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SEVERAL THEOREMS OF APPROXIMATION THEORY FOR THE
¢-BESSEL TRANSFORM

OTHMAN TYR! AND ABDELAALI DADES?

ABSTRACT. In this paper, we prove several theorems in approximation theory con-
cerning the g-Bessel transform. A new estimate for the ¢-Bessel function is obtained.
By applying the generalized modulus of continuity, we establish new Jackson-type
inverse estimates for the generalized ¢g-Bessel transform in the space Laa(R;r), where
g€ (0,1) and a > —1/2.

1. INTRODUCTION

Let f : R — C a Lebesgue square-integrable function on R, i.e., f € L*(R). We
define the finite differences of order k € N by

AE(fi) = (Fy — D) () = 3(—1) (k) Fif), weR

i=0 L5

where F), is the Steklov operator defined by
z+h

(1.1) Fuf(z) = 2—1h—1/ F(t)dt, h>0,
z—h

and I is the unit operator in L*(R).

For a given positive real number §, the k'"-order generalized modulus of continuity
of a function f is defined by

Q(f,6) = sup IAR(f; 2)] r2w)-
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238 O. TYR AND A. DADES

Let W;;g(D), where r = 0,1,... and k = 1,2,..., denote the class of functions
f € L*(R) for which the generalized partial derivatives exist in the sense of Levi:

of &f of
ox’ 0z’ Oa’
which all belong to L*(R) (see [21, p. 172]). These functions satisfy the estimate

(D" f,6) = O(2(3%)), asd —0,
where D = 2 and the iterated derivatives D' f are defined recursively by
Df=f Df=DD"f), i=12...r

Here, ® is a continuous, strictly increasing function on [0, +00) with ®(0) = 0.
The following theorem is an analogue of Jackson’s direct theorem from the classical
theory of function approximation [21, Ch. 5] (see also [1, Theorem 1]).

Theorem 1.1. It holds that

oL iora=o(x e [(2)]).

as N — +oo, wherer =0,1,..., k=1,2,..., and ]? stands for the Fourier transform

of f.

In the case where ®(t) = t¥ with v > 0, Abilov et al. characterized the functions
f € L*(R) by the following equivalence (see [1, Theorem 2]).

Theorem 1.2. Let ®(t) = t” with v > 0. Then, the assertions f € Wy (D) and

\// TN = O(NT4), a5 N e,

are equivalent, wherer =0,1,..., k=1,2,..., and 0 < v < 2.

Recently, considerable attention has been paid to the development of various g¢-
analogues of Fourier analysis using tools from quantum calculus (see [4,5,8,9,12] and
references therein). In the context of ¢-Bessel analysis, many works have focussed on
the construction of ¢g-Fourier analysis associated with the g-Hankel transform. This
theory was first introduced by Koornwinder and Swarttouw [19], and later extended
by Fitouhi et al. [9,10,13]. It is therefore natural to investigate g-analogues of classical
theorems in this framework.

In this paper, building on the work of Abilov, we establish new Jackson-type inverse
estimates for the g-Bessel transform for certain classes of functions characterised by
a modulus of continuity and associated with the ¢-Bessel operator. Similar results
were obtained in [2,6,7,25-30]. To achieve these results, we use a generalised g-Bessel
translation operator rather than the Steklov operator defined in (1.1).
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2. HARMONIC ANALYSIS ASSOCIATED WITH THE ¢-BESSEL OPERATOR

This section provides the essential background to ¢g-harmonic analysis related to the
g-Bessel transform. We give a brief overview of the standard notions and notations
of g-theory, while further details and results on ¢-Bessel analysis can be found in
[5,9-11,13,17,18].

Throughout this paper, we assume ¢ €]0,1[ and o > —1/2. We introduce the
following set

RS = {¢", n € Z}.
Let a € C, the ¢-shifted factorials are defined by:

(21) (aq)o = 1. @%zﬁu—w»nzmww@muzﬁuwm

The g-derivative of a function f is given by
f(x) — flgz)
D, flr)=——F7"=
o/ (1) (1—q)z

where D, f(0) = f'(0) provided f'(0) exists. Note that when f is differentiable at =,
then D, f(z) tends to f (x) as ¢ tends to 17,
The general g-hypergeometric series is defined by

, ifx #0,

ay,as, ...

,a
r¢s [bl b2 br,Q7Z‘| :r¢s (al,ag,. .. 7ar;b17b2, o 7bs;q7 Z)
,09,...,04

I : 1+s—r
(22) _ (al, ag, e 7ara Q)n |:(_1>nqn(n—1)/2:| + ZTL

2 (baybay by )05 D)
where the g-shifted factorial is defined by (2.1) and

Y

(ah az, ..., ar; Q)n = (al; Q)n(a2; Q)n to (ar; Q)n
The g-Jackson integrals from 0 to a and from 0 to +oo are defined by [14,17]

/Oa f(@)dyz =(1—q)a +Zm;cz’”‘f(acz”),

[ e =0-9) 3 1)

provided the sums converge absolutely. The ¢-Jackson integral in a generic interval
[a, b] is given by
b b a
| t@dge = [ f@da = [ f@)da
We denote by £ (RF), p > 1, the set of all real functions f defined on R for which

1/p
< +00.

+o0
Flapa = [ @ P+da
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We denote by C,o(R}), for the space of functions defined on R} tending to 0 as
x — 400 and continuous at 0. The space C,o(R ) when equipped Wlth the topology
of uniform convergence, is a complete normed hnear space with norm

£ llg.00 = sup [f(2)]

$€R3’

In [16], Ismail introduced the third ¢-Bessel function, defined as follows

200+2.
q Y e a
Ja(r;4%) = <(qq)> 161 (0;4°7%; %, ¢*2?)

2042 n(n+1)

(23) = (q ’q )OO Z 4 x2n+a'
(P S (0> ¢*)n(@% ¢%)n

It satisfies (see [5]) the following.

e Foralln € Z, « > —1/2, we have
2.2 _ L2a+2. 2 no f > O
n., 2 <(Q7q)00(q 7Q)oo q, uan = U,
(24) ’Ja(q 1 q )‘ = (qg) q2>oo qn(n—oa—l)’ ifn < 0.

e For all 0 € R, 2 € R}, we have
Jo(z;¢%) = o(z™7), asx — +o0.

In particular
Jo(7;¢%) =0, as z — +oo.

The function J,(+; ¢*) is given in normalized form by

(2.5) ol q2> _ Jio(_l)n g 2q”;n+1)2 . 20
n=0 (@***%¢*)n(q% ¢%)n

The following lemma was proved in [12, Lemma 3.1].

Lemma 2.1. We have the following inequalities for the q-Bessel function:

(2.6) ja(®:¢%) =O(1), ifx >0 and z € R},
(2.7) 1 —jo(x;¢°) =O(1), ifx>1andz € R/,
(2.8) 1 — jo(z;¢°) =0(2%), ifx <1 andz € R].

The g-integration theorem by a change of variable can be stated as follows

b &
/ H <)‘> A2t \ = g2ot2 /é H(x)z*d,z, forall s € RY.
a S :

For A € C, the function = — j,(Az,¢?) is a solution of the g-differential equation
{Aq,af(w) = —\*f(z),
f(0) =1,
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where A, , denotes the g-Bessel operator, defined by
flg™'e) = (1 +¢*) f(x) + ¢ f(gw
h o pay = T = (0 ) )+ )

2
x

We now give the definition of the ¢-Bessel transform associated with the ¢-Bessel
operator.

, mER;.

Definition 2.1. The g¢-Bessel transform JF,,, is defined for every function f €
Loa(RT) by
“+oo
Fg.alF)A) = ¢qa / f(@) ja(Aa; @) 2*H dgw,  for all A € RY,
0
where
_ 1 (q2a+2; q2>oo
1—q (% ¢%)
It is well-known that the ¢-Bessel transform satisfies the following properties (see
[10,13,15]).
o If f € Lé,a(R;): then Fy0(f) € eqyo(R;) and [|[Fa(f)llgoe < Boallfllgra

Cqa

where - sess. o
g - 1 (00 ("¢
"1y (4% 4*)oc
e For every f € £ (RY), one has
(2.9) FoaNgaf)X) = =XFa(f)(N), forall X e R}

Theorem 2.1 gives the Plancherel formula and inversion formula for the g¢-Bessel
transform.

Theorem 2.1. i) The q-Bessel transform Fq is an isomorphism from L7 (RF) onto
itself and satisfies the q-Plancherel formula

(2.10) 1Faa(Hllaza = Ifllaza, for all f € Lg,(R)).

i) If f € L, (RF) such that T o(f) € L, (RF), then the q-inversion formula
holds and we have

+oo
211) F@) = [ FaalHDONa(ha )N,

a.e. on ]R;.

The ¢-generalized translation operator associated with the g-Bessel transform, de-
noted by T¢, for h € R}, was introduced in [13] and later corrected in [10]. Tt is
defined using Jackson’s ¢-integral and the ¢-shifted factorial as

+oo
Tond @) = [ SO Kyalbyw,t) £ dt,
where .
Kyalh,z,y) =ci, /0 Ja(ht; %) ja(t; ¢%)ja(yt; )2 dgt.
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In particular, the product formula
(I?,hja(x; q2) = ja(h; q2>ja(x; q2)
holds.
The ¢-generalized translation operator has the following properties (see [10,11]).

Theorem 2.2. i) For f € LP (RY¥), p > 1, we have Tg, f € L (RF) and

||(‘T(§!,hf||%p7a S ||f||¢I7P104‘
i) For f € L, (RY), we have

(2.12) Faa(Tgnf)N) = ja(Ah; *)Fqa(£)(N)-

For every f € Laa(Rf;), we define the differences A} f of order m, m = 1,2,.. .,
with step h > 0, h € R;“ by:

Af(@) = Anf(z) = Tg,f(2) — f(z),
AV f(z) = Ap(AT 1 f(2)), for m > 2.
The m'™-order generalized modulus of continuity of f € Laa(R;) is defined by

Win(f,0)g20 = sup [|AF fllg2.4, 0> 0.
0<h<é
Let Wy y(Aga), 7 = 0,1,..., denote the class of functions f € £2 (R}) that have
generalized derivatives in the sense of distributions satisfying
r 2 + —
Ao f el (R, r=12,...,
ie.,
Wiy(Aga) = {f € L2, (RE) : A f € L2,(RE), r=1,2,...},
where
0 T r—1
Aq,af =/ Aq,af = Aq,a (A%Oé ) , r=12,...
From (2.9), for all f € W7 ,(Ayq), We have

(2.13) Foa (Npof ) (V) = ()N Fpa( V), 7=1,2,...

3. MAIN RESULTS

We now present the main results of this paper. Their proofs rely on several prelim-
inary lemmas.

Lemma 3.1. For « > —1/2 and x € R;, we have

(3.1) Vadu(z;¢?) = 0(1), forx > 0.
Moreover, we have

(3.2) Jalz:¢%) = O(:B_‘"_%), for x > 0.
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Proof. First, note that
reRS,z>1 ifandonly if z=¢",n <0,

and
xER;,OgaZS 1 ifand only if x=¢",n>0.
From this and (2.4), we distinguish two cases.
For v = ¢" € R} with n > 0, we obtain

(—qg;qg)m(—q2“+2;q2)mqn(a+%)_

g2 Ja(q"; ¢%)] <

Since n(a + 3) > 0, it follows that g"@+3) < 1, and therefore we obtain

(=% @)oo (=% %) o

92 T, (q"; ¢%)| <

(% ¢*) oo
Therefore, equivalently,
(3.3) Vada(z;¢*) = 0(1), forxc RS, 0<z <1
For the case x = ¢" € ]R; with n <0, we get
n (=% ¢*)oo (=" %) e —a-1
|42 Jo(q"; ¢%)] < g e,
(4% ¢*) oo

Since n(n — a — 1) > 0, it follows that
qn<n—a—%) S 17

and thus we again obtain

4% Ja(q": )| <
Consequently,
(3.4) Vado(z;¢?) =0(1), forzeR), z>1.
Now, combining (3.3) and (3.4), we obtain
Vado(z;¢*) = 0(1), forz >0,z € R},
which proves (3.1). To prove (3.2), we use formulas (2.3) and (2.5), which yield

: (0% o
) = gz ) )
Thus, taking into account the formula above and (3.1), we obtain the result. O

We now present an important lemma that will lead us to the main result.



244 O. TYR AND A. DADES

Lemma 3.2. Let h > 0 with h € R} . If f € W[ ,(Aga), then

+o0
1A (A G20 = /0 AL = Ja (A, @) Fqa( SN PAT A,
where r =0,1,2, ...
Proof. According to the formula (2.12), we obtain
Faa(Bnf)A) = FoalTen )N = FoalH)N) = (oM, ¢*) = DT gal( £V
Using the recurrence proof with respect to m, we obtain
Fgal AN FYA) = (oA, %) = 1)"Tga(F)(N).
In view of formula (2.13), we get
T (AT (AL f))N) = (=1)" A (ja(Ah, ¢*) = )" T a(f)(N).
Now, by appealing the g-Plancherel formula (2.10), we have the desired result. 0

The following theorem is an analogue of Abilov’s theorem [1, Theorem 1]. It
represents a Jackson-type direct theorem from the classical theory of function approx-
imation [21, Chapter 5.

Theorem 3.1. For a function f € L2 (RF) in the class W7 o(Aga) there exists a
fixed constant ¢ > 0 such that for all N > 0, we have

In(f) =0 (N—Qrwm (At ;)2) ,

wherer =0,1,2,...,m=1,2,...

Proof. Firstly, for all h € R;, we can see that

+oo

B = [ 10D
“+oo
< [ aln ) [F (DA,
oo : 2 2 20+1

(3.5) + [ = M) | Fga (YN
According to the formula (3.2), there exists a constant ¢; > 0 such that

a(Mh, ¢%)] < er(AR) ™2,

Hence,

too | 2 2y 2a+1 ol [T
[ e ) [Faal DOVEN AN < i [

< ci(hN)™ 72 g3,(f).

A3 |Fa (FYO)PAZH N
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[0

Choosing ¢ > 0 such that the constant ¢; = 1 — ¢j¢” ~3 s positive and setting

h = ¢/N in inequality (3.5). Then, we have

(3.6) BN < [T = Ja O )] O PA

Furthermore, by Holder’s inequality, the second term in (3.6) satisfies
oo : 2 2y 2a+1
[, 1= a @) [Faal VA,

= [ 3O (D) ()

1

3=

d,\

2m—1

< (/Nm 11 —ja(Ah,qz)|2m|?q,a(f)(A)\2>\2a+1dq)\) o Gn(f)

1
m—1

= (7 SN = Ga @) POV ) ()5
N

L
—2r 2m—1

SN @) ([ X = O )P e P00 )

From Lemma 3.2, we conclude that

+oo
[ AL = O @) P (A=A < A7 (A DI
Therefore,
e ; 2 2y 20+1 =2
[T =G0 )] Fgal HN XA < N (@)
For h = ¢/N, we obtain

N (f) <N

2m—1
m

||A?(A2,af) ”52,04'

—2r 2m—1

m (In(f)) ("J’ln/m <A2’O‘f’ ;>q7270¢‘

Consequently, by raising both sides to the power m and simplifying by (Jx(f))*™, we
finally obtain

—m AT—2r r C
3N(f> < Cy N 2 Wm (Aq,af7 N)q,2,a :

Therefore,

— 0N, (A’" c) .
3N(f) O ( w qufv N 02
This completes the proof of Theorem 3.1. 0

Theorems 3.2 and 3.3 are analogues of the classical inverse theorems of approxima-
tion theory due to Stechkin and Timan (see [22,23]).

Theorem 3.2. Let f € L2 (RYF). Then, for all N >0,

in(f.57). =0 (N?m (Sa+vma) ) .

=0
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Proof. From Lemma 3.2, we have

m e : 2\ (2m 2 2a+1
187 £ = [ 1= daVh )P F DN X

This integral is divided into two:

+o0 N +o00
0 0 N

where N = [%] We estimate them separately. From (2.6), we have the estimate

(3.7) I < e /N 1T (O = 582 ().

Now, we estimate J;. From relation (2.8), we have

N
[1 S C4h4m /0 )\4m‘9:q,a(f) ()\) ‘2)\2a+1dq>\

o h4m = i+1 )\4m 35 )\ 2)\2a+1d )\
el Y [T (A,
=0

N-1

< cyh'" Z a(3;(f) — 312+1(f)),

1=0
where a; = (I + 1)*™ and

B = [ 1Tl HPR

For all integers M > 1, the Abel transformation shows
M M

(@7 (f) = 31 (1)) = aods(f) — andiy 1 (f) + D (@ — a-1) (f)

1=0 =1
M
< B () + D (a — a1)T(f),

because ayd3,,,(f) > 0. Hence,

N-1
I, < e h*m (30 + Z a; — aj—1 31(f)>
=1

Moreover by the finite increments theorem, we have
a; —ai1 < 4m(l+ 1)L
Then,

N—-1
I < ¢ N~Im (%(f) +4m Y (1+ 1>4m‘18?<f>> :

=1
since N < % Combining the estimates for I; and I, gives

N—-1
1A F2, = O (N-4m S+ 1>4m—13%<f>) |

=0
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which implies

1

|

and this completes the proof. U
Theorem 3.3. Let f € L2 (Rf). If the series

—+00

SN, r=1,2,...

=1
converges, then f € W/ o(Aga) and, for all N > 0,

1 N—-1 % “+00
W <A'r’ af7 ) 4m Z l 4 1 4dr4+4m— 132<f)> 4 O Z l2r—13l(f) )
q, N 4.2, s

1=(4]

Proof. Let f € £2 (Rf). By (2.13) and Plancherel formula (2.10), we have

+oco
1A g0 1520 = AT |Fqa (NN g
0
&t 4r 2y 2041
=3 [ ATl PN,
=0

_ §°<z U@ — B a())):

Using an Abel transformation, we obtain
+oo

1A af G20 < 35CF) +4r Y (1 + 1)1 (f).

I=1
From the inequality [ + 1 < 2[, we conclude

18502 < 5 (3300)+ 3075

=1
Hence,

+oo
1A s = O (Z zz”amf)) .
=1

Since the series .
SNPT(S), r=1,2,...
=1

converges, we see that f € W7, (Aga).
On the other hand, it follows from Lemma 3.2 that

AT A e = [ XL = a1l £ )X
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This integral is divided into two:

+o0 N +o00
[ e,
0 0 N

where N = [;]. We estimate them separately.
By rearranging terms analogous to summation by parts and proceeding as with I,

we obtain
N
Ky < eoh®™ [ XEIE, ()P
0
N-1 41
= contm 3 [N, (P

0

N-1

< cght™ Z I+ 1)4(r+m) @) - 3l2+1(f))

1=0
N-1
< CGN_4m Z l+1 dr+4m— 132(f)
1=0
Now we estimate K5, by relation (2.6), we obtain
+
Ko= [ ML= ja(Ah )P Fa(HOVPAZd, A

=0 ([T ATIE,al NN

~o(X mlNA”i%a( ISR

2mN

EOIY MNCAT VSRR

mlN

~o[%
— 0 (XN ().

ie.,

D=

“+oo
(Kz) = O <Z (QmN)2T32m1N(f)> .
m=1
Taking account of the fact that
2m-IN

247‘ Z l27‘—181(f) Z 24T(Qm_2N)2T_132m71N(f)Qm_2N

|=2m—2N41
== (2mN)2r32m—1N<f),
we obtain the estimate

Kzé_o(f 3 12"‘131(f)> o(io F”az(f))-

m=1]=2m-2N41 1:[%}
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Combining the estimates for K; and K, gives

N—-1 2 +o0
1AR (Agaf)llaza =0 (N o+ 1)4”4’”‘13?(]”)) O > P |
=0 1=[4]

which implies that

r 1 —4m = 4dr+4m—1q2 % = 2r—1
wm (Aq,afa ) =0 (N7 D (41 )] +0of > Prlaf)
N 9,2,

=0 1=(5]
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