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GENERALIZED VECTORIAL ALMOST PERIODICITY

M. KOSTIĆ

Abstract. In this paper, we introduce and analyze several new classes of general-
ized vectorially almost periodic functions. We also analyze Σ-almost periodic type
functions and the invariance of generalized vectorial almost periodicity under the
actions of convolution products.

1. Introduction and Preliminaries

The notion of almost periodicity was introduced by the Danish mathematician
H. Bohr around 1924–1926 and later generalized by many others (see the research
monographs [6, 9, 11, 12, 14, 15, 20, 23] and the excellent survey article [2] for further
information regarding almost periodic functions and their applications). Let (X, ∥ · ∥)
be a complex Banach space and let F : Rn → X be a continuous function, where
n ∈ N. Then, F (·) is said to be almost periodic if for each ϵ > 0 there exists W > 0
such that for each w0 ∈ Rn there exists τ ∈ B(w0,W ) ≡ {t ∈ Rn : |t − w0| ≤ W}
such that ∥∥∥F (t + τ) − F (t)

∥∥∥ ≤ ϵ, t ∈ Rn,

here, | · − · | denotes the Euclidean distance in Rn.
If the function F : Rn → X is Lebesgue measurable and for every non-empty

compact set K ⊆ Rn, one has
∫

K ∥F (t)∥p dt < +∞, where p > 0, then F (·) is said
to be Stepanov-p-almost periodic if for every ϵ > 0 there exists W > 0 such that for
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each w0 ∈ Rn there exists τ ∈ B(w0,W ) with∥∥∥F (s + τ + w) − F (s + w)
∥∥∥

Lp([0,1]n:X)
≤ ϵ, s ∈ Rn,

i.e., ∫
[0,1]n

∥∥∥F (s + τ + w) − F (s + w)
∥∥∥p
dw ≤ ϵp, s ∈ Rn.(1.1)

Equivalently, the Bochner transform F̂ : Rn → Lp([0, 1]n : X), defined by [F̂ (t)](u) :=
F (t + u), t ∈ Rn, u ∈ [0, 1]n, is almost periodic; F (·) is said to be Stepanov almost
periodic if F (·) is Stepanov-1-almost periodic. Any Bohr almost periodic function
F (·) has to be Stepanov-p-almost periodic for any p > 0.

The class of almost automorphic functions was discovered by S. Bochner in 1955 ([7]).
In a joint work with S. Abbas [1], we have recently investigated vectorially Weyl almost
automorphic functions. This research article aims to examine several new classes of
vectorially Stepanov-p-almost periodic type functions and vectorially (equi)-Weyl-p-
almost periodic type functions, where p > 0. The novelty of our approach is that we use
the vector-valued integration in the analysis of these classes of functions; unfortunately,
we cannot consider the general value of exponent p ̸= 1 in the pure vector-valued
setting. These classes of functions extend the usually considered classes of Stepanov-
p-almost periodic type functions and (equi)-Weyl-p-almost periodic type functions
in the scalar-valued setting as well as the usually considered classes of Stepanov-1-
almost periodic type functions and (equi)-Weyl-1-almost periodic type functions in
the vector-valued setting. We also analyze Σ-almost periodic type functions and
the invariance of generalized vectorial almost periodicity under some convolution
transforms, which is incredibly important for applications to the abstract Volterra
integro-differential equations. If A is the integral generator of an an exponentially
stable strongly continuous semigroup (T (t))t≥0 and the function f : R → X is
Stepanov-p-almost periodic (1 ≤ p < +∞), for instance, then the function u : R → X,
given by

u(t) =
∫ t

−∞
T (t− s)f(s) ds, t ∈ R,

is an almost periodic solution of the abstract Cauchy problem u′(t) = Au(t) + f(t),
t ∈ R; moreover, if the function h : R → X is Stepanov-p-almost periodic (1 ≤ p <
+∞), the function q : [0,+∞) → X vanishes at plus infinity and f(t) = h(t) + q(t),
t ≥ 0, then the unique asymptotically almost periodic solution of the abstract Cauchy
problem u′(t) = Au(t) + f(t), t ≥ 0; u(0) = x is given by

u(t) = T (t)x+
∫ t

0
T (t− s)f(s) ds, t ≥ 0,

if f(·) enjoys very mild regularity assumptions. Many similar applications of this
type have been given to the abstract Volterra integro-differential equations and the
abstract fractional integro-differential equations (cf. [13, 14] for more details).
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The structure of this research article can be shortly depicted as follows. After fixing
the notation, we analyze the notion of vectorial Stepanov almost periodicity in Section
2. The class of Σ-almost periodic functions is analyzed in Subsection 2.1, and the
class of vectorially Stepanov almost periodic functions in general metric is analyzed
in Subsection 2.2. Vectorially Weyl almost periodic type functions are analyzed in
Section 3, while the invariance of vectorial Stepanov almost periodicity and vectorial
Weyl almost periodicity under the actions of convolution products is analyzed in
Section 4. The last section of paper is reserved for the final conclusions; for simplicity,
we will not investigate here the extensions of vectorially generalized almost periodic
functions and the corresponding composition principles as well as the vectorially Weyl
almost periodic type sequences.

Notation and preliminaries. We assume that (X, ∥·∥) and (Y, ∥·∥Y ) are complex
Banach spaces, B is a non-empty collection of non-empty subsets of X and R is a
non-empty collection of sequences in Rn. The standard assumption will be that, for
every y ∈ X, there is a set B ∈ B such that y ∈ B. L(X, Y ) denotes the Banach
space of all bounded linear operators from X into Y ; L(X,X) ≡ L(X) and I denotes
the identity operator on Y. Define N0 := {0, 1, . . . ,m, . . .}. If C and D are non-empty
sets, then we set DC := {f | f : C → D}; set 0ζ := 0 for ζ > 0.

Let ∅ ≠ I ⊆ Rn, ν : I → (0,+∞), and let 1/v(·) be locally bounded. In this paper,
we deal with the vector space Cb,ν(I : X) consisting of those continuous functions
u : I → X such that ∥u∥ := supt∈I ∥ν(t)u(t)∥ < +∞. Then, (Cb,ν(I : X), ∥ · ∥) is a
Banach space, as easily approved. Assuming that ν ≡ 1, we also write Cb(I : X) in
place of Cb,ν(I : X).

2. Vectorial Stepanov Almost Periodicity

The class of Stepanov-p-almost periodic functions, where p ≥ 1, was introduced by
W. Stepanoff in 1926 ([22]). For example, the function

f(s) = sin
(

2
2 + cos s+ cos(

√
2s)

)
, s ∈ R,

is bounded, continuous and Stepanov-p-almost periodic for any finite exponent p ≥ 1
but it is not almost periodic. If there exists c > 0 such that the sequence (λk)k∈Z of
real numbers satisfies λk+1 − λk > c for all k ∈ Z and (ak)k∈Z is a real sequence such
that ∑+∞

k=−∞ |ak|2 < +∞, then

f(s) =
+∞∑

k=−∞
ake

iλks, s ∈ R,

is a Stepanov-2-almost periodic function; cf. [20, Theorem 5.3.2, pp. 214–216]. For
further information, we refer the reader to [14–16] and references quoted therein.

Now we would like to introduce the following notion.
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Definition 2.1. (i) A locally Lebesgue integrable function F : Rn → X is vectorially
Stepanov almost periodic if for every ϵ > 0 there exists W > 0 such that for each
w0 ∈ Rn there exists τ ∈ B(w0,W ) with

∥∥∥∥∥
∫

[0,1]n

[
F (s + τ + w) − F (s + w)

]
dw

∥∥∥∥∥ ≤ ϵ, s ∈ Rn.(2.1)

(ii) A p-locally Lebesgue integrable function F : Rn → C is vectorially Stepanov-
p-almost periodic if for every ϵ > 0 there exists W > 0 such that for each w0 ∈ Rn

there exists τ ∈ B(w0,W ) with

∣∣∣∣∣
∫

[0,1]n

[
F (s + τ + w) − F (s + w)

]p
dw

∣∣∣∣∣ ≤ ϵp, s ∈ Rn.(2.2)

It is clear that the notion of vectorial Stepanov-p-almost periodicity cannot be
easily introduced if p ̸= 1 and X ̸= C.

Immeditely from the equations (1.1), (2.1) and (2.2), it follows that any Stepanov
almost periodic function is vectorially Stepanov almost periodic as well as that any
scalar-valued Stepanov-p-almost periodic function is vectorially Stepanov-p-almost
periodic. The relations between Stepanov-p-almost periodic functions in norm (cf.
[18, Definition 11]) and vectorial Stepanov-p-almost periodic functions are quite non-
trivial (p = 1, general X; p > 0 and p ̸= 1, X = C). Furthermore, the class of
scalar-valued vectorially Stepanov-p-almost periodic functions behaves very badly if
p ̸= 1 and we will not examined this class in more detail henceforth. The use of
vector-valued integration in Definition 2.1(i) may cause some unpleasant difficulties
sometimes, as well; for example, it is not simple to consider the products of vectorially
Stepanov almost periodic functions and the existence of Bohr-Fourier coefficients of
vectorially Stepanov almost periodic functions (see, e.g., [14, Theorem 2.1.1]).

Example 2.1. On some function spaces, the Gaussian semigroup

(G(s)F )(y) :=
(
4πs

)−(n/2) ∫
Rn
F (y − z)e− |z|2

4s dz, s > 0, f ∈ Y, y ∈ Rn,

is a strongly continuous semigroup generated by the Laplacian ∆Y acting with its
maximal distributional domain in Y. Let F (·) be bounded and vectorially Stepanov
almost periodic, and let s0 > 0 be fixed. Then, the function Rn ∋ x 7→ u(x, s0) ≡
(G(s0)F )(x) ∈ C is bounded and vectorially Stepanov almost periodic, which is am
essential consequence of the next calculus (x ∈ Rn; τ ∈ Rn satisfies the necessary
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requirements):∣∣∣∣∣
∫

[0,1]n

[
(G(s0)F )(v + τ + z) − (G(s0)F )(v + z)

]
dz

∣∣∣∣∣
=
∣∣∣∣∣
∫

[0,1]n

[∫
Rn
F (v + τ + u− w)e− |w|2

4s0 dw −
∫
Rn
F (v + u− w)e− |w|2

4s0 dw

]
du

∣∣∣∣∣
=
∣∣∣∣∣
∫

[0,1]n

[∫
Rn

[
F (v + τ + u− w) − F (v + u− w)

]
e

− |w|2
4s0 dw

]
du

∣∣∣∣∣
=
∣∣∣∣∣
∫
Rn
e

− |w|2
4s0

[∫
[0,1]n

[
F (v + τ + u− w) − F (v + u− w)

]
du

]
dw

∣∣∣∣∣
≤
∫
Rn
e

− |w|2
4s0

∣∣∣∣∣
∫

[0,1]n

[
F (v + τ + u− w) − F (v + u− w)

]
du

∣∣∣∣∣ dy ≤ ϵ
∫
Rn
e

− |w|2
4t0 dw.

We can also consider here vectorially Stepanov c-almost periodic functions; see Defi-
nition 2.4 below with ρ = cI and c ∈ C \ {0}.

The proof of following result is relatively plain.

Proposition 2.1. A locally integrable function F : Rn → X is vectorially Stepanov
almost periodic if and only if the function G = Σ(F ) : Rn → X, given by G(t) :=∫

[0,1]n F (t + u) du, t ∈ Rn, is almost periodic.

In the one-dimensional setting, we have that G(t) = F [1](t + 1) − F [1](t), t ∈ R,
where F [1](t) :=

∫ t
0 F (s) ds, t ∈ R is the first integral of function F (·). In particular, if

F [1](·) is almost periodic, then F (·) is vectorially Stepanov almost periodic (see also
Kadets’s theorem [4, Theorem 4.6.11] and the research articles [3] by J. Andres, D.
Pennequin, [8] by C. Budde, J. Kreulich, [10] by H.-S. Ding et al., and [21] by A. M.
Samoilenko, S. I. Trofimchuk for further information concerning the integration of
almost periodic functions). The following example justifies the introduction of notion
in Definition 2.1.

Example 2.2. Let us recall that there exists a function f : R → R which is bounded
continuous and has the feature that the function f [1](·) is almost periodic and the
function f(·) is not Stepanov almost periodic; cf. [5, Example 3.2]. Since f [1](·) is
almost periodic, we have that f(·) is vectorially Stepanov almost periodic; see also
[15, p. 62] for more details about this function.

Proposition 2.1 implies that vectorially Stepanov almost periodic functions form
a vector space as well as that any vectorially Stepanov almost periodic function
F : Rn → X is vectorially Stepanov bounded in the sense that

sup
t∈Rn

∥∥∥∥∥
∫

t+[0,1]n
F (w) dw

∥∥∥∥∥ < +∞.

The notion of vectorial Stepanov boundedness and the usually considered Stepanov
boundedness are different.
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Example 2.3. Let X := C and F (t) := t sin(t2), t ∈ R. Then we have∫ x+1

x

∣∣∣∣s · sin
(
s2
)∣∣∣∣ ds = 1

2

∫ (x+1)2

x2
| sin v| dv ≥ c|x|, x ∈ R,

for some c > 0. Hence,

sup
x∈R

[(
1 + |x|

)−σ
∫ x+1

x

∣∣∣f(s)
∣∣∣ ds] = +∞, σ ∈ (0, 1).

A similar argumentation shows that∣∣∣∣∫ x+1

x
f(s) du

∣∣∣∣ = 1
2

∣∣∣∣cos
(
x2
)

− cos
(
(x+ 1)2

)∣∣∣∣ ≤ 1, x ∈ R,

which yields the required conclusion. Further on,∫ x+1

x
[f(s+ τ) − f(s)] ds

=1
2

[(
cos
(
(x+ τ)2

)
− cos

(
(x+ τ + 1)2

))
−
(

cos
(
x2
)

− cos
(
(x+ 1)2

))]
, x, τ ∈ R,

which shows that f(·) cannot be vectorially Stepanov almost periodic.
The vector-valued integration can be useful in the studies of vectorial weighted

ergodic components and vectorial weighted ergodic components in general metric, as
well (see [15, Section 6.4] and [16, Section 5.2]).

2.1. Σ-almost periodicity. In the rest of this section, let us assume that ∅ ≠ I ⊆ Rn,
P ⊆ Y I , 0 ∈ P and P = (P, d) is a pseudometric space; if f ∈ P, set ∥f∥P := d(f, 0).

We recall that the notion of a (strongly) (R,B,P, L)-multi-almost periodic function
is introduced in [17, Definition 2.1]. Keeping in mind Proposition 2.1, we would like
to introduce the following general notion.

Definition 2.2. Let ∅ ≠ I ⊆ Rn, Σ : Y I×X → Y I×X , and let R be an arbitrary
non-empty collection of sequences in Rn, F : I ×X → Y , for each B ∈ B and b ∈ R
the set L(B; b) is a collection of subsets of B, and we have the following:

If s ∈ I, a ∈ R and l ∈ N, then we have s + a(l) ∈ I.(2.3)

Then F (·; ·) is said to be (Σ,R,B,P, L)-multi-almost periodic, resp. strongly
(Σ,R,B,P, L)-multi-almost periodic in the case that I = Rn, if Σ(F ) is (R,B,P, L)-
multi-almost periodic, resp. strongly (R,B,P, L)-multi-almost periodic.

If for each B′ ∈ B and b′ ∈ R, we have L(B′; b′) = {B′}, then we omit the term
“L” from the notation.

We can similarly define the notion of a (strong) (Σ,RX,B,P)-multi-almost periodic
function (of type 1), where RX is an arbitrary collection of sequences in Rn × X;
cf. [17, Definition 2.2]. Once it is done, we can extend [17, Proposition 2.6] in the
following way.
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Proposition 2.2. Let P be a vector structure with the usual operations, let P be
complete and let the metric d be translation invariant. Let us assume that, for every
j ∈ N, the function Fj : I × X → Y is (Σ,RX,B,P, L)-multi-almost periodic of
type 1 as well as that, for every sequence which belongs to RX, any its subsequence
also belongs to RX. If F : I × X → Y and for each B′ ∈ B, (b; x) = ((bk;xk)) =
((b1

k, b
2
k, . . . , b

n
k);xk) ∈ RX , B

′ ∈ L(B; (b; x)) and we have

lim
(i′,l′)→(+∞,+∞)

sup
y∈B′

∥∥∥∥Fi

(
· + bkl′

; y + xkl′

)
− F

(
· + bkl′

; y + xkl′

)∥∥∥∥
P

= 0,

then F (·; ·) is (Σ,RX,B,P, L)-multi-almost periodic of type 1, if:
(i) Σ(f − g) = Σf − Σg, f, g ∈ P ;
(ii) there exists d > 0 such that ∥Σf∥P ≤ d∥f∥P , f ∈ P.

For example, this condition holds if I = Rn, P = Cb(Rn : Y ) and Σ(·) is given as
in the formulation of Proposition 2.1. Suppose now P is a vector space, the metric
d has the property of translation invariance and, for every d ∈ C, one has df ∈ P,
f ∈ P and the existence of a real number ϕ(d) > 0 such that ∥df∥P ≤ ϕ(d)∥f∥P for
all f ∈ P. If we assume that for each sequence in R [RX ] any its subsequence also
belongs to R [RX ] as well as that the mapping Σ is linear, then the space consisting of
all (strongly) (Σ,R,B,P, L)-multi-almost periodic [(strongly) (Σ,RX ,B,P, L)-multi-
almost periodic] functions is a vector space; see also [17, Remark(ii), pp. 234–235].

The reader may consult [17, Definition 3.1] for the notions of a Bohr (B, I ′, ρ,P)-
almost periodic function and a (B, I ′, ρ,P)-uniformly recurrent function. The following
notion could be also introduced (we can similarly examine some other classes of
(metrically)Σ-almost periodic type functions considered in [16, Chapter 4–Chapter 7]
in the case that Σ is the identity mapping).

Definition 2.3. Let ∅ ≠ I ′ ⊆ Rn, ∅ ≠ I ⊆ Rn, Σ : Y I×X → Y I×X , F : I ×X → Y , ρ
is a binary relation on Y, R(Σ(F )) ⊆ D(ρ) and I + I ′ ⊆ I. Then, it is said that:

(i) F (·; ·) is Bohr (Σ,B, I ′, ρ,P)-almost periodic if Σ(F ) is Bohr (B, I ′, ρ,P)-almost
periodic;

(ii) F (·; ·) is (Σ,B, I ′, ρ,P)-uniformly recurrent if Σ(F ) is (B, I ′, ρ,P)-uniformly
recurrent.

The structural results established for Bohr (B, I ′, ρ,P)-almost periodic functions
and (B, I ′, ρ,P)-uniformly recurrent functions can be straightforwardly generalized for
Bohr (Σ,B, I ′, ρ,P)-almost periodic functions and (Σ,B, I ′, ρ,P)-uniformly recurrent
functions, provided that the mapping Σ(·) has suitable properties; we can slightly
extend the assertions of [17, Proposition 3.7, Corollary 3.8, Proposition 3.10] in this
manner, for example. We will not examine such results here.

2.2. Vectorially Stepanov almost periodic type functions. We denote here the
region I by Λ and the region I ′ by Λ′. We assume the following:
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(SM1-1v): ∅ ̸= Λ ⊆ Rn, ∅ ̸= Λ′ ⊆ Rn, ∅ ̸= Ω ⊆ Rn is Lebesgue measurable,
m(Ω) > 0, Λ′ + Λ ⊆ Λ and Λ + Ω ⊆ Λ.

Now we introduce the following notion.

Definition 2.4. Suppose that (SM1-1v) holds, ρ is a binary relation on Y , F :
Λ ×X → Y , for each x ∈ X the mapping F (·;x) is locally integrable,

[Σ(F )](s;x) :=
∫

Ω
F (s + w;x) dw, s ∈ Λ, x ∈ X,(2.4)

and R(Σ(F )) ⊆ D(ρ). Then, F (·; ·) is said to be vectorially Stepanov (B,Λ′, ρ,P)-
almost periodic, resp. vectorially Stepanov (B,Λ′, ρ,P)-uniformly recurrent, if F (·; ·)
is Bohr (Σ,B,Λ′, ρ,P)-almost periodic, resp. (Σ,B,Λ′, ρ,P)-uniformly recurrent, with
Σ(·) being defined through (2.4).

If (2.3) holds, then it is said that F (·; ·) is vectorially Stepanov (R,B,P, L)-multi-
almost periodic, resp. strongly vectorially Stepanov (R,B,P, L)-multi-almost periodic
in the case that Λ = Rn, if Σ(F ) is (R,B,P, L)-multi-almost periodic, resp. strongly
(R,B,P, L)-multi-almost periodic, with Σ(·) being defined through (2.4).

If F : Λ × X → Y , G : Λ × X → Y and for each x ∈ X the mappings F (·;x)
and G(·;x) are locally integrable, then we have Σ(αF + βG) = αΣ(F ) + βΣ(G) for
all scalars α, β ∈ C, so that the collection of all vectorially Stepanov (B,Λ′, ρ,P)-
almost periodic functions is a linear vector space if the corresponding space of all
(B,Λ′, ρ,P)-almost periodic functions is a linear vector space (we cannot expect the
linearity of space of all vectorially Stepanov (B,Λ′, ρ,P)-uniformly recurrent functions
in any sense; cf. [15]). Furthermore, if Λ = Λ′ = Rn, ρ = I, R contains all sequences
in Rn and B contains all compact sets in X, then the metrical Bochner criterion
established in [19, Theorem 1] immediately clarifies the coincidence of the class of all
vectorially Stepanov (B,Λ′, ρ,P)-almost periodic functions and the class consisting of
all vectorially Stepanov (R,B,P)-multi-almost periodic functions, provided that the
pseudometric space P has the properties stated in this result.

Proposition 2.3. Assume (SM1-1v) holds, ρ = T ∈ L(Y ), Fk : Λ × X → Y
and the function Fk(·; ·) is vectorially Stepanov (B,Λ′, T,P)-almost periodic, resp.
vectorially Stepanov (B,Λ′, T,P)-uniformly recurrent (k ∈ N), where P = Cb(Λ : Y ).
If F : Λ × X → Y , for each y ∈ X the mapping F (·; y) is locally integrable, and for
each B ∈ B,

lim
l→+∞

sup
s∈Λ,y∈B

∥∥∥∥∫
Ω

[
Fl(s + w;x) − F (s + w;x)

]
dw

∥∥∥∥ = 0,

then F (·; ·) is vectorially Stepanov (B,Λ′, T,P)-almost periodic, resp. vectorially Stepanov
(B,Λ′, T,P)-uniformly recurrent.

Proof. We examine the class of vectorially Stepanov (B,Λ′, T,P)-almost periodic
functions, only. Let us fix B ∈ B and ϵ > 0. Then there exist k0 ∈ N and W > 0 such
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that for each w0 ∈ Λ′ there exists τ ∈ B(w0,W ) ∩ Λ′ such that

sup
s∈Λ,y∈B

∥∥∥∥∫
s+Ω

[
Fk0(w + τ ; y) − TFk0(w; y)

]
dw

∥∥∥∥ ≤ ϵ/3.

Then, for each s ∈ Λ and y ∈ B, we have the following:∥∥∥∥∫
s+Ω

[
F (u + τ ; y) − TF (u; y)

]
du
∥∥∥∥

≤
∥∥∥∥∫

s+Ω

[
F (u + τ ; y) − Fk0(u + τ ; y)

]
du
∥∥∥∥+

∥∥∥∥∫
s+Ω

[
Fk0(u + τ ; y) − TFk0(u; y)

]
du
∥∥∥∥

+
∥∥∥∥∫

s+Ω

[
TFk0(u; y) − TF (u; y)

]
du
∥∥∥∥

≤
∥∥∥∥∫

s+Ω

[
F (u + τ ; y) − Fk0(u + τ ; y)

]
du
∥∥∥∥+

∥∥∥∥∫
s+Ω

[
Fk0(u + τ ; y) − TFk0(u; y)

]
du
∥∥∥∥

+ ∥T∥ ·
∥∥∥∥∫

s+Ω

[
Fk0(u; y) − F (u; y)

]
du
∥∥∥∥ .

The vectorial Stepanov (B,Λ′, T,P)-almost periodicity of F (·; ·) follows thereof. □

Suppose now that ∅ ≠ Λ ⊆ Rn, ∅ ≠ Ω ⊆ Rn is Lebesgue measurable, m(Ω) > 0 and
Λ + Ω ⊆ Λ. Denote by S1

v(Λ ×X : Y ) the collection of all functions F : Λ ×X → Y
such that for each x ∈ X the function F (·;x) is locally integrable and∥∥∥F∥∥∥

S1
v,B,Ω

:= sup
t∈Λ,x∈B

1
m(Ω)

∥∥∥∥∫
t+Ω

F (s;x) ds
∥∥∥∥ < +∞, B ∈ B.(2.5)

For functions F : Λ → Y, we exclude the term “B”; moreover, we exclude the term
“Ω” if Ω = [0, 1]n.

Let us observe the following facts.
(i) The assumption ∥F∥S1

v
= 0 does not imply F (t) = 0 for a.e. t ∈ Λ; for example,

examine the function F (t) = cos(2πt), t ∈ R.
(ii) If λ ∈ C, B ∈ B and ∥F∥S1

v,B,Ω
< +∞, then ∥λ · F∥S1

v,B,Ω
= |λ| · ∥F∥S1

v,B,Ω
.

(iii) If B ∈ B, ∥F∥S1
v,B,Ω

< +∞, G : Λ × X → Y has the property that for each
y ∈ X the function G(·; y) is locally integrable and ∥G∥S1

v,B,Ω
< +∞, then∥∥∥F +G

∥∥∥
S1

v,B,Ω
≤
∥∥∥F∥∥∥

S1
v,B,Ω

+
∥∥∥G∥∥∥

S1
v,B,Ω

.

For each B ∈ B, by S1
v,B(Λ × B : Y ) we denote the collection of all functions

F : Λ × B → Y such that for each x ∈ B the function F (·;x) is locally integrable
and (2.5) holds. Then S1

v,B(Λ ×B : Y ) is a vector space and (i)-(iii) simply yield that
∥ · ∥S1

v,B,Ω
is a seminorm on S1

v,B(Λ ×B : Y ).
The next result can be compared to [20, Theorem 5.2.1, pp. 199–200].

Proposition 2.4. Suppose that B ∈ B, (Fk(·; ·))k∈N is a sequence of functions in
S1

v,B(Λ ×B : Y ), and the following holds.



1490 M. KOSTIĆ

(i) For every ϵ > 0, there exists s0 ∈ N such that, for every s1, s2 ∈ N with
min(s1, s2) ≥ s0, we have ∥Fs1 − Fs2∥S1

v,B,Ω
≤ ϵ.

(ii) There exists F : Λ × B → Y such that for each x ∈ B the function F (·;x) is
locally integrable and limk→+∞ ∥Fk(t;x) − F (t;x)∥ = 0 for a.e. t ∈ Λ.

(iii) For each compact set K ⊆ Λ and for each x ∈ B, there exists gx ∈ L1(K : Y )
such that ∥Fk(t;x)∥ ≤ gx(t) a.e. on K for all k ∈ N.

Then, limk→+∞

∥∥∥Fk − F
∥∥∥

S1
v,B,Ω

= 0.

Proof. If ϵ > 0, x ∈ B and t ∈ Λ, then [4, Theorem 1.1.8] and (ii)-(iii) together imply
that

lim
m→+∞

∫
t+Ω

Fm(s;x) ds =
∫

t+Ω
F (s;x) ds.(2.6)

On the other hand, (i) implies that there exists s0 ∈ N such that, for every s1, s2 ∈ N
with min(s1, s2) ≥ s0, one has:∥∥∥∥∫

r+Ω

[
Fs1(s; y) − Fs2(s; y)

]
ds
∥∥∥∥ ≤ ϵ, r ∈ Λ, y ∈ B.(2.7)

The required conclusion follows by letting m → +∞ in (2.7) and using (2.6) after
that. □

3. Vectorially Weyl almost Periodic Type Functions

If F : Rn → X is Lebesgue measurable and for each bounded and closed set
K ⊆ Rn, we have

∫
K ∥F (t)∥p dt < +∞, where p > 0, then F (·) is:

(i) equi-Weyl-p-almost periodic if, for every ϵ > 0, there exist two finite real
numbers l′ > 0 and L′ > 0 such that for each w0 ∈ Rn there exists τ ∈
B(w0, L

′) ∩ Rn with

sup
t∈Rn

[
(l′)−n

∫
t+l′[0,1]n

∥∥∥F (τ + u) − F (u)
∥∥∥p
du
]
< ϵ.

(ii) Weyl-p-almost periodic if, for every ϵ > 0, there exists a finite real number
L′ > 0 such that for each w0 ∈ Rn there exists τ ∈ B(w0, L

′) ∩ Rn with

lim sup
l′→+∞

sup
t∈Rn

[
(l′)−n

∫
t+l′[0,1]n

∥∥∥F (τ + u) − F (u)
∥∥∥p
du
]
< ϵ.

Now we would like to propose the following notion (we will not consider here the
metrical generalizations of this definition; see [16, Section 4.3]).

Definition 3.1. Suppose that p > 0.
(i) A locally Lebesgue integrable function F : Rn → X is said to be vectorially

equi-Weyl-almost periodic if, for every ϵ > 0, there exist two finite real numbers



GENERALIZED VECTORIAL ALMOST PERIODICITY 1491

l′ > 0 and L′ > 0 such that for each w0 ∈ Rn there exists τ ∈ B(w0, L
′) with

sup
t∈Rn

∥∥∥∥∥
∫

t+l′[0,1]n

[
F (τ + u) − F (u)

]
du
∥∥∥∥∥ < ϵ(l′)n.

(ii) A locally Lebesgue integrable function F : Rn → X is said to be vectorially
Weyl-almost periodic if, for every ϵ > 0, there exists a finite real number L′ > 0
such that for each w0 ∈ Rn there exists τ ∈ B(w0, L

′) with

lim sup
l′→+∞

sup
t∈Rn

[
(l′)−n

∥∥∥∥∥
∫

t+l′[0,1]n

[
F (τ + u) − F (u)

]
du
∥∥∥∥∥
]
< ϵ.

Any (equi-)Weyl-1-almost periodic function is clearly vectorially (equi-)Weyl-almost
periodicand any vectorially Stepanov almost periodic function F : Rn → X is clearly
vectorially equi-Weyl-almost periodic.

Example 3.1. (see also [4, Example 4.6.5]) Suppose that X := c0. Define f(t) :=
((1/k) cos(t/k))k, t ∈ R. Then f : R → X is almost periodic but its first integral
F (t) := (sin(t/k))k, t ∈ R is bounded, uniformly continuous but not Stepanov-
p-almost automorphic for any exponent p > 0; furthermore, we know that F (·) is
vectorially Weyl almost automorphic as well as that F (·) is not vectorially Weyl almost
automorphic of type 1 nor jointly vectorially Weyl almost automorphic (see [1]).

Let us prove that F (·) is vectorially Weyl-almost periodic, i.e., the vectorially
Weyl-1-almost periodic. To show this, notice that (r, s ∈ R, τ ∈ R):

F
(
r + s+ τ

)
− F (r + s) = 2

(
sin τ

2k · cos 2r + 2s+ 2τ
2k

)
k
,

so that (t ∈ R, τ ∈ R; l > 0)
1
l

∫ t+l

t

[
F (v + τ) − F (v)

]
dv

=2
l

(
k sin τ

2k ·
[
sin 2t+ 2l + τ

2k − sin 2t+ τ

2k

])
k

=4
l

(
k sin τ

2k · cos 2t+ l + τ

2k · sin l

2k

)
k

.(3.1)

This immediately implies the required statement since |k sin(τ/2k)| ≤ |τ |/2, k ∈ N,
and ∣∣∣∣∣cos 4t+ 2l + 2τ

4k · sin l

2k

∣∣∣∣∣ ≤ 1, k ∈ N.

Let us prove now that F (·) is not Weyl-p-almost periodic for any p > 0. Suppose that
0 < ϵ < 32−1 · (cos(7π/16) ·

√
2/2)p. Then, there exists L > 0 such that, for every

t0 ∈ R, we can find τ ∈ [t0 − L, t0 + L] such that there exists l0(τ) > 0 with∫ l

0

∥∥∥∥(cos 2x+ τ

2k · sin τ

2k

)
k

∥∥∥∥p

dx ≤ ϵ · l, l ≥ l0(τ).(3.2)
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Suppose that k0 ∈ N is sufficiently large and 2k0π/4 ≤ τ < (2k0 + 2)π/4. Then π/4 ≤
τ/2k0 < 3π/8 and therefore sin(τ/2k0) ≥

√
2/2. Suppose, further, that x0/k0 = π/16;

then cos((2x+ τ)/2k0) ≥ cos(7π/16), x ∈ [2mπk0, 2mπk0 + x0] (m ∈ N0) and taking
into account (3.2) with with l = 2mπk0 + x0, where m is sufficiently large, we get

ϵ
(
2mπk0 + x0

)
≥
∫ 2mπk0+x0

0

∥∥∥∥(cos 2x+ τ

2k · sin τ

2k

)
k

∥∥∥∥p

dx

≥
∫ 2mπk0+x0

0

∣∣∣∣cos 2x+ τ

2k0
· sin τ

2k0

∣∣∣∣p dx ≥ (m+ 1)x0

(√
2

2 · cos 7π
16

)p

, l ≥ l0(τ).

Dividing by m and letting m → +∞, we get

2πϵ
(
k0/x0

)
= 32ϵ ≥

(√
2

2 · cos 7π
16

)p

,

which is a contradiction.
Now we will prove that F (·) is not vectorially equi-Weyl-almost periodic. Suppose

that 0 < ϵ <
√

2/2. Then there exist l > 0 and L > 0 such that, for every t0 ∈ R,
there exists τ ∈ [t0 − L, t0 + L] such that∥∥∥∥∥4

l

(
k sin τ

2k · cos 2t+ l + τ

2k · sin l

2k

)
k

∥∥∥∥∥ ≤ ϵ, t ∈ R;(3.3)

see (3.1). Furthermore, there exists k0(ϵ, l) ∈ N such that

4k sin l

2k ≥ l, k ≥ k0(ϵ, l).(3.4)

After that, take any t0 > L + πk0(ϵ, l)/2. Then there exists k0 ≥ k0(ϵ, l) such that
2k0π/4 ≤ τ < (2k0 + 2)π/4. Then, as above, π/4 ≤ τ/2k0 < 3π/8 and sin(τ/2k0) ≥√

2/2. Since (3.3) holds for all t ∈ R, we can take t = −(l + τ)/2 in order to see that
cos((2t+ l+ τ)/2k0) = 1 so that (3.4) and the above estimates enable one to see that
the right hand side of (3.3) is greater than or equal to

√
2/2, which is a contradiction.

Let us finally observe that, for every l > 0, we have

sup
r∈R

1
l

∥∥∥∥∥
∫ r+l

r
F (s) ds

∥∥∥∥∥ = 1,(3.5)

so that the vectorial Weyl seminorm of F (·), defined through

∥F∥W,v := lim
l→+∞

sup
r∈R

1
l

∥∥∥∥∥
∫ r+l

r
F (s) ds

∥∥∥∥∥ ,
exists and equals 1. In order to see that (3.5) holds, notice that a simple computation
shows that

1
l

∥∥∥∥∥
∫ r+l

r
F (s) ds

∥∥∥∥∥ = sup
k∈N

[
2k
l

·
∣∣∣∣∣sin 2r + l

2k · sin l

2k

∣∣∣∣∣
]
, r ∈ R.
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Therefore, for every l > 0,
1
l

∥∥∥∥∥
∫ t+l

t
F (s) ds

∥∥∥∥∥ ≥ sup
t∈(πZ−l)/2

sup
k∈N

[
2k
l

·
∣∣∣∣∣sin 2t+ l

2k · sin l

2k

∣∣∣∣∣
]

≥ sup
k∈N

[
2k
l

·
∣∣∣∣∣sin l

2k

∣∣∣∣∣
]

= 1,

since limk→+∞(2k/l) · | sin(l/2k)| = 1.

If F (·) is locally integrable, then the existence of vectorial Weyl seminorm of F (·)
in [0,+∞] cannot be proved with the help of the argumentation given on [15, pp.
375–376]. Moreover, this seminorm does not necessarily exists.

Example 3.2. Define the function F : R → R by F (t) := −2k if t ∈ [2k, 2k + 1) for
some k ∈ Z and F (t) := 2k + 2 if t ∈ [2k + 1, 2k + 2) for some k ∈ Z. Then,

lim sup
l→+∞

sup
t∈R

1
l

∣∣∣∣∣
∫ t+l

t
F (s) ds

∣∣∣∣∣ = +∞ and lim inf
l→+∞

sup
t∈R

1
l

∣∣∣∣∣
∫ t+l

t
F (s) ds

∣∣∣∣∣ = 1,

and therefore, ∥F∥W,v does not exist in [0,+∞]. In order to see this, it suffices to
show that

sup
t∈R

∣∣∣∣∣
∫ t+2k

t
F (s) ds

∣∣∣∣∣ = 2k and sup
t∈R

∣∣∣∣∣
∫ t+2k+1

t
F (s) ds

∣∣∣∣∣ = +∞, k ∈ N.(3.6)

By our construction, we have
∫ 2m+1+2k

2m+1 F (s) ds = 0 for all m, k ∈ Z. Hence,

sup
t∈R

∣∣∣∣∣
∫ t+2k+1

t
F (s) ds

∣∣∣∣∣ ≥ sup
t∈2Z+1

∣∣∣∣∣
∫ t+2k+1

t
F (s) ds

∣∣∣∣∣ .
If t = 2m+ 1 for some m ∈ Z, then we have∫ t+2k+1

t
F (s) ds =

∫ 2m+2k+2

2m+2k+1
F (s)ds = 2m+ 2k + 2,

which simply implies the second equality in (3.6). On the other hand, we have

sup
t∈R

∣∣∣∣∣
∫ t+2k

t
F (s) ds

∣∣∣∣∣ ≥
∫ 2k

0
F (s) ds = 2k, k ∈ N.(3.7)

If t ∈ [2m, 2m+ 1) for m ∈ Z, then one has∫ t+2k

t
F (s) ds =

∫ 2m+1

t
F (s) ds−

∫ 2m+2k+1

t+2k
F (s) ds

=(−2)(2m+ 1 − t)m+ (2m+ 1 − t)(2m+ 2k) = 2(2m+ 1 − t)k,

so that ∣∣∣∣∣
∫ t+2k

t
F (s) ds

∣∣∣∣∣ ≤ 2k.(3.8)
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Similarly, if t ∈ [2m+ 1, 2m+ 2) for an integer m ∈ Z, then one has∫ t+2k

t
F (s) ds =

∫ 2m+1

t
F (s) ds+

∫ t+2k

2m+2k+1
F (s) ds

= (2m+ 1 − t)(2m+ 2) − (2m+ 1 − t)(2m+ 2k + 2) = 2(2m+ 1 − t)k,
so that (3.8) again holds. By (3.7)-(3.8), we deduce the first equality in (3.6).

The uniform convergence of a sequence of locally integrable functions implies the
convergence of this sequence in the vectorial Weyl seminorm; furthermore, the stan-
dard evidence shows that, if the sequence of vectorially (equi)-Weyl-almost periodic
functions converges in the vectorial Weyl seminorm, then the limit function is likewise
vectorially (equi) Weyl-almost periodic.

It is not so simple to deduce a proper analogue of Proposition 2.1 for vectorially
Weyl almost periodic type functions. After clarifying this fact, we will generalize the
notion introduced in Definition 3.1 as follows (cf. also [16, Definition 3.1.1–Definition
3.1.6]).
Definition 3.2. Suppose that F : Λ × X → Y, ρ is a binary relation on Y and the
following condition holds.

(WM1-1v): ∅ ̸= Λ ⊆ Rn, ∅ ̸= Λ′ ⊆ Rn, ∅ ̸= Ω ⊆ Rn is Lebesgue measurable,
m(Ω) > 0, Λ′ + Λ ⊆ Λ and Λ + lΩ ⊆ Λ for l > 0.

(i) It is said that F (·; ·) is vectorially equi-Weyl-(B,Λ′, ρ,Ω)-almost periodic if, for
every ϵ > 0 and B ∈ B, there exist two finite real numbers l′ > 0 and L′ > 0 such that
for each w0 ∈ Λ′ there exists τ ∈ B(w0, L

′) ∩ Λ′ such that for each t ∈ Λ and x ∈ B
there exists an integrable mapping yt;x : t + l′Ω → Y such that yt;x(u) ∈ ρ(F (u;x))
for a.e. u ∈ t + l′Ω and

sup
t∈Λ;x∈B

∥∥∥∥∫
t+l′Ω

[
F (τ + u;x) − yt;x(u)

]
du
∥∥∥∥ < ϵ(l′)n.(3.9)

(ii) It is said that F (·; ·) is vectorially Weyl-(B,Λ′, ρ,Ω)-almost periodic if, for every
ϵ > 0 and B ∈ B, there exists a finite real number L′ > 0 such that for each t0 ∈ Λ′

there exists τ ∈ B(w0, L
′) ∩ Λ′ such that for each t ∈ Λ and x ∈ B there exists

an integrable mapping yt;x : t + l′Ω → Y such that yt;x(u) ∈ ρ(F (u;x)) for a.e.
u ∈ t + l′Ω and

lim sup
l′→+∞

sup
t∈Λ;x∈B

[
(l′)−n

∥∥∥∥∫
t+l′Ω

[
F (τ + u;x) − yt;x(u)

]
du
∥∥∥∥] < ϵ.

We have the following result.
Proposition 3.1. (cf. also [16, pp. 23–24]) Suppose that m ∈ N, F : Λ × X → Y,
ρ = T ∈ L(Y ) and (WM1-1v) holds. If F (·; ·) is vectorially (equi-)Weyl-(B,Λ′, T,Ω)-
almost periodic, then F (·; ·) is vectorially (equi-)Weyl-(B,mΛ′, Tm,Ω)-almost periodic,
as well.

Proof. We examine the class of vectorially equi-Weyl-(B,Λ′, T,Ω)-almost periodic
functions, only. Let ϵ > 0 and B ∈ B be fixed. Then there exist two finite real
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numbers l′ > 0 and L′ > 0 such that for each w0 ∈ Λ′ there exists τ ∈ B(w0, L
′) ∩ Λ′

such that for each t ∈ Λ and x ∈ B we have that (3.9) holds with yt;x = TF (u;x) for
a.e. u ∈ t+ l′Ω. Let t ∈ Λ and x ∈ B be fixed, and let w0 ∈ Λ′ and τ ∈ B(w0, L

′)∩Λ′

be as above. Then, it is clear that sΛ′ + Λ ⊆ Λ, s ∈ N and

F (u +mτ ;x) − TmF (u;x) =
m−1∑
j=0

T j
[
F (u + (m− j)τ ;x) − TF (u + (m− j − 1)τ ;x)

]
,

for any u ∈ t + l′Ω. This implies∥∥∥∥∫
t+l′Ω

[
F (u +mτ ;x) − TmF (u;x)

]
du
∥∥∥∥

×
m−1∑
j=0

∥T∥j ·
∥∥∥∥∫

t+l′Ω

[
F (u + (m− j)τ ;x) − TmF (u + (m− j − 1)τ ;x)

]
du
∥∥∥∥

=
m−1∑
j=0

∥T∥j ·
∥∥∥∥∥
∫

t+(m−j−1)τ+l′Ω

[
F (u + τ ;x) − TmF (u;x)

]
du
∥∥∥∥∥ ≤

m−1∑
j=0

∥T∥jϵ.

The required conclusion follows from this estimate. □

We close this section by observing that Proposition 3.1 can be also formulated for
the corresponding classes of vectorially Stepanov almost periodic functions.

4. Invariance of Vectorial Stepanov Almost Periodicity and
Vectorial Weyl Almost Periodicity under the Actions of

Convolution Products

We open this section by clarifying the following result.

Proposition 4.1. Assume ν : R → (0,+∞), 1/v(·) is locally bounded and there exists
a Lebesgue measurable function ψ : R → (0,+∞) such that ν(x+ y) ≤ ψ(x)ν(y) for
all x, y ∈ R. Suppose further that f : R → X is a bounded, vectorially (Λ′, T,P)-
almost periodic function, resp. a bounded, vectorially (Λ′, T,P)-uniformly recurrent
function, where ρ = T ∈ L(X) and P = Cb,ν(R : X). If (R(t))t>0 is any strongly
continuous operator family in L(X) such that R(t)T = TR(t) for all t > 0 and∫+∞

0 ∥R(r)∥ · (1 + ψ(r)) dr < +∞, then the function F : R → X, given by

F (t) :=
∫ t

−∞
R(t− s)f(s) ds, t ∈ R,(4.1)

is bounded, continuous and vectorially (Λ′, T,P)-almost periodic, resp. bounded, con-
tinuous and vectorially (Λ′, T,P)-uniformly recurrent.

Proof. Suppose that ϵ > 0. Then there exists l′ > 0 such that, for every w0 ∈ Λ′ there
exists τ ∈ [w0 − l′, w0 + l′] ∩ Λ′ such that∥∥∥∥[∫ 1

0
f(t+ τ + s) ds− T

∫ 1

0
f(t+ s) ds

]
· ν(t)

∥∥∥∥ ≤ ϵ, t ∈ R.(4.2)
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Clearly, F (·) is well-defined, bounded and continuous and F (t) =
∫+∞

0 R(r)f(t− r) dr
for all t ∈ R. Furthermore, we can use (4.2), the Fubini theorem and the prescribed
assumptions to show that:∥∥∥∥[∫ 1

0
F (t+ τ + s) ds− T

∫ 1

0
F (t+ s) ds

]
· ν(t)

∥∥∥∥
=
∥∥∥∥[∫ 1

0

∫ +∞

0
R(r)f(t+ τ + s− r) dr ds− T

∫ 1

0

∫ +∞

0
R(r)f(t+ s− r) dr ds

]
· ν(t)

∥∥∥∥
=
∥∥∥∥[∫ 1

0

∫ +∞

0
R(r)

[
f(t+ τ + s− r) dr ds− Tf(t+ s− r)

]
dr ds

]
· ν(t)

∥∥∥∥
=
∥∥∥∥[∫ +∞

0
R(r)

[∫ 1

0

[
f(t+ τ + s− r) dr ds− Tf(t+ s− r)

]
ds

]
dr · ν(t)

]∥∥∥∥
≤
∫ +∞

0
∥R(r)∥ ·

∥∥∥∥∫ 1

0

[
f(t+ τ + s− r) dr ds− Tf(t+ s− r)

]
ds

∥∥∥∥ dr · ν(t)

≤
∫ +∞

0
∥R(r)∥ · ϵ

ν(t− r) · ν(t) dr ≤ ϵ

∫ +∞

0
∥R(r)∥ψ(r) dr.

This simply implies the desired conclusion. □

The statement of [14, Proposition 2.6.11] cannot be reconsidered for the vectorial
Stepanov almost periodicity. Concerning the vectorial Weyl almost periodicity, we
will clarify the following result; cf. also the proof of [14, Proposition 2.11.1 (i)].

Proposition 4.2. Suppose that (R(t))t>0 ⊆ L(X) is a strongly continuous operator
family satisfying that

∫+∞
0 ∥R(s)∥ ds < +∞, T ∈ L(X) and R(t)T = TR(t) for all

t > 0. If f : R → X is bounded and vectorially (equi-)Weyl-(Λ′, T,P)-almost periodic,
where P = Cb(R : X), then the function F (·), given by (4.1), is bounded, continuous
and vectorially (equi-)Weyl-(Λ′, T,P)-almost periodic.

The statement of [14, Theorem 2.11.4] cannot be reconsidered for the vectorial Weyl
almost periodicity, unfortunately. Let us finally note that we can employ different
pivot spaces X and Y in the formulations of Proposition 4.1 and Proposition 4.2,
provided that T = cI, where c ∈ C \ {0}.

5. Conclusions and Final Remarks

In this research article, we have introduced and analyzed several new classes of
vectorial Stepanov-p-almost periodic type functions and vectorial (equi)-Weyl-p-almost
periodic type functions, where p > 0. In contrast with the usual research studies of
generalized almost periodic functions, we have used the vector-valued integration in our
approach. We have also analyzed Σ-almost periodic type functions and the invariance
of vectorial Stepanov almost periodicity and vectorial Weyl almost periodicity under
the actions of convolution products.

The notion introduced in Definition 2.4 (ii) can be extended in the following way (the
metrical generalizations of this definition can be also introduced; see [16, Section 4.2]
for more details).
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Definition 5.1. Suppose that (SM1-1v) holds, p > 0, ρ is a binary relation on
Y, F : Λ × X → Y and R(F ) ⊆ D(ρ). The function F (·; ·) is said to be vectorially
Stepanov (B,Λ′, ρ, p)-almost periodic if for each x ∈ X the mapping F (·;x) is p-locally
integrable as well as, for every ϵ > 0 and B ∈ B, there exists l′ > 0 such that for each
w0 ∈ Λ there exists a point τ ∈ B(w0, l

′)∩Λ′ such that for each t ∈ Λ and x ∈ B there
exists a p-locally integrable function yt;x(·) on Ω such that yt;x(u) ∈ ρ(F (t + u;x))
for a.e. u ∈ Ω and∣∣∣∣∫

Ω

[
F (t + τ + u;x) − yt;x(u)

]p
du
∣∣∣∣ ≤ ϵp, t ∈ Λ, x ∈ B.

The notion of a vectorially Stepanov (B,Λ′, ρ, p)-uniformly recurrent function can
be similarly introduced in the scalar-valued setting. Let us finally note that we
can also consider the class of scalar-valued vectorially (equi-)Weyl-p-almost periodic
functions and the class of scalar-valued vectorially (equi-)Weyl-(B,Λ′, ρ, p)-almost
periodic functions following our approaches from Definition 3.1 and Definition 3.2 as
well as many other classes of generalized vectorially almost periodic functions. More
details will appear somewhere else.
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