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SANDWICH THEOREMS FOR MULTIVALENT ANALYTIC
FUNCTIONS ASSOCIATED WITH DIFFERENTIAL OPERATOR

ABBAS KAREEM WANAS! AND ALB LUPAS ALINA?

ABSTRACT. The purpose of this paper is to derive subordination and superordina-
tion results involving differential operator for multivalent analytic functions in the
open unit disk. These results are applied to obtain sandwich results. Our results
extend corresponding previously known results.

1. INTRODUCTION AND PRELIMINARIES

Let H = H (U) denote the class of analytic functions in the open unit disk U =
{z € C:|z] <1} and let H [a,p] be the subclass of H consisting of functions of the
form:

f(z)=a+ay” +ap12"" 4+, aeCpeN={1,2,..}.

Also, let A, be the subclass of H consisting of functions of the form:

fz)=2"+ > apz®, peN.

k=p+1

Let f,g € H. The function f is said to be subordinate to g, or ¢ is said to be
superordinate to f, if there exists a Schwarz function w analytic in U with w (0) = 0
and |w (2)| <1, z € U, such that f (z) = g (w(z)). This subordination is denoted by
f=<gor f(z)<g(z), z€U. It is well known that, if the function g is univalent in
U, then f < g if and only if f(0) = ¢ (0) and f (U) C g (U).
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Let £, h € Hand ¢ (r,s,t;2) : C3xU — C. If Eand ¥ (£ (2),2E (2), 22" (2) ; 2) are
univalent functions in U and if £ satisfies the second-order differential superordination

(1.1) h(z) =0 (6(2), 2 (2),2°¢" () 2),

then ¢ is called a solution of the differential superordination (1.1). (If f is subordinate
to g, then g is superordinate to f.) An analytic function ¢ is called a subordinant of
(1.1), if ¢ < & for all £ satisfying (1.1). An univalent subordinant ¢ that satisfies ¢ < ¢
for all the subordinants ¢ of (1.1) is called the best subordinant.

Recently, Miller and Mocanu [11] obtained conditions on the functions h, g and v
for which the following implication holds:

h(z) < (6(2),26 (2),2°€" (2)12) = q(2) < £ (2).

Using the results due to Miller and Mocanu [11], Bulboaca [4] considered certain
classes of first order differential superordination as well as superordination-preserving
integral operators [5]. Ali et al. [1] have used the results of Bulboaca [4] to obtain
sufficient conditions for certain normalized analytic functions to satisfy

0 <15 <),

where ¢; and ¢, are given univalent functions in U with ¢; (0) = ¢2 (0) = 1.
Very recently, Shanmugam et al. [17-19] and Goyal et al. [9] have obtained sandwich
results for certain classes of analytic functions.
For m,n € Ng = NU{0}, A\; > Ay > 0 and f € A,, the differential operator D"\
(see [8]) is defined by

> lp+(>\1+)\2)(k‘—l?) mo(k n) a2

(L2 DRR,f )=+ 3 |\ =

where C' (k,n) = Fg,k(:;l)

It follows from (1.2) that

(1.3) Mz (D5, ,f(2) =+ X (k—p) DRESLF (2)
- (p + Ao (/{3 — p) — p)\l) D;ﬁ’g\%pf (Z) , A1 > 0.

Special cases of this operator includes the Ruscheweyh derivative operator [15], the
Salagean derivative operator [16], the generalized Salagean operator [2], the generalized
Ruscheweyh derivative operator [3], the generalized Al-Shaqsi and Darus derivative
operator [6].

The main object of the present paper is to derive the several subordination and su-
perordination results for multivalent analytic functions involving differential operator
D g\?g\mp'

In order to prove our results, we make use of the following known results.
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Definition 1.1 ([10]). Denote by @ the set of all functions f that are analytic and
injective on U\ E (f), where

E(f) = {¢eou timf (z) = oo
and are such that f' () # 0 for ( € OU\E (f).

Lemma 1.1 ([10]). Let q be univalent in the unit disk U and let 6 and ¢ be analytic in a
domain D containing q (U) with ¢ (w) # 0 whenw € q (U). SetQ (2) = z¢' (2) ¢ (q (2))
and h(z) =0(q(2)) + Q (2). Suppose that

(1) Q(2) is starlike univalent in U;

(2) Re (ZS'((;))) >0 forzeU.

If & is analytic in U, with £ (0) = ¢ (0), £(U) C D and

(1.4) 0(£(2)) + 28 (2) 9 (£(2)) < 0(q(2)) + 24 (2) ¢ (q(2)),
then £ < q and q is the best dominant of (1.4).

Lemma 1.2 ([11]). Let ¢ be a convex univalent function in U and let « € C, [ €

C\{0} with
2q" (2) o
Re <1 + 7 (2) ) > max {O, —Re (5) } )
If € is analytic in U and

(1.5) ag (z) + 828" (2) < aq(2) + Bz (2),
then & < q and q is the best dominant of (1.5).

Lemma 1.3 ([11]). Let q be convex univalent in U and let § € C. Further assume
that Re (8) > 0. If £ € H[q(0),1]NQ and & (z) + Bz& (2) is univalent in U, then

(1.6) q(2) + Bzq (2) < £(2) + B2 (2),
which implies that ¢ < & and q is the best subordinant of (1.6).

Lemma 1.4 ([4]). Let q be convex univalent in the unit disk U and let 6 and ¢ be
analytic in a domain D containing q (U). Suppose that

(1) Re (%) >0 forzeU;

(2) Q(2) = 2¢' (26 (q(2))) is starlike univalent in U.
If £ € Hig(0),1]NQ, with E(U) C D, ¢(£(2)) + 28 (2) ¢ (£(2)) is univalent in U
and

(1.7) 0(q(2)) +2q (2) ¢ (q(2)) < 0(£(2) + 28" (2) # (£ (2))
then q < & and q 1is the best subordinant of (1.7).

—~
~
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2. MAIN RESULTS

Theorem 2.1. Let g be convex univalent in U with ¢ (0) =1, o € C\{0}, v > 0 and
suppose that q satisfies

!
(2.1) Re <1 + zq/ (Z)> > max {0, —Re (m)} :
7 (2) o
If f € A, satisfies the subordination
Ap 2P
o (ko — Dm,n o1 Dm—‘rl,n
+ 9 (p + Ag ( p)) ( )\1,)\27pf (Z)> )T\;,T)L\Q,pf (Z) =< q (Z) + izq/ (Z) ’
A1p zP Dy, 0 f (2) Py
then
Dm,n o
(2.3) “;I:JC(Z)> <q(2)
and q is the best dominant of (2.2).
Proof. Define the function & by
Dm,n o'
(2.4) £(z) = (W) . zel.

Differentiating (2.4) logarithmically with respect to z, we get

2 (2 2 (DX p 2))
5()7( (D55, () p)_

¢ (2) DX epf (2)
Now, in view of (1.3), we obtain the following subordination

2€(2) _y+dak—p) (DRhf ()
38 N Dibesl )]

Therefore,

% (2) _ (ptXa(k—p) (Dzizx,pf <z>>7 (Dz,az:’;f (2) 1) |

Y A1p 2P DY, o f (2)

The subordination (2.2) from the hypothesis becomes
o o

E(2)+—28(2)<q(2)+ —2¢ (2).

(2) + -2 (2) < a(z) + 224 (2)

Hence, an application of Lemma 1.2 with « =1 and g = %, we obtain (2.3). 0
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Theorem 2.2. Letn; € C,1=1,2,3,4,v>0, 6 € C\{0} and q be convezr univalent
in U with ¢(0) =1, q(2) #0 (2 € U) and assume that q satisfies

2 23 4 31 4 2q"(2) _ 24 (2)
(2.5) Re (1 + 54 (2) + 5 1 (2) + 5 4 (2) + 7 al) > > 0.

Suppose that Z;JES) is starlike univalent in U. If f € A, satisfies

2q (z)
q(z)’

(2.6) Q1 (1:)7 (7, 6,m,n, Aty Ao, 3 2) <y + 12 (2) + 03¢ (2) + mag® (2) + 6
where
(27) Ql (nl)il (77 57 m,n, )\17 )\27p; Z) = Ql (T]la N2, M3, 14,7, 6; m,n, )\17 /\27]); Z)
m+1,n v m+1,n 2y m+1,n 3y
=11 + 1) D)\l—;\lz,pf (z) + 13 Dx\l—;\lz,pf (Z) + 1 D>\1—,|—>\127Pf (z)
=1 ma N A r 7N ma 7N
Dxl,,\Q,pf (2) D)\l,)\z,pf (2) D,\l,,\Q,pf (2)

L8R (k=) (DRALF(2) - DAGLS (2)
M Diinaf () Diapf ()

then

m n Y

D/\1—;\1277Pf (Z)

D f(2) <q(2)
/\1,>\2,Pf (Z)

and q is the best dominant of (2.6).

Proof. Define the function & by

Dm-‘,—l,n P v

(2.8) £(z) = j,”i—pf() , zel.
D\ ewt (2)

By a straightforward computation and using (1.3), we have

29) () () e (2 + 075 ) = ) (0 mm M D 2)

where Q; (Ui)il (7,8, m,n, A\, Ao, p; 2) is given by (2.7).
From (2.6) and (2.9), we obtain

2§ (2) zq (2)

¢ (2) q(2)
By setting 6 (w) = n1 + now + npzw? + muw? and ¢ (w) = £, w # 0, we see that 6 (w)
is analytic in C, ¢ (w) is analytic in C\{0} and that ¢ (w) # 0, w € C\{0}. Also, we
get

M+ (2) + 038 (2) + €’ (2) +6 < +12q (2) +m3¢° (2) +1a4” (2) +6
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and

zq ()

q(z)

h(z)=0(q(2) +Q(2) = m +mq (2) +13¢° (2) + maq’ () + 6
It is clear that @ (z) is starlike univalent in U,

() _ R M2y o 2y 3 sy 200 (2) 2 (2)
Re(Q(z)>_R <1+5q()+6q()+5q()+ 7 q(2)>>().

Thus, by Lemma 1.1, we get £ (2) < ¢(z). By using (2.8), we obtain the desired
result. 0J

Theorem 2.3. Letn; € C,1=1,2,3,4, v >0, 6 € C\{0} and q be convezr univalent
in U with q(0) =1, q(2) #0, z € U, and assume that q satisfies (2.5). Suppose that

Z;]ES) is starlike univalent in U. If f € A, satisfies

zq' (2)

q(z) "

(2.10) Qo ()7 (7,6, m, 1, My Aoy 3 2) <+ 12q (2) + m30? (2) + mag® (2) + 6
where

(211) QQ (nlYf (77 57 m,n, )\17 )\27p; Z) - QQ (7717 N2,M3, 14,7, 67 m,n, >\17 >\27p; ’Z)

m,n v m,n 2y m,n 3
- DYinowf (2) + s Dyl (2) + 4 Dyinopf (2)
m+1,n m+1,n m+1,n
D)\l:i;\g,pf (Z) DA1:&2,pf (Z) D)\l:i;\g,pf (Z>
L8 de (k=) (DRALF(2) - DALS (2)
A Dot (2)  DYRLf(2))

then

N

D" z

Dhuseal O ()
D)q,)\g,pf (2)

and q is the best dominant of (2.10).
Proof. The proof is similar to that of Theorem 2.2. 0

Theorem 2.4. Letn; € C, i =1,2,3,4, § € C\{0} and q be convex univalent in U
with ¢ (0) =1, q(z2) # 0, z € U, and assume that q satisfies (2.5). Suppose that %
is starlike univalent in U. If f € A, satisfies

zq' (2)

(212) Q3 (771)411 (5a m,n, )\17 )\27p; Z) = Ui + Upl) (Z) + 773q2 (Z) + 774(]3 (Z) + 0 q (Z) )
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where
(213) Qg (m)y (6,m,m, M, Ao, p; 2) = Qg (1,712,713, M4, 75 6,7, 10, M, Ao, 3 2)
= 2 (D;nlr;\iff (Z))2 + 73 <ng\27pf <Z))4 5 T (Dﬁ?}\?’pf (2))6 3
2Dyl (2) 2% (Dﬁt\zfgj (z)) 2P (DﬁJC\IQZf (z))
Slsten) (DO DL )
A D\hpf (2) DR F(2) ’

then
m,n 2
(‘D>\1,>\2,pf (Z>)
@D (2)

and q is the best dominant of (2.12).

< q(z)

Proof. Define the function £ by
m,n 2
(DM:)\%PJC <Z))

T , zel.
ZPDZ,,\QZJ (2)

(2.14) §(2) =

By a straightforward computation and using (1.3), we have
2§ (2)
£ (2)

where Qg (1;)7 (5,m,7, M\, Ag, p; 2) is given by (2.13). From (2.12) and (2.15), we
obtain

(2.15) 4 € () + m3E (2) + &’ (2) + 6 = Q3 ()7 (6,m, 1, A1, Ao, 5 2)

<4124 (2) +13¢° (2) + g’ (2) +6 Zjl(S) '

2§ (2)
¢ (2)
The remaining part of Theorem 2.4 is similar to that of Theorem 2.2 and hence we
omit it. U

mAmE (2) + 1582 (2) +maé® (2) +6

Theorem 2.5. Let q be convex univalent in U with ¢ (0) =1, v > 0 and Re(o) > 0.
Let f € A, satisfying

(WYEH@(O)JMQ

zp

and

(1 2l e o) (P10}

Ap zP
Lot (k—p) (D;Z:’;Q,pf <z>>7 (D;"E;Zf <z>>

Aip 2P Dt (2)
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be univalent in U. If
(2.16) q(2) + ;zq/ (2) < (1 _ ot A (k- p))) (Dﬁ’ﬁz,pf <Z)>”

Ap zP
Lot 2e (k= p)) (DTl’Kz,pf (Z))Y Dyt (2)
A1p 2P Dy, (2) )7
then
D F ()Y
(2.17) q(z) < <A’>‘Z’§>

and q 1is the best subordinant of (2.16).
Proof. Define the function & by

DZ’KQ,pf (2)\"
(2.18) (z) = (Zp :
Differentiating (2.18) logarithmically with respect to z, we get
m,n /
(2.19) ) _ |2 (D3,0f (2)) )
§(2) D;ﬁ’f;\z,pf (2)

After some computations and using (1.3), from (2.19), we have

(2.20) (1 _opthalk— p))> (sz,pf (Z))”

Ap zP

o (pt+da(k=p) (DR3,F )\ (DS () _ "
+ Ny < o ) (DT{KQ,pf(Z) =¢(2) + —2€'(2).

From (2.16) and (2.20), we get
o o
q(2)+ —2q (2) < E(2) + —2£ (2).
(2) o (2) < &£ (2) s (2)
Hence, an application of Lemma 1.3 with « =1 and 8 = %, we obtain (2.17). O

Theorem 2.6. Letn, € C,i=1,2,3,4, v> 0, 6 € C\{0} and q be convex univalent
in U with q(0) =1, q(2) #0, 2 € U and assume that q satisfies

2 3
(2.21) Re (T?q () + 2B (2) + 2 (z)) >0,
2q'(z)

g(i) is starlike univalent in U. Let f € A, satisfying
m—+1,n

D,\lt\g,pf (2)

Dinf (2)

Suppose that

) € Hlg(0),1]N@Q
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and 0 (m)i1 (v, 0, m,n, A1, Ao, p; 2) be univalent in U, where
(1)} (7,6, m,m, Ay, Mg, p; 2) is given by (2.7). If
2q (z

(2.22) m + 1024 (2) + m3q” (2) + g’ (2) + 55(2)) < Q0 (mi)y (7, 6,m,m, A1, Ao, ps 2),
then ) 3

DYt (2)

q(z) < | mmm
D/\l,)\g,pf (2)

and q 1is the best subordinant of (2.22).
Proof. Define the function & by

_ (D @)

By a straightforward computation, we have
2§ (2)

(2.24) Qu (1)} (7, 6,m,m, M, Aa, i 2) = 1+ o€ (2) + 032 (2) + mal® (2) + 6 ACR

where €y (772-)411 (7,9, m,n, A1, A2, p; z) is given by (2.7).
From (2.22) and (2.24), we obtain
2q (2)
q(2)
2§ (2)
£(2)
By setting 6 (w) = n1 + now + npzw? + muw? and ¢ (w) = £, w # 0, we see that 6 (w)
is analytic in C, ¢ (w) is analytic in C\{0} and that ¢ (w) # 0, w € C\{0}. Also, we
get

M+ 1m2q (2) + m3¢° (2) + maq® (z) + 6

< + € (2) + 03 (2) + m&® (2) + 6

Q) =2 (2)$(q(2) = 525

It is clear that @ (z) is starlike univalent in U,
0 (q (2))> (772 M3 31 s
Re| —/——= | =Re|—=q(2)+ —¢ () + —q z)>0.
(fine 20 )+ 2B () + 2gp o)
Thus, by Lemma 1.4, we get ¢ (2) < £(z). By using (2.23), we obtain the desired
result. O

Theorem 2.7. Letn; € C,1=1,2,3,4, v >0, 6 € C\{0} and q be convezr univalent
in U with ¢(0) =1, q(z2) # 0 (z € U) and assume that q satisfies (2.21). Suppose
that Z;IES) is starlike univalent in U. Let f € A, satisfying

(Dﬁ&mf (2)

1,
Diiapd ()

) € Hlg(0),1]N@Q
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and Qs (m)i1 (v, 0, m,n, A1, Ao, p; 2) be univalent n U, where
Qs (m);l (7,9, m,n, A1, Ao, p; 2) is given by (2.11). If

z2q' (2
(225) T + n2q (Z) + 773q2 (Z) + 774(13 (Z) + 0 qq(i)) < QQ (771);L (77 67 m,n, >\17 >\27p; Z) )

then

.
D" z
o) < [ el )
D)\l,)\z,pf (2)
and q 1is the best subordinant of (2.25).

Proof. The proof is similar to that of Theorem 2.6. U

Theorem 2.8. Letn; € C, i =1,2,3,4, § € C\{0} and q be convex univalent in U

with ¢ (0) =1, q(2) # 0, z € U, and assume that q satisfies (2.21). Suppose that %

is starlike univalent in U. Let f € A, satisfying
m,n 2
(DAI’,AQ,pf (Z'))

DY) (2)
and €3 (771»)111 (0, m,n, A1, A2, ; 2) be univalent in U, where Q3 (ni);l (6,m,m, A1, A, 3 2)
is given by (2.13). If

€ Hlq(0),1]n@Q

zq' (2
(2.26) 1+ 1m2q (2) + 1367 (2) + maq® (2) + 6 5(,(2)) < Q3 ()] (8,m,m, A1, Mg, s 2)
then )
(D3, o f (2)

q(z) <

and q is the best subordinant of (2.26).

D3] (2)

Proof. Define the function £ by

2
Dy f(z

£(z) = ( Alé:iin( )) , z2€U.
ZpD}\h)\mpf (Z)

By a straightforward computation and using (1.3), we have

=€ (2)
§(2)

(227)  Q3(n)y (0,m,m, M, Ao, p; 2) = M+ 1€ (2) + ms€% (2) + ma€® (2) + 6
where (23 (m)zl1 (6,m,m, A1, A\, p; 2) is given by (2.13).

From (2.26) and (2.27), we obtain
¢ ()

q(2)

<+ 1€ (2) + 03E (2) + &’ (2) + 6 Zg(g) .

m + 124 (2) + 13q® (2) + mug® (2) + 0
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The remaining part of Theorem 2.8 is similar to that of Theorem 2.6 and hence we
omit it. U

Concluding the results of differential subordination and superordination, we state
the following “sandwich results”.

Theorem 2.9. Let ¢1 and q» be convex um’valent in U with ¢ (0) = ¢2(0) = 1.
Suppose g satisfies (2.1), v > 0 and Re(o) > 0. Let f € A, satisfying

(DZK“’ ) € H[1,1]N

Lo )

0(p+)\2 (k_p)) (D)q,)\z,pf (Z)> D)rﬁJr)\lgrzl)f (Z)
A1p 2P DY, f(2) )7

and

be univalent in U. If
o o+ X (k—p)) DA1)\2pf(Z) !
1—
0+ Lot ()< o s

o (p+ A2 (k—p)) <D>\1 Dewf (Z)) Dyt (2)
Ap P Dyt (2)

) <2 (2) + EZQQ (2),

then

nep (Dmf”) <)

zb

and q; and qo are, respectively, the best subordinant and the best dominant.

Theorem 2.10. Let ¢; and qo be convex univalent in U with ¢ (0) = ¢2(0) = 1.
Suppose q1 satisfies (2.21) and g satisfies (2.5). Let f € A, satisfying
8!

Dm+1 n
Droasl BN} 1
D,\l,,\Q,pf (2)
and 0 (771)411 (v, 6, m,n, A1, Ao, p; 2) be univalent in U, where

Qu (m); (7,8, m, 1, Aiy Ao, p; 2) s given by (2.7). If
2qy (2)

¢ (2)

m +maq (2) + 341 (2) + magi (2) + 6 =< (77z) (7,0, m,m, A1, Aa, p; 2)

=<1 + 1gs (2) + 133 (2) + Mags (2)
N 5Zqé (2)
4z (Z)

Y
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then

Dm—‘rl,n v

and g1 and qo are, respectively, the best subordinant and the best dominant.

Theorem 2.11. Let ¢, and go be convex univalent in U with ¢, (0) = ¢ (0) = 1.
Suppose q1 satisfies (2.21) and g satisfies (2.5). Let f € A, satisfying
il

Dmm
Dhidaal )y 10
Dy ot (2)
and Qy (771')411 (7,0, m,n, A1, Ao, p; 2) be univalent mn U, where

Qs (771-)11l (7,8, m,n, A\, Ag, p; 2) is given by (2.11). If

zq) (2
m+ meq (2) +m3qt (2) + mag; (2) +0 qqll((z)) =€y (771')11l (77,0, m,n, Ay, Ao, p; 2)

<1+ 02g2 (2) + 1305 (2) + 1agi (2)
2qy (2)
q2 (2)

Dm,n v
0= (g <o

and q; and qo are, respectively, the best subordinant and the best dominant.

+0

9

then

Theorem 2.12. Let q; and go be convex univalent in U with ¢ (0) = ¢ (0) = 1.
Suppose q1 satisfies (2.21) and g satisfies (2.5). Let f € A, satisfying

(D, o f ()
DL (2)

A1,A2,p

€eH[1,1]NnQ
and 3 (171»)? (0,m,m, A1, A2, p; 2) be univalent in U, where €3 (m);l (6,m,m, A1, Ao, ; 2)
is given by (2.13). If

zq) (2
M+ naqi (2) + n3qi (2) + g (2) + 6 qqll(i)) < Q3 ()7 (6,m, 1, A1, Mg, p; 2)

2 3 52% (Z)
<M+ M2q2 (2) + 03¢5 (2) + nagsy (2) + 202

then
m,n 2
(‘D)\l,)\z,pf (Z))
Uil (Z) = m+1,n
ZpD/\l,)\Q,p-f (2)

and q1 and qo are, respectively, the best subordinant and the best dominant.

< @2 (Z)
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Remark 2.1. By specifying the function ¢ and selecting the particular values of
M, M2, M3, N4, Y, M, My A1, Ao and p, we can derive a number of known results. Some
of them are given below.

(1) Taking n = Ay = 0 and p = 1 in Theorems 2.1, 2.5, 2.9, we get the results
obtained by Raducanu and Nechita [14, Theorem 3.1, Theorem 3.6, Theorem
3.9].

(2) Taking n = Ag = 0 and \; = p =1 in Theorems 2.1, 2.5, 2.9, we get the results
obtained by Raducanu and Nechita [14, Corollary 3.3, Corollary 3.8, Corollary
3.11].

(3) Putting n = m = Ay =0 and \; = p =1 in Theorem 2.1, we obtain the results
obtained by Murugusundaramoorthy and Magesh [12, Corollary 3.3].

(4) Taking n =m = Ag = 0 and A\; = p = 1 in Theorems 2.5, 2.9, we obtain the
results obtained by Raducanu and Nechita [14, Corollary 3.7, Corollary 3.10].

(5) For o =m =me=n, =0,y =p=1and ¢ (w) = 0 in Theorems 2.2, 2.6,
2.10, we have the results obtained by Darus and Al-Shagsi [7, Theorem 2.1,
Theorem 3.1, Theorem 3.3].

(6) By taking n = Ay =m =03 =ns =0,y =1 = p = 1 and ¢ (w) = § in
Theorems 2.3, 2.7, 2.11, we get the results obtained by Nechita [13, Theorem
5, Theorem 10, Corollary 13].

(7) Puttingn =X =m=m=mn=0vy=XA =mn=p=1and ¢ (w) =0 in
Theorems 2.3, 2.7, 2.11, we obtain the results obtained by Shanmugan et al.
[17, Theorem 5.1, Theorem 5.2, Theorem 5.3].

(8) Puttingn=m=X=m=mn=mpu=0,y=M=mp=p=1land ¢(w) =4
in Theorems 2.3, 2.7, 2.11, we get the results obtained by Shanmugam et al.
[17, Theorem 3.1, Theorem 3.2, Theorem 3.3].
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