Y1) + g(∇̄X1QX3, P1Y1).
Using (2.7), (2.10) and (3.3), the above equation reduces to

g(∇X1Y1, X3) = cos2 θ1g(∇̄X1Y1, X3) + g(AQP1Y1X3, X1)− g(AQY1P3X3, X1)
+ sin2 θ3g(∇̄X1Y1, X3) + g(AQP3X3Y1, X1)− g(AQX3P1Y1, X1),

from which the relation (3.4) follows.
The relations (3.5)–(3.7) follow similarly. �

Lemma 3.2. Let M be a submanifold of M̄ where TM = Dθ1 ⊕Dθ2 ⊕Dθ3 such that
ξ ∈ Γ(Dθ1 ⊕Dθ2). Then the following relations hold:

(sin2 θ3 − sin2 θ1)g(∇X3Y3, X1) =g(AQP3Y3X1 − AQY3P1X1, X3)(3.8)
+ g(AQP1X1Y3 − AQX1P3Y3, X3)
+ (cos2 θ3 − cos2 θ1)η(X1)g(X3, Y3),

(sin2 θ3 − sin2 θ2)g(∇X3Y3, X2) =g(AQP3Y3X2 − AQY3P2X2, X3)(3.9)
+ g(AQP2X2Y3 − AQX2P3Y3, X3)
+ (cos2 θ3 − cos2 θ2)η(X2)g(X3, Y3),

for any X1 ∈ Γ(Dθ1 ⊕ 〈ξ〉), X2 ∈ Γ(Dθ2 ⊕ 〈ξ〉) and X3, Y3 ∈ Γ(Dθ3).

Proof. For any X1 ∈ Γ(Dθ1 ⊕ 〈ξ〉) and X3, Y3 ∈ Γ(Dθ3), we have from (2.3), (2.5) and
(3.2) that

g(∇X3Y3, X1) =g(∇̄X3P3Y3, φX1) + g(∇̄X3QY3, φX1)− η(X1)g(X3, Y3)
=− g(φ∇̄X3P3Y3, X1) + g(∇̄X3QY3, P1X1)

+ g(∇̄X3QY3, QX1)− η(X1)g(X3, Y3)
=− g(∇̄X3P

2
3 Y3, X1)− g(∇̄X3QP3Y3, X1) + g((∇̄X3φ)P3Y3, X1)

+ g(∇̄X3QY3, P1X1)− g(∇̄X3QX1, φY3)
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+ g(∇̄X3QX1, P3Y3)− η(X1)g(X3, Y3)
= cos2 θ3g(∇̄X3Y3, X1)− sin 2θ3X3(θ3)g(Y3, X1)

+ cos2 θ3η(X1)g(X3, Y3)− g(∇̄X3QP3Y3, X1)
+ g(∇̄X3QY3, P1X1) + g(∇̄X3bQX1, Y3) + g(∇̄X3cQX1, Y3)
− g((∇̄X3φ)QX1, Y3) + g(∇̄X3QX1, P3Y3)− η(X1)g(X3, Y3).

Using (2.5), (2.7), (2.10), orthogonality of the distributions and symmetry of the
shape operator, the above equation reduces to

g(∇X3Y3, X1) = cos2 θ3g(∇̄X3Y3, X1) + cos2 θ3η(X1)g(X3, Y3)
+ g(AQP3Y3X1, X3)− g(AQY3P1X1, X3)
+ sin2 θ1g(∇̄X1Y3, X1) + g(AQP1X1Y3, X3)
− g(AQX1P3Y3, X3)− cos2 θ1η(X1)g(X3, Y3).

Following the same computational procedure for any X2 ∈ Γ(Dθ2 ⊕ 〈ξ〉) and X3, Y3 ∈
Γ(Dθ3) we can establish the relation (3.9). And hence, the lemma is proved. �

4. Warped Product Submanifolds of Kenmotsu Manifolds

In this section we study warped product submanifolds of the form M = M4×f Mθ3

of M̄ where M4 = Mθ1 × Mθ2 such that ξ is orthogonal to Mθ3 . Here Mθ1 , Mθ2

represents proper slant submanifolds of M̄ with slant angles θ1, θ2, respectively and
Mθ3 represents pointwise-slant submanifolds of M̄ with slant function θ3.

Now we construct an example of a non-trivial warped product submanifold M of
M̄ of the form M4 ×f Mθ3 .

Example 4.1. Consider the Kenmotsu manifold M = R ×f C7 with the structure
(φ, ξ, η, g) is given by

φ

( 7∑
i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) + Z

∂

∂t

)
=

7∑
i=1

(
Xi

∂

∂yi
− Yi

∂

∂xi

)
,

ξ = ∂
∂t
, η = dt and g = η ⊗ η +∑7

i=1(dxi ⊗ dxi + dyi ⊗ dyi). Let M be a submanifold
of M̄ defined by the immersion χ as follows:

χ(u, v, θ, φ, r, s, t)
=(u cos θ, u sin θ, 2u+ 3v, 3u+ 2v, v cosφ, v sinφ, 3θ + 5φ, 5θ + 3φ, v cos θ, v sin θ,
u cosφ, u sinφ, 2r + 5s, 5r + 2s, t).

Then the local orthonormal frame of TM is spanned by the following:

Z1 = cos θ ∂

∂x1
+ sin θ ∂

∂y1
+ 2 ∂

∂x2
+ 3 ∂

∂y2
+ cosφ ∂

∂x6
+ sinφ ∂

∂y6
,

Z2 = 3 ∂

∂x2
+ 2 ∂

∂y2
+ cosφ ∂

∂x3
+ sinφ ∂

∂y3
+ cos θ ∂

∂x5
+ sin θ ∂

∂y5
,
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Z3 = −u sin θ ∂

∂x1
+ u cos θ ∂

∂y1
+ 3 ∂

∂x4
+ 5 ∂

∂y4
− v sin θ ∂

∂x5
+ v cos θ ∂

∂y5
,

Z4 = −v sinφ ∂

∂x3
+ v cosφ ∂

∂y3
+ 5 ∂

∂x4
+ 3 ∂

∂y4
− u sinφ ∂

∂x6
+ u cosφ ∂

∂y6
,

Z5 = 2 ∂

∂x7
+ 5 ∂

∂y7
, Z6 = 5 ∂

∂x7
+ 2 ∂

∂y7
and Z7 = ∂

∂t
.

Then

φZ1 = cos θ ∂

∂y1
− sin θ ∂

∂x1
+ 2 ∂

∂y2
− 3 ∂

∂x2
+ cosφ ∂

∂y6
− sinφ ∂

∂x6
,

φZ2 = 3 ∂

∂y2
− 2 ∂

∂x2
+ cosφ ∂

∂y3
− sinφ ∂

∂x3
+ cos θ ∂

∂y5
− sin θ ∂

∂x5
,

φZ3 = −u sin θ ∂

∂y1
− u cos θ ∂

∂x1
+ 3 ∂

∂y4
− 5 ∂

∂x4
− v sin θ ∂

∂y5
− v cos θ ∂

∂x5
,

φZ4 = −v sinφ ∂

∂y3
− v cosφ ∂

∂x3
+ 5 ∂

∂y4
− 3 ∂

∂x4
− u sinφ ∂

∂y6
− u cosφ ∂

∂x6
,

φZ5 = 2 ∂

∂y7
− 5 ∂

∂x7
and φZ6 = 5 ∂

∂y7
− 2 ∂

∂x7
.

We take, Dθ1 = Span{Z1, Z2} , Dθ2 = Span{Z5, Z6} and Dθ3 = Span{Z3, Z4}. Then
it is clear that Dθ1 and Dθ2 are proper slant distributions with slant angles cos−1 1

3
and cos−1 21

29 , respectively. Also, D
θ3 is a proper pointwise slant distribution with slant

function cos−1( 16
u2+v2+34).

Clearly, Dθ1 , Dθ2 and Dθ3 are integrable distributions. Let us say that M4 and Mθ3

are integral submanifolds of Dθ1 ⊕Dθ2 ⊕ 〈ξ〉 and Dθ3 , respectively. Then the metric
tensor gM of M is given by

gM = 15(du2 + dv2) + 29(dr2 + ds2) + (u2 + v2 + 34)(dθ2 + dφ2)
= gM4 + (u2 + v2 + 34)gMθ3

.

Thus M = M4 ×f Mθ3 is a warped product submanifold of M̄ with the warping
function f =

√
u2 + v2 + 34.

Next we obtain the following useful lemmas.
Lemma 4.1. Let M = M4 ×f Mθ3 be a warped product submanifold of M̄ such that
ξ ∈M4, where M4 = Mθ1 ×Mθ2, Mθ1 ,Mθ2 are proper slant submanifolds and Mθ3 is
a proper pointwise slant submanifold of M̄ , then

ξ ln f = 1,(4.1)
g(h(X1, Y1), QX3) = g(h(X1, X3), QY1),(4.2)
g(h(X2, Y2), QX3) = g(h(X2, X3), QY2),(4.3)
g(h(X1, X3), QX2) = g(h(X1, X2), QX3) = g(h(X2, X3), QX1),(4.4)

for X1, Y1 ∈Mθ1, X2, Y2 ∈Mθ2 and X3, Y3 ∈Mθ3.
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Proof. The proof of (4.1) is similar as in [28].
Now, for X1, Y1 ∈Mθ1 and X3 ∈Mθ3 , we have from (2.5) and (3.3) that

g(h(X1, X3), QY1) =− g(∇̄X1P3X3, Y1)− g(∇̄X1QX3, Y1)− g(∇̄X1X3, P1Y1).(4.5)
Then using (1.1) in (4.5), we get (4.2).

Proceeding the same, for any X2, Y2 ∈Mθ2 and X3 ∈Mθ3 , we get (4.2).
Again, for any X1 ∈ Mθ1 , X2 ∈ Mθ2 and X3 ∈ Mθ3 we have from (2.5) and (3.3)

that

g(h(X1, X3), QX2) =− g(∇̄X3P1X1, X2)− g(∇̄X3QX1, X2)− g(∇̄X3X1, P2X2).
(4.6)

Using (1.1) in (4.6), we find
(4.7) g(h(X1, X3), QX2) = g(h(X2, X3), QX1).
Also,

g(h(X1, X2), QX3) =− g(∇̄X1P2X2, X3)− g(∇̄X1P2X2, X3)− g(∇̄X1X2, P3X3).
(4.8)

Using (1.1) in (4.8), we get
(4.9) g(h(X1, X2), QX3) = g(h(X1, X3), QX2).
Combining (4.7) and (4.9), we obtain (4.4). This completes the proof. �

Lemma 4.2. Let M = M4 ×f Mθ3 be a warped product submanifold of M̄ such that
ξ ∈M4, where M4 = Mθ1 ×Mθ2, Mθ1, Mθ2 are proper slant submanifolds and Mθ3 is
a proper pointwise slant submanifold of M̄ , then

g(h(X3, X1), QY3)− g(h(X3, Y3), QX1)(4.10)
={(X1 ln f)− η(X1)}g(P3X3, Y3)− (P1X1 ln f)g(X3, Y3),
g(h(X3, X2), QY3)− g(h(X3, Y3), QX2)(4.11)

={(X2 ln f)− η(X2)}g(P3X3, Y3)− (P2X2 ln f)g(X3, Y3),
g(h(X3, Y3), QP1X1)− g(h(P3Y3, X3), QX1)(4.12)
+ g(h(X1, X3), QP3Y3)− g(h(P1X1, X3), QY3)

=(cos2 θ1 − cos2 θ3)[η(X1)− (X1 ln f)]g(X3, Y3),
g(h(X3, Y3), QP2X2)− g(h(P3Y3, X3), QX2)(4.13)
+ g(h(X2, X3), QP3Y3)− g(h(P2X2, X3), QY3)

=(cos2 θ2 − cos2 θ3)[η(X2)− (X2 ln f)]g(X3, Y3),
for X1 ∈Mθ1, X2 ∈Mθ2 and X3, Y3 ∈Mθ3.

Proof. From (2.5) and (3.3), we have for X1 ∈Mθ1 and X3, Y3 ∈Mθ3 that
g(h(X3, Y3), QX1) =− g(∇̄X3X1, P3Y3)− g(∇̄X3QY3, X1)(4.14)

+ η(X1)g(φX3, Y3) + g(∇̄X3P1X1, Y3).
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Using (2.7) and (1.1) in (4.14), we get (4.10). Following the same procedure, for any
X2 ∈Mθ2 and X3, Y3 ∈Mθ3 we easily obtain (4.11).

Next, replacing X1 by P1X1 and Y3 by P3Y3 in (4.10), respectively and then adding
the obtained equations, we get (4.12). Similarly, replacing X2 by P2X2 and Y3 by P3Y3
in (4.11), respectively and then adding the obtained equations, we get (4.13). �

5. Characterization

We prove the following theorem.

Theorem 5.1. Let M be a submanifold of M̄ such that TM = Dθ1 ⊕ Dθ2 ⊕ Dθ3

with ξ orthogonal to Dθ3, then M is locally a warped product submanifold of the form
M = M4 ×f Mθ3 where M4 = Mθ1 ×Mθ2 if and only if

AQP1X1Y3 − AQX1P3Y3 + AQP3Y3X1 − AQY3P1X1(5.1)
=(cos2 θ3 − cos2 θ1)[X1µ− η(X1)]Y3,

AQP2X2Y3 − AQX2P3Y3 + AQP3Y3X2 − AQY3P2X2(5.2)
=(cos2 θ3 − cos2 θ2)[X2µ− η(X2)]Y3,

ξµ =1,(5.3)

for every X1 ∈ Γ(Dθ1), X2 ∈ Γ(Dθ2), X3 ∈ Γ(Dθ3) and for some smooth function µ
on M satisfying where (Y3µ) = 0 for any Y3 ∈ Γ(Dθ3).

Proof. Let M = M4 ×f Mθ3 be a proper warped product submanifold of M̄ such that
M4 = Mθ1 ×Mθ2 . Denote the tangent space of Mθ1 , Mθ2 and Mθ3 by Dθ1 , Dθ2 and
Dθ3 respectively. Then from (4.2) we get
(5.4) g(AQP1X1Y3 − AQX1P3Y3 + AQP3Y3X1 − AQY3P1X1, X1) = 0.
Similarly, from (4.4) we get
(5.5) g(AQP1X1Y3 − AQX1P3Y3 + AQP3Y3X1 − AQY3P1X1, X2) = 0.
So, from (5.4) and (5.5) we conclude that
(5.6) AQP1X1Y3 − AQX1P3Y3 + AQP3Y3X1 − AQY3P1X1 ∈ Dθ3 .

Hence, from (4.12) and (5.6), relation (5.1) follows.
In similar way, in view of (4.3), (4.4) and (4.13) we get (5.2). The relation (5.3) is

directly obtained from (4.1).
Conversely, let M be a submanifold of M̄ such that TM = Dθ1 ⊕Dθ2 ⊕Dθ3 with ξ

orthogonal to Dθ3 and the conditions (5.1)–(5.3) satisfied. Then from (3.4) and (3.7),
in view of (5.1), respectively we get
(5.7) g(∇X1Y1, X3) = 0 and g(∇X2X1, X3) = 0,
and also from (3.5), (3.6) in view of (5.2), respectively we get
(5.8) g(∇X2Y2, X3) = 0 and g(∇X1X2, X3) = 0.
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Thus, from (5.7), (5.8) and the fact that ∇X3ξ = 0 we conclude that g(∇EF,X3) = 0
for every E,F ∈ Γ(Dθ1 ⊕Dθ2 ⊕ 〈ξ〉). Hence the leaves of Dθ1 ⊕Dθ2 ⊕ 〈ξ〉 are totally
geodesic in M .

Now, by virtue of (3.8), (5.1) yields
(5.9) g([X3, Y3], X1) = 0,
and by virtue of (3.9), (5.2) yields
(5.10) g([X3, Y3], X2) = 0.
Hence, from (5.9), (5.10) and the fact that h(A, ξ) = 0, for all A ∈ TM , we conclude
that

g([X3, Y3], E) = 0, for all X3, Y3 ∈ Γ(Dθ3),
and E ∈ Γ(Dθ1 ⊕Dθ2 ⊕ 〈ξ〉), consequently Dθ3 is integrable.

Let hθ3 be the second fundamental form ofMθ3 in M̄ . Then for any X3, Y3 ∈ Γ(Dθ3)
and X1 ∈ Γ(Dθ1), from (3.8), we find
(5.11) g(hθ3(X3, Y3), X1) = −(X1µ)g(X3, Y3).
Similarly, for X2 ∈ Γ(Dθ2), from (3.9) we get
(5.12) g(hθ3(X3, Y3), X2) = −(X2µ)g(X3, Y3).
Again, for any X3, Y3 ∈ Γ(Dθ3), in view of (5.3) we have
(5.13) g(hθ3(X3, Y3), ξ) = −(ξµ)g(X3, Y3).
Hence, from (5.11)–(5.13) we conclude that

g(hθ(X3, Y3), E) = −g(∇µ,E)g(X3, Y3),
for every X3, Y3 ∈ Γ(Dθ3) and E ∈ Γ(Dθ1 ⊕Dθ2⊕, 〈ξ〉). Consequently, Mθ3 is totally
umbilical in M̄ with mean curvature vector Hθ3 = −∇µ.

Finally, we will show that Hθ3 is parallel with respect to the normal connection ∇⊥
of Mθ3 in M . We take E ∈ Γ(Dθ1 ⊕Dθ3 ⊕ 〈ξ〉) and X3 ∈ Γ(Dθ3), then we have

g(∇⊥X3∇µ,E) = g(∇X3∇θ1µ,X1) + g(∇X3∇θ2µ,X2) + g(∇X3∇ξµ, ξ),

where ∇θ1 , ∇θ2 and ∇ξ are the gradient components of µ on M along Dθ1 ,Dθ2 and
〈ξ〉 respectively. Then by the property of Riemannian metric, the above equation
reduces to

g(∇⊥U∇µ,E) =X3g(∇θ1µ,X1)− g(∇θ1µ,∇X3X1) +X3g(∇θ2µ,X2)
− g(∇θ2µ,∇X3X2) +X3g(∇ξµ, ξ)− g(∇ξµ,∇X3ξ)

=X3(X1µ)− g(∇θ1µ, [X3, X1])− g(∇θ1µ,∇X1X3)
+X3(X2µ)− g(∇θ2µ, [X3, X2])− g(∇θ2µ,∇X2X3)
+X3(ξµ)− g(∇ξµ, [X3, ξ])− g(∇ξµ,∇ξX3)

=X1(X3µ) + g(∇X1∇θ1µ,X3) +X2(X3µ)
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+ g(∇X2∇θ2µ,X3) + ξ(X3µ)− g(∇ξ∇ξµ,X3)
=0,

since (X3µ) = 0 for every X3 ∈ Γ(Dθ3) and ∇X1∇θ1µ+∇X2∇θ2µ+∇ξ∇ξµ = ∇E∇µ
is orthogonal to Dθ3 for any E ∈ Γ(Dθ1 ⊕Dθ2 ⊕ 〈ξ〉) and ∇µ is the gradient along
M4 and M4 is totally geodesic in M̄ . Hence, the mean curvature vector Hθ3 of Mθ3

is parallel. Thus, Mθ3 is an extrinsic sphere in M . Hence, by Hiepko’s Theorem (see
[14]), M is locally a warped product submanifold. Thus, the proof is complete. �

6. Bi-Warped Product Submanifolds

In this section we have studied bi-warped product submanifolds M = Mθ1 ×f1

Mθ2 ×f2 Mθ3 of M̄ , where Mθ1 , Mθ2 , Mθ3 are pointwise slant submanifolds of M̄ and
an supporting example has been constructed. We denote Dθ1 , Dθ2 , Dθ3 as the tangent
spaces of Mθ1 , Mθ2 , Mθ3 , respectively.

Then we write
TM = Dθ1 ⊕Dθ2 ⊕Dθ3 ⊕ 〈ξ〉

and
T⊥M = QDθ1 ⊕QDθ2 ⊕QDθ3 .

Example 6.1. Consider the Kenmotsu manifold M = R ×f C10 with the structure
(φ, ξ, η, g) is given by

φ

( 10∑
i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi

)
+ Z

∂

∂t

)
=

10∑
i=1

(
Xi

∂

∂yi
− Yi

∂

∂xi

)
,

ξ = ∂
∂t
, η = dt and g = η ⊗ η +∑10

i=1(dxi ⊗ dxi + dyi ⊗ dyi). Let M be a submanifold
of M̄ defined by the immersion χ as follows:
χ(u, v, θ, φ, r, s, t)

=(u cos θ, u sin θ, v cosφ, v sinφ, 3θ + 5φ, 5θ + 3φ, v cos θ, v sin θ, u cosφ, u sinφ, u cos r,
v cos s, u sin r, v sin s, 3r + 2s, 2r + 3s, u cos s, v cos r, u sin s, v sin r, t).

Then the local orthonormal frame of TM is spanned by the following:

Z1 = cos θ ∂

∂x1
+ sin θ ∂

∂y1
+ cosφ ∂

∂x5
+ sinφ ∂

∂y5

+ cos r ∂

∂x6
+ sin r ∂

∂x7
+ cos s ∂

∂x9
+ sin s ∂

∂x10
,

Z2 = cosφ ∂

∂x2
+ sinφ ∂

∂y2
+ cos θ ∂

∂x4
+ sin θ ∂

∂y4

+ cos s ∂

∂y6
+ sin s ∂

∂y7
+ cos r ∂

∂y9
+ sin r ∂

∂y10
,

Z3 =− u sin θ ∂

∂x1
+ u cos θ ∂

∂y1
+ 3 ∂

∂x3
+ 5 ∂

∂y3
− v sin θ ∂

∂x4
+ v cos θ ∂

∂y4
,
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Z4 =− v sinφ ∂

∂x2
+ v cosφ ∂

∂y2
+ 5 ∂

∂x3
+ 3 ∂

∂y3
− u sinφ ∂

∂x5
+ u cosφ ∂

∂y5
,

Z5 =− u sin r ∂

∂x6
+ u cos r ∂

∂x7
+ 3 ∂

∂x8
+ 2 ∂

∂y8
− v sin r ∂

∂y9
+ v cos r ∂

∂y10
,

Z6 =V −Xv sin s ∂

∂y6
+ v cos s ∂

∂y7
+ 2 ∂

∂x8
+ 3 ∂

∂y8
− u sin s ∂

∂x9
+ u cos s ∂

∂x10

and
Z7 = ∂

∂t
.

Then

φZ1 = cos θ ∂

∂y1
− sin θ ∂

∂x1
+ cosφ ∂

∂y5
− sinφ ∂

∂x5

+ cos r ∂

∂y6
+ sin r ∂

∂y7
+ cos s ∂

∂y9
+ sin s ∂

∂y10
,

φZ2 = cosφ ∂

∂y2
− sinφ ∂

∂x2
+ cos θ ∂

∂y4
− sin θ ∂

∂x4

− cos s ∂

∂x6
− sin s ∂

∂x7
− cos r ∂

∂x9
− sin r ∂

∂x10
,

φZ3 =− u sin θ ∂

∂y1
− u cos θ ∂

∂x1
+ 3 ∂

∂y3
− 5 ∂

∂x3
− v sin θ ∂

∂y4
− v cos θ ∂

∂x4
,

φZ4 =− v sinφ ∂

∂y2
− v cosφ ∂

∂x2
+ 5 ∂

∂y3
− 3 ∂

∂x3
− u sinφ ∂

∂y5
− u cosφ ∂

∂x5
,

φZ5 =− u sin r ∂

∂y6
+ u cos r ∂

∂y7
+ 3 ∂

∂y8
− 2 ∂

∂x8
+ v sin r ∂

∂x9
− v cos r ∂

∂x10
,

φZ6 =v sin s ∂

∂x6
− v cos s ∂

∂x7
+ 2 ∂

∂y8
− 3 ∂

∂x8
− u sin s ∂

∂y9
+ u cos s ∂

∂y10
.

We take Dθ1 = Span{Z1, Z2}, Dθ2 = Span{Z3, Z4} and Dθ3 = Span{Z5, Z6}. Then it
is clear that Dθ1 , Dθ2 and Dθ3 are proper pointwise slant distributions with slant func-
tions cos−1{1

2 cos(r − s)}, cos−1( 16
u2+v2+34) and cos−1( 5

u2+v2+13), respectively. Clearly,
Dθ1 , Dθ2 and Dθ3 are integrable distributions. Let us say that Mθ1 , Mθ2 and Mθ3 are
integral submanifolds of Dθ1 , Dθ2 and Dθ3 , respectively. Then the metric tensor gM
of M is given by

gM = 4(du2 + dv2) + (u2 + v2 + 34)(dθ2 + dφ2) + (u2 + v2 + 13)(dr2 + ds2)
= gMθ1

+ (u2 + v2 + 34)gMθ2
+ (u2 + v2 + 13)gMθ3

.

Thus, M = Mθ1 ×f1 Mθ2 ×f2 Mθ3 is a bi-warped product submanifold of M̄ with the
warping functions f1 =

√
u2 + v2 + 34 and f2 =

√
u2 + v2 + 13.

Proposition 6.1 ([33]). Let M = Mθ1 ×f1 Mθ2 ×f2 Mθ3 be a bi-warped product sub-
manifold of M̄ . Then M is a single warped product if ξ is orthogonal to Dθ1.
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Proposition 6.2 ([33]). Let M = Mθ1 ×f1 Mθ2 ×f2 Mθ3 be a bi-warped product sub-
manifold of M̄ such that ξ such that M is tangent to Mθ1. Then
(6.1) ξ(ln fi) = 1, for all i = 1, 2.

Lemma 6.1. Let M = Mθ1 ×f1 Mθ2 ×f2 Mθ3 be a bi-warped product submanifold of
M̄ such that ξ is tangent to Mθ1. Then

g(h(X1, Y1), QX3) = g(h(X1, X3), QY1),(6.2)
g(h(X2, Y2), QX3) = g(h(X1, X3), QY2),(6.3)
g(h(X1, X2), QX3) = g(h(X1, X3), QX2),(6.4)

for every X1, Y1 ∈ Γ(Dθ1), X2, Y2 ∈ Γ(Dθ2) and X3 ∈ Γ(Dθ3).

Proof. Proof is similar to the proof of Lemma 4.1. �

Lemma 6.2. Let M = Mθ1 ×f1 Mθ2 ×f2 Mθ3 be a bi-warped product submanifold of
M̄ such that ξ is tangent to Mθ1. Then

g(h(X2, Y2), QX1)− g(h(X1, X2), QY2)(6.5)
=(P1X1 ln f1)g(X2, Y2) + [X1(ln f1)− η(X1)]g(X2, P2Y2),
g(h(X3, Y3), QX1)− g(h(X1, X3), QY3)(6.6)

=(P1X1 ln f2)g(X3, Y3) + [X1(ln f2)− η(X1)]g(X3, P3Y3),
g(h(X3, Y3), QX2)− g(h(X2, X3), QY3)(6.7)

=(P2X2 ln f2)g(X3, Y3) +X2(ln f2)g(X3, P3Y3),
for every X1 ∈ Γ(Dθ1), X2, Y2 ∈ Γ(Dθ2) and X3, Y3 ∈ Γ(Dθ3).

Proof. Proof is similar to the proof of Lemma 4.2. �

Lemma 6.3. Let M = Mθ1 ×f1 Mθ2 ×f2 Mθ3 be a bi-warped product submanifold of
M̄ such that ξ is tangent to Mθ1. Then

g(h(X1, Y2), QP2X2)− g(h(X1, P2X2), QY2)(6.8)
=2 cos2 θ2{(X1 ln f1)− η(X1)}g(X2, Y2),
g(h(X1, X3), QP3Y3)− g(h(X1, P3X3), QY3)(6.9)

=2 cos2 θ3{(X1 ln f2)− η(X1)}g(X3, Y3),
g(h(X2, X3), QP3Y3)− g(h(X2, P3X3), QY3)(6.10)

=2 cos2 θ3(X2 ln f2)g(X3, Y3),
for every X1 ∈ Γ(Dθ1), X2, Y2 ∈ Γ(Dθ2) and X3, Y3 ∈ Γ(Dθ3).

Proof. By polarization of (6.5), we get
g(h(X2, Y2), QX1)− g(h(X1, Y2), QZ) =(P1X1 ln f1)g(X2, Y2)(6.11)

+ [X1(ln f1)− η(X1)]g(X2, Y2).



WARPED PRODUCT SUBMANIFOLDS OF KENMOTSU MANIFOLDS 979

Subtracting (6.11) from (6.4), we find
(6.12) g(h(X1, Y2), QX2)− g(h(X1, X2), QY2) = 2[X1(ln f1)− η(X1)]g(X2, P2Y2).
Replacing X2 by P2X2 in (6.12), we get (6.8). Similarly, (6.9) follows from (6.6) and
(6.10) follows from (6.7). �

Theorem 6.1. Let M = Mθ1 ×f1 Mθ2 ×f2 Mθ3 be a bi-warped product submanifold of
M̄ such that ξ is tangent to Mθ1. Then M can be Dθ1 −Dθ2 and Dθ1 −Dθ3 mixed
totally geodesic but cannot be Dθ2 −Dθ3 mixed totally geodesic.

Proof. The theorem follows from Lemma 6.3. �

7. Inequality

In this section, we establish a Chen-type inequality on a bi-warped product sub-
manifold M = Mθ1 ×f1 Mθ2 ×f2 Mθ3 of M̄ of dimension n such that ξ is tan-
gent to Mθ1 . We take dimMθ1 = 2p + 1, dimMθ2 = 2q, dimMθ3 = 2s and
their corresponding tangent spaces are Dθ1 , Dθ2 and Dθ3 , respectively. Assume
that {e1, e2, . . . , ep, ep+1 = sec θ1P1e1, . . . , e2p = sec θ1P1ep, e2p+1 = ξ}, {e2p+2 =
e∗1, . . . , e2p+q+1 = e∗q, e2p+q+2 = e∗q+1 = sec θ2P2e

∗
1, . . . , e2p+2q+1 = e∗2q = sec θ2P2e

∗
q} and

{e2p+2q+2 = ê1, . . . , e2p+2q+s+1 = ês, e2p+2q+s+2 = ês+1 = sec θ3P3ê1, . . . , e2p+2q+2s+1 =
ê2s = sec θ3P3ês} are local orthonormal frames ofDθ1 , Dθ2 andDθ3 , respectively. Then
the local orthonormal frames for QDθ1 , QDθ2 , QDθ3 and ν are {ẽ1 = csc θ1Qe1, . . . ,
ẽp = csc θ1Qep, ẽp+1 = csc θ1 sec θ1QP1e1, . . . , ẽ2p csc θ1 sec θ1QP1ep}, {ẽ2p+1 = ẽ∗1 =
csc θ2Qe

∗
1, . . . , ẽ2p+q = ẽ∗q = csc θ2Qe

∗
q, ẽ2p+q+1 = ẽ∗q+1 = csc θ2 sec θ2QP2e

∗
1, . . . , ẽ2p+2q

= ẽ∗2q = csc θ2 sec θ2QP2e
∗
q}, {ẽ2p+2q+1 = ˜̂e1 = csc θ3Qê1, . . ., ẽ2p+2q+s = ˜̂es = csc θ3Qês,

ẽ2p+2q+s+1 = ˜̂es+1 = csc θ3 sec θ3QP3ê1, . . . , ẽ2p+2q+2s = ˜̂e2s = csc θ3 sec θ3QP3ês} and
{ẽ2p+2q+2s+1, . . . , ẽ2m+1} of dimensions 2p, 2q, 2s and (2m + 1 − n − 2p − 2q − 2s),
respectively.

Theorem 7.1. Let M = Mθ1×f1 Mθ2×f2 Mθ3 be both Dθ1−Dθ2 and Dθ1−Dθ3 mixed
totally geodesic bi-warped product submanifold of M̄ such that ξ is tangent to Mθ1.
Then the squared norm of the second fundamental form satisfies

‖h‖2 ≥2q csc2 θ1(cos2 θ1 + cos2 θ2)(‖∇ ln f1‖2 − 1)(7.1)
+ 2s csc2 θ1(cos2 θ1 + cos2 θ3)(‖∇ ln f2‖2 − 1),

where 2q= dimMθ1 , 2s = dimMθ3, ∇ ln f1 and ∇ ln f2 are the gradients of warping
function ln f1 and ln f2 along Mθ1 and Mθ2, respectively.
If the equality sign of (7.1) holds, then Mθ1 is totally geodesic and Mθ2 , Mθ3 are

totally umbilical submanifolds of M̄ .

Proof. From the definition of h, we have

(7.2) ‖h‖2 =
2p+1∑
i,j=1

g(h(ei, ej), h(ei, ej)).
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Now by decomposing (7.2) in our constructed frame fields, we get

‖h‖2 =
2m+1∑
r=n+1

2p+1∑
i,j=1

g(h(ei, ej), ẽr)2 + 2
2m+1∑
r=n+1

2p+1∑
i=1

2q∑
j=1

g(h(ei, e∗j), ẽr)2

+ 2
2m+1∑
r=n+1

2p+1∑
i=1

2s∑
j=1

g(h(ei, êj), ẽr)2 +
2m+1∑
r=n+1

2q∑
i,j=1

g(h(e∗i , e∗j), ẽr)2(7.3)

+ 2
2m+1∑
r=n+1

2q∑
i=1

2s∑
j=1

g(h(e∗i , êj), ẽr)2 +
2m+1∑
r=n+1

2s∑
i,j=1

g(h(êi, êj), ẽr)2.

Neglecting the ν component terms of (7.3), we obtain

|h‖2 ≥
2p∑
r=1

2p+1∑
i,j=1

g(h(ei, ej), ẽr)2 +
2q∑
r=1

2p+1∑
i,j=1

g(h(ei, ej), ẽr)2(7.4)

+
2s∑
r=1

2p+1∑
i,j=1

g(h(ei, ej), ẽr)2 + 2
2p∑

i,r=1

2q∑
j=1

g(h(ei, e∗j), ẽr)2

+ 2
2q∑

r,j=1

2p∑
i=1

g(h(ei, e∗j), ẽr)2 + 2
2s∑
r=1

2p∑
i=1

2q∑
j=1

g(h(ei, e∗j), ẽr)2

+ 2
2p∑

i,r=1

2s∑
j=1

g(h(ei, êj), ẽr)2 + 2
2q∑
r=1

2p∑
i=1

2s∑
j=1

g(h(ei, êj), ẽr)2

+ 2
2s∑

r,j=1

2p∑
i=1

g(h(ei, êj), ẽr)2 +
2p∑
r=1

2q∑
i,j=1

g(h(e∗i , e∗j), ẽr)2

+
2q∑

i,j,r=1
g(h(e∗i , e∗j), ẽr)2 +

2s∑
r=1

2q∑
i,j=1

g(h(e∗i , e∗j), ẽr)2

+ 2
2p∑
r=1

2q∑
i=1

2s∑
j=1

g(h(e∗i , êj), ẽr)2 + 2
2q∑

i,r=1

2s∑
j=1

g(h(e∗i , êj), ẽr)2

+ 2
2s∑

j,r=1

2q∑
i=1

g(h(e∗i , êj), ẽr)2 +
2p∑
r=1

2s∑
i,j=1

g(h(êi, êj), ẽr)2

+
2q∑
r=1

2s∑
i,j=1

g(h(êi, êj), ẽr)2 +
2s∑

i,j,r=1
g(h(êi, êj), ẽr)2.

In view of Lemma (6.1), the second, third and thirteenth terms are equal to zero. Us-
ing theDθ1−Dθ2 andDθ1−Dθ3 mixed totally geodesic condition, seventh to thirteenth
terms are also equal to zero. Also we can not find any relation for g(h(Dθ1 ,Dθ1), QDθ1),
g(h(Dθ2 ,Dθ1), QDθ2), g(h(Dθ2 ,Dθ2), QDθ3), g(h(Dθ2 ,Dθ3), QDθ3), g(h(Dθ3 ,Dθ3),
QDθ2) and g(h(Dθ3 ,Dθ3), QDθ3), so we neglect first, eleventh, twelfth, fourteenth,
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fifteenth, seventeenth and eighteenth terms of (7.4) and obtain

‖h‖2 ≥ csc2 θ1

p∑
r=1

2q∑
i,j=1

g(h(e∗i , e∗j), Qer)2 + csc2 θ1 sec2 θ1

p∑
r=1

2q∑
i,j=1

g(h(e∗i , P1e
∗
j), QP1er)2

+ csc2 θ1

p∑
r,=1

2s∑
i,j=1

g(h(êi, êj), Qer)2+csc2 θ1 sec2 θ1

p∑
r=1

2s∑
i,j=1

g(h(êi, P1êj), QP1er)2.

By virtue of Lemma 6.2, the above relation yields

‖h‖2 ≥ csc2 θ1

p∑
r=1

2q∑
i,j=1

(P1er ln f1)2g(e∗i , e∗j)2

+ csc2θ1

p∑
r=1

2q∑
i,j=1

[(er ln f1)− η(er)]2g(e∗i , P2e
∗
j)2

+ csc2 θ1 cos2 θ1

p∑
r=1

2q∑
i,j=1

(er ln f1)2g(e∗i , e∗j)2

+ csc2 θ1

p∑
r,=1

2q∑
i,j=1

(P1er ln f1)2g(e∗i , P2e
∗
j)2

+ csc2 θ1

p∑
r=1

2s∑
i,j=1

(P1er ln f2)2g(êi, êj)2

+ csc2θ1

p∑
r=1

2q∑
i,j=1

[(er ln f2)− η(er)]2g(êi, P3êj)2

+ csc2 θ1 cos2 θ1

p∑
r=1

2s∑
i,j=1

(er ln f2)2g(êi, êj)2

+ csc2 θ1

p∑
r,=1

2s∑
i,j=1

(P1er ln f2)2g(êi, P3êj)2

=2q csc2 θ1(1 + sec2 θ1 cos2 θ2)
p∑
r=1

(P1er ln f1)2

+ 2qcsc2θ1(cos2 θ1 + cos2 θ2)
p∑
r=1

[(er ln f1)− η(er)]2

+ 2q csc2 θ1(1 + sec2 θ1 cos2 θ3)
p∑
r=1

(P1er ln f2)2

+ 2qcsc2θ1(cos2 θ1 + cos2 θ3)
p∑
r=1

[(er ln f2)− η(er)]2.
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Thus, we find

‖h‖2 ≥2q csc2 θ1(cos2 θ1 + cos2 θ2)
2p+1∑
r=1

(P1er ln f1)2 − (ξ ln f1)2

(7.5)

+ 2s csc2 θ1(cos2 θ1 + cos2 θ3)
2p+1∑
r=1

(P1er ln f2)2 − (ξ ln f2)2

 .
Using (2.8) and Proposition 6.2, in (7.5), we get the inequality (7.1). If equality of
(7.1) holds, for omitting ν components terms of (6.3), we get

h(Dθ1 ,Dθ1)⊥ν, h(Dθ2 ,Dθ2)⊥ν, h(Dθ2 ,Dθ3)⊥ν, h(Dθ2 ,Dθ3)⊥ν.
Also, for neglecting terms of (7.4), we obtain h(Dθ1 ,Dθ1)⊥QDθ1 , h(Dθ2 ,Dθ2)⊥QDθ2 ,
h(Dθ2 ,Dθ2)⊥QDθ3 , h(Dθ2 ,Dθ3)⊥QDθ2 , h(Dθ2 ,Dθ3)⊥QDθ2 , h(Dθ2 ,Dθ3)⊥QDθ3 ,
h(Dθ3 ,Dθ3)⊥QDθ2 , h(Dθ3 ,Dθ3)⊥QDθ3 . Next, sinceM is bothDθ1−Dθ2 andDθ1−Dθ3

mixed totally geodesic, we get
(7.6) h(Dθ1 ,Dθ2) = 0, h(Dθ1 ,Dθ3) = 0.
Also, from Lemma 6.1 with (6.6), we get

h(Dθ1 ,Dθ1)⊥QDθ2 , h(Dθ1 ,Dθ1)⊥QDθ3 , h(Dθ1 ,Dθ1)⊥QDθ2 .

Thus, we can say that
h(Dθ1 ,Dθ1) = 0,(7.7)
h(Dθ2 ,Dθ2) ⊂ QDθ1 ,(7.8)
h(Dθ2 ,Dθ3) ⊂ QDθ1 ,(7.9)
h(Dθ3 ,Dθ3) ⊂ QDθ1 .(7.10)

From (7.6) and (7.7), Mθ1 is totally geodesic in M and hence in M̄ [5, 7]. Again,
since Mθ2 and Mθ3 are totally umbilical in M [5, 7], with the fact (7.8)–(7.10), we
conclude that Mθ2 and Mθ3 are totally umbilical in M̄ . Hence, the theorem is proved
completely. �

8. Some Applications

As consequences of Theorem 5.1 we have the following.
1. If we take dimMθ2 = 0 and replace θ3 by θ2, then M changes to a warped

product pointwise bi-slant submanifold of the form Mθ1 ×f Mθ2 , studied in [17]. In
this case Theorem 5.1 of this paper takes the following form (Theorem 5.1 of [17]).

Let M be a proper pointwise bi-slant submanifold of M̄ such that ξ ∈ Γ(Dθ1), then
M is locally a warped product submanifold of the form Mθ1 ×f Mθ2 if and only if

AQP1X1Y2 − AQX1P2Y2 + AQP2Y2X1 − AQY2P1X1

=(cos2 θ2 − cos2 θ1)[(X1µ)− η(X1)]Y2,
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for any X1 ∈ Γ(Dθ1), X2 ∈ Γ(Dθ2), for some smooth function µ on M satisfying
(Y µ) = 0, for any W ∈ Γ(Dθ2). Thus, Theorem 5.1 of this paper is a generalisation
of Theorem 5.1 of [17].

2. If we take θ1 = 0, θ2 = constant = θ, θ3 = π
2 , then M changes to a warped

product skew CR-submanifold of the form M1×f M⊥, where M1 = MT ×Mθ, studied
in [28]. In this case Theorem 5.1 of this paper takes the following form (Theorem 5.3
of [28]).

Let M be a proper skew CR-submanifold of M̄ , then M is locally a Dθ − D⊥

mixed totally geodesic warped product submanifold of the form M1 ×f M⊥, where
M1 = MT ×Mθ if and only if

(i) AφZX ∈ Γ(D⊥) for any X ∈ Γ(DT ⊕Dθ)⊕ {ξ} and Z ∈ Γ(D⊥);
(ii) for any X1 ∈ Γ(DT ), X2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥), AφZX1 = −(φX1µ),

AφZX2 = 0, AQX2Z = (P2X2µ)Z, (ξµ) = 1,
for some smooth function µ on M satisfying (V µ) = 0, for any V ∈ Γ(D⊥). Thus,
Theorem 5.1 of this paper is a generalization of Theorem 5.3 of [28].

3. If we take θ1 = π
2 , θ2 = constant = θ, θ3 = 0, then M changes to a warped

product skew CR-submanifold of the form M2×f MT , where M2 = M⊥×Mθ, studied
in [19]. In this case Theorem 5.1 of this paper takes the following form (Theorem 5.1
of [19]).

Let M be a proper skew CR-submanifold of M̄ , then M is locally a warped product
submanifold of the form M2 ×f MT , where M2 = M⊥ ×Mθ if and only if

(i) AφZX = {η(Z)− (Zµ)}φX;
(ii) AQUX = {η(U)− (Uµ)}φX + (P2Uµ)X;
(iii) (ξµ) = 1,

for any X ∈ Γ(DT ), U ∈ Γ(Dθ), Z ∈ Γ(D⊥), for some smooth function µ on M
satisfying (Y µ) = 0, for any Y ∈ Γ(DT ). Thus, Theorem 5.1 of this paper is a
generalisation of Theorem 5.1 of [19].

4. If we take θ1 = 0, θ2 = π
2 and θ3 = θ then M changes to a warped product

submanifold of the form M3 ×f Mθ, where M3 = MT ×M⊥, studied in [18]. In this
case Theorem 5.1 of this paper takes the following form (Theorem 5.1 of [18]).

LetM be a submanifold of a Kenmotsu manifold M̄ such that TM = DT⊕D⊥⊕Dθ

with ξ is orthogonal to Mθ. Then M is locally a warped product submanifold of the
form M = M3 ×f Mθ, where M3 = MT ×M⊥, if and only if the following relations
hold:

(i) AQV φX − AQPVX = sin2 θ[(Xµ)− η(X)]V ;
(ii) AφZPV − AQPVZ = − cos2 θ[(Zµ)− η(Z)]V ;
(iii) (ξµ) = 1,

for every X ∈ Γ(DT ), Z ∈ Γ(D⊥) and V ∈ Γ(Dθ) and (V µ) = 0 for some function µ
on M satisfying (Wµ) = 0, for any W ∈ Γ(Dθ). Thus, Theorem 5.1 of this paper is a
generalisation of Theorem 5.1 of [18].

As consequences of Theorem 7.1, we have the following.
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1. If we consider θ1 = constant, θ2 = 0, θ3 = π
2 , then the submanifold M changes

to bi-warped product submanifold of the form Mθ ×f1 MT ×f2 M⊥, studied in [33]. In
this case Theorem 7.1 of this paper takes the following form.

Let M = Mθ ×f1 MT ×f2 M⊥ be a bi-warped product submanifold of M̄ such that
ξ is tangent to Mθ, then the squared norm of the second fundamental form satisfies

‖h‖2 ≥2q csc2 θ(1 + cos2 θ)(‖∇ ln f1‖2 − 1) + 2s cot2 θ(‖∇ ln f2‖2 − 1),
where 2q = dimMT , 2s = dimM⊥, ∇ ln f1 and ∇ ln f2 are the gradients of warping
function ln f1 and ln f2 along MT and M⊥, respectively.

If the equality sign holds, then Mθ is totally geodesic and MT , ,M⊥ are totally
umbilical submanifold of M̄ . Taking dimMT = 2q = m1 and dimM⊥ = 2s = m2,
we see that this statement coincides with the statement of Theorem 6 of [33]. Thus,
Theorem 7.1 of this paper is a generalisation of Theorem 6 of [33].

2. If we consider dimMθ2 = 0, then the submanifold M changes into warped
product pointwise bi-slant submanifold of the form Mθ1 ×f Mθ2 studied in [17]. In
this case Theorem 7.1 of this paper takes the following form.

Let M = Mθ1 ×f Mθ2 be a warped product pointwise bi-slant submanifold of M̄
such that ξ is tangent to Mθ1 , then the squared norm of the second fundamental form
satisfies

‖h‖2 ≥ 2q csc2 θ1(cos2 θ1 + cos2 θ2)(‖∇ ln f‖2 − 1),
where 2q = dimMθ2 , ∇ ln f is the gradient of warping function ln f along Mθ1 . If
the equality sign holds, then Mθ1 is totally geodesic and Mθ2 is totally umbilical
submanifold of M̄ . Thus, we see that this statement coincides with the statement of
Theorem 6.1 of [19]. Hence Theorem 7.1 of this paper is a generalization of Theorem
6.1 of [17].

Acknowledgements. The authors would like to express their sincere thanks to the
reviewer for giving valuable suggestions towards the improvement of the paper.
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