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THE PERFECT CODES OF NON-COPRIME AND COPRIME
GRAPHS

BEHNAZ TOLUE1 AND AHMAD ERFANIAN2

Abstract. In this paper, we focus on the perfect and total perfect codes of the
non-coprime and coprime graphs associated to the dihedral groups and finite Abelian
groups. We used the advantage of independent sets and tried to present the inde-
pendent polynomial for them.

1. Introduction

The birth of coding theory was established by Claude Shannon in 1948 (see [10]).
In his paper, he showed for a noisy communication channel, there is a number, called
the capacity of the channel. If proper encoding and decoding techniques are used, the
reliable communication can be achieved at any rate below the channel capacity. Coding
theory is concerned with successfully transmitting data through a noisy channel and
correcting errors in corrupted messages [5]. Let Γ be a graph with vertex and edge
set V (Γ) and E(Γ), repectively. Suppose r ≥ 1 is an integer. The ball with center
v ∈ V (Γ) and radius r is the set of vertices of Γ with distance at most r to v in Γ.
A code in Γ is simply a subset of V (Γ). A code C ⊆ V (Γ) is called a perfect r-code
in Γ if the balls with centers in C and radius r form a partition of V (Γ), that is,
every vertex of Γ is at distance no more than r to exactly one vertex of C [4]. If
r = 1, then we call perfect r-code, perfect code, for abbreviation. Consequently, in
order to find a perfect code, we should search among all independent sets and check
if every vertex of V (Γ) \ C is adjacent to exactly one vertex of C. A code C is said
to be a total perfect code in Γ if every vertex of Γ has exactly one neighbor in C [3].
The existence of perfect codes is a classical problem which was started in a vector
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space. One can replace the vector space by a graph, whose vertices are vectors and
whose edges join vectors which differ in precisely one coordinate. It is clear that
we may pose the perfect code question for any graph [1]. There are several papers
in this area we refer the readers to [6, 7]. The non-coprime graph associated to the
group G was introduced in [9]. Suppose G is a group and e its identity element. The
non-coprime graph of G is a graph with vertex set G\{e} and if gcd(|x|, |y|) ̸= 1, then
two distinct vertices x, y are adjacent. Denote this graph by ΠG. The authors verified
some numerical invariants like diameter, girth, dominating number, independence and
chromatic numbers of non-coprime graph. Moreover, they characterized its planarity.
X. Ma et al. defined the coprime graph of a finite group [8]. The coprime graph ΓG

which is associated to the finite group G is a graph with G as the vertex set and join
two distinct vertices x and y if gcd(|x|, |y|) = 1. They gave some properties of coprime
graph on diameter, planarity, partition, clique number, etc. Moreover, some groups
whose coprime graphs are complete, planar, a star, or regular were characterized.
There are other papers about the properties of coprime graph, see for instance [2]. In
this research, we investigate the existence of the perfect and total perfect code for
non-coprime and coprime graph of certain groups beside to present the independent
polynomials for them.

2. The Perfect and Total Perfect Codes of Non-coprime Graph of
Certain Groups

In this section we verify the perfect and total perfect codes of non-coprime graph of
dihedral groups and finite Abelian groups. Let D2n = ⟨a, b : an = b2 = 1, ab = a−1⟩
be the dihedral group of order 2n and n ≥ 4.

(i) Suppose n = ∏k
i=1 p

αi
i , where pi’s are odd prime numbers and αi’s are positive

integers. It is clear that the independence number for this graph is k + 1. For
instance, a set I contain an element of order two and k elements of order pβi

i , form an
independent set of the largest size, 1 ≤ i ≤ k, 1 ≤ αi ≤ βi. The number of singleton
independent sets is 2∏k

i=1 p
αi
i − 1. The number of two-element independent sets is,

(2.1)
(

k∏
i=1

pαi
i

) k∑
i=1

∑
1≤βi≤αi

φ(pβi
i )
+

k∑
i=1

 ∑
1≤βi≤αi

φ(pβi
i )
 k∑

j=i+1

∑
1≤βj≤αj

φ(pβj

j )
 ,

where φ is the Euler function. Consequently, the number of independent sets with ℓ
elements is equal to the sum of all possible ℓ-multiplications of elements in the set

A =


αi∑

βi=1
φ(pβi

i ) : 1 ≤ i ≤ k

 ∪
{

k∏
i=1

pαi
i

}
,

which are arranged similar to the equation (2.1), where 1 ≤ ℓ ≤ k + 1. Note that
ℓ-multiplications of elements in A means choosing ℓ elements of the set A randomly
and compute their multiplications. Inside the set A are the numbers of elements of
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order 2 and pβi
i in the group D2n, 1 ≤ i ≤ k, 1 ≤ βi ≤ αi. Obviously, the number of

independent sets with k + 1 elements is(
k∏

i=1
pαi

i

) k∏
i=1

∑
1≤βi≤αi

φ(pβi
i )
 .

(ii) Let n = 2s∏k
i=1 p

αi
i , where pi is an odd prime. Then similar to the first case

the number of independent sets of different sizes can be computed. The number of
singleton independent sets is 2s+1∏k

i=1 p
αi
i − 1. The number of independent sets with

ℓ elements is equal to the sum of all possible suitable ℓ-multiplications of elements in
the set

A =


αi∑

βi=1
φ(pβi

i ) : 1 ≤ i ≤ k

 ∪

2s
k∏

i=1
pαi

i + 1 +
s∑

β=2
φ(2β)

,
where 1 ≤ ℓ ≤ k + 1 (similar to (2.1)). Note that inside the set A are the numbers of
elements of order 2β and pβi

i in the group D2n, 1 ≤ i ≤ k, 1 ≤ βi ≤ αi and 1 ≤ β ≤ s.
(iii) Assume n = 2s. Then the independence number is one and the number of

independent sets of size one is 2s+1 − 1.
It is not hard to write the independent polynomial for the non-coprime graph of

D2n by use of the above results.

Theorem 2.1. For the perfect codes of the non-coprime graph of D2n, we have the
following cases.

(i) If n = ∏k
i=1 p

αi
i , then the perfect codes of non-coprime graph of D2n are sets of

two-elements, they contained one element of order 2 and an element of order ∏k
i=1 p

βi
i ,

where pi are odd prime numbers, αi, βi are positive integers and 1 ≤ βi ≤ αi. Moreover,

the number of these codes is
(∏k

i=1 p
αi
i

)( n∑
t=1

ψ(at)
)

, where

ψ(at) =


1,

k∏
i=1

pi | |at|, 1 ≤ t ≤
k∏

i=1
pαi

i ,

0, otherwise.

More practical formula for the number of perfect codes is(
k∏

i=1
pαi

i

)(
⌜M⌝
⌞ k ⌟

)
,

where M ′ is the set of all prime numbers which divides ∏k
i=1 p

αi
i , M is the set of all

prime power numbers which are chosen from M ′ and their powers are more or equal
than one and less or equal than αi and the notation

⌜M⌝
⌞ j ⌟,
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means the sum of Euler functions of multiply of j prime power numbers which are
chosen randomly from M and these multiplications are multiplying of distinct prime
numbers.

(ii) If n = 2s∏k
i=1 p

αi
i , then the perfect codes of non-coprime graph of D2n are sets

of singletons and two-elements. The singletons contain elements of order 2β ∏k
i=1 p

βi
i ,

where 1 ≤ β ≤ s and 1 ≤ βi ≤ αi. The perfect codes with two elements contain an
element of order power of 2 and an element of order ∏k

i=1 p
βi
i , 1 ≤ βi ≤ αi. Further,

the number of singleton perfect codes is
⌜ M ⌝
⌞k + 1⌟,

where the notation is the same as part (i) with the difference that M contains the
possible powers of 2. The number of two-set element perfect codes is2s

k∏
i=1

pαi
i + 1 +

s∑
β=2

φ(2β)
( ⌜M⌝

⌞ k ⌟

)
,

where the notation is the same as (i).
(iii) If n = 2s, then singleton subsets of whole vertices are perfect codes and the

number of them is 2s+1 − 1.

Proof. (i) By definition, for a perfect code of a graph, we must search among its
independent subsets of vertices. Secondly, every vertex out of the perfect code is
adjacent to exactly one vertex in the code. By these tools, and the way that two
vertices are adjacent in the non-coprime graph it is clear that a perfect codes for
the ΠD2n are sets of two-elements, they contained one element of order 2 and an
element of order ∏k

i=1 p
βi
i , 1 ≤ βi ≤ αi. Furthermore, the number of elements of order

2 in dihedral group of order 2n is n = ∏k
i=1 p

αi
i . It is enough to count the number

of elements of order ∏k
i=1 p

βi
i , 1 ≤ βi ≤ αi. It is obvious that all the elements atb

are of order 2, 1 ≤ t ≤ ∏k
i=1 p

αi
i . Thus, for a fixed βi, |at| = ∏k

i=1 p
βi
i whenever

gcd(t,∏k
i=1 p

αi
i ) = ∏k

i=1 p
α′

i
i , where 0 ≤ α′

i ≤ αi − 1, 1 ≤ t ≤ ∏k
i=1 p

αi
i and βi = αi − α′

i.
Count the number of such t’s. Consequently, there are φ(∏k

i=1 p
βi
i ), at of order ∏k

i=1 p
βi
i ,

where φ is the Euler function. Now, when the power βi changed through the possible
cases we require the sum of such Euler functions which described in the statement of
proposition.

The proof of (ii) is very similar to (i) so we omit it and the third part is straight-
forward. □

Proposition 2.1. The non-coprime graph of D2n does not have any total perfect code.

Proof. By definition of total perfect code and the fact that all the n vertices of order
2 in dihedral group of order 2n are adjacent in ΠD2n , we deduce that n ≤ 2 and a
contradiction. □

Theorem 2.2. Let Zn be the cyclic group of order n.
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(i) The non-coprime graph ΠZs
p

has ps − 1 singleton subsets of the vertices which
are perfect codes, where p is a prime number and s a positive integer.

(ii) The non-coprime graph ΠZpq has φ(pq) singleton perfect codes, where p, q are
prime numbers and φ is the Euler function.

(iii) The non-coprime graph of cyclic group Z∏k

i=1 p
αi
i

has φ(∏k
i=1 p

αi
i )+ ⌜M⌝

⌞ k ⌟,
sin-

gleton perfect codes, where M is a set which is defined the same as in Theorem 2.1 (i),
pi’s are prime numbers and αi’s are positive integers, 1 ≤ i ≤ k. The independence
number of ΠZ∏k

i=1 p
αi
i

is k and independent sets with more than 2 elements are not
perfect codes. Furthermore, the number of independent sets with s elements is equal
to the sum of all possible s-multiplications of elements in the set

A =


αi∑

βi=1
φ(pβi

i ) : 1 ≤ i ≤ k

 ,
which are arranged similar to the equation (2.2), where 1 ≤ s ≤ k. Note that s-
multiplications of elements in A means choosing s elements of the set A randomly
and compute their multiplications. In particular, the number of two-element and k
element independent sets are

(2.2)
k∑

i=1

 αi∑
βi=1

φ(pβi
i )
 k∑

j=i+1

αj∑
βj=1

φ(pβj

j )


and
k∏

i=1

 αi∑
βi=1

φ(pβi
i )
 ,

respectively.
(iv) Every singleton subset of vertices of the non-coprime graph of the group Zpα1 ×

Zpα2 × · · · × Zpαk is a perfect code, where p is a prime number.

Proof. (i) The independence number for this graph is one and all the possible subsets
of the vertices with one element are perfect codes.

(ii) This graph has pq − 1, φ(p)φ(q) independent sets with one and two elements,
respectively. Clearly, singleton subsets which contains an element of order p (or q)
are not perfect codes because there exists an element out of it which does not join to
the vertex inside that singleton. If we consider singletons which contains generators
of order pq, they clearly are perfect codes. The independent sets with two elements
are not perfect codes, since the generators join to both vertices inside them.

(iii) It is clear that this graph has ∏k
i=1 p

αi
i −1 independent sets with one element. It

is obvious among these independent sets, the only singletons which contain a generator
element or an element of order∏k

i=1 p
ωi
i are perfect codes, where 1 ≤ ωi ≤ αi. Moreover,

for an independent set with more than one element, there is a generator out of it
which joins to both of it and so it is not a perfect code. □
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By considering the third part of Theorem 2.2, one can present independent polyno-
mial for that graph.

Proposition 2.2. The non-coprime of the cyclic group Zn admits a total perfect code
if and only if n = 3.

Proof. Suppose n = ∏k
i=1 p

αi
i , where there exists an index i ∈ {1, 2, . . . , k} such that

αi ≥ 2 and pi is a prime number. Clearly, there are vertices v1, v2 of order pαi
i . Let

C be a total perfect code which contain v1, then by definition v1 has exactly one
neighborhood inside C. This neighborhood can be v2 or an element of order pi. If
each of them is inside C, then the other one is outside of C has two neighborhood
in C and it is a contradiction. Thus, all αi are equal to 1. Clearly all pi are greater
than 2, because otherwise an element of order 2 does not have any neighborhood.
Again by definition for each vertex of order pi, there is a unique neighborhood in C.
Therefore for every vertex of order pi out of C, there are two neighborhood. Hence the
number of elements of order of pi must be 2, i.e., φ(pi) = 2, pi = 3 and the assertion
is clear. □

3. The Perfect and Total Perfect Codes of Coprime Graph of
Certain Groups

In this section, we present perfect and total perfect codes of coprime graph of
dihedral groups and finite Abelian groups. For coprime graphs, if we consider the
identity element of the group as a vertex, then it is meaningless. Thus, it is nature to
consider the induced subgraph by non-trivial elements. Let us consider the coprime
graph of the group G, with vertex set G \ {e} and denote it by Γ∗

G. We refer the
readers to see [6] for its interesting results. Consider the dihedral group D2n.

(i) Let n = ∏k
i=1 p

αi
i , where pi’s are odd prime numbers. Consider A0 which is the

set of all elements of order two and Aj’s are the sets of elements of order pβj

j , and
elements of order ∏q

i=1 p
ωi
i , where pj surly exists in the multiplication, 1 ≤ β ≤ αj,

1 ≤ j ≤ k, 1 ≤ q ≤ k and 0 ≤ ωi ≤ αi. Then A0 and Aj’s are the samples of
independent sets for ΓD2n . For 1 < t ≤ k, construct At somehow it does not have any
common elements with all the sets As, with s < t. The number of elements in A0 and
Aj are ∏k

i=1 p
αi
i and ∑

1≤β≤αj
φ(pβ

j ) + ∑k
u=2

⌜Mj⌝
⌞ uj ⌟ , respectively. The notations were

defined in Theorem 2.1, note that Mj is the set of all prime powers in M ′ such that
powers of pz ̸= pj is more or equal than zero and less or equal than αz, and the powers
of the prime pj must be at least one and less or equal than αj, where 1 ≤ z ≤ k.
In computing of Euler function of multiplication, the prime number pj always must
be selected and it is possible that the power of the other prime numbers be zero, in
other words it is possible that some prime numbers distinct from pj do not appear
in the multiplication. Moreover, this is very significant to obtain the independent
polynomial, in order to compute ⌜Mt⌝

⌞ut⌟,
the sum of Euler function on ut-multiplication

of elements in Mt is somehow that it does not have any common summands with all
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the summands in ⌜Ms⌝
⌞us⌟,

for 1 < t ≤ k, for all s < t. Suppose α(ΓD2n) is independence
number of the graph. The independent polynomial is,

f(x) =
(

2
k∏

i=1
pαi

i

)
x+

α(ΓD2n
)∑

ω=2


( k∏

i=1
pαi

i

ω

)
+

k∑
j=1


∑

1≤β≤αj

φ(pβ
j ) +

k∑
u=2

⌜Mj⌝
⌞uj⌟

ω


xω,

and if ω > ∑
1≤βj≤αj

φ(pβ
j ) +∑k

u=2
⌜Mj⌝
⌞uj⌟

, or ω > ∏k
i=1 p

αi
i , then put zero instead of

(∑
1≤β≤αj

φ(pβ
j ) +∑k

u=2
⌜Mj⌝
⌞uj⌟

ω

)
or

(∏k
i=1 p

αi
i

ω

)

in f(x).
(ii) For n = 2s∏k

i=1 p
αi
i , suppose

A0j ={All the elements of order power of 2}

∪
{

All the elements of order 2β
q∏

i=1
pηi

i , where 0 ≤ ηi ≤ αi, 1 ≤ β ≤ s,

q ≤ k − 1, certainly pj exists in the multiplication
}

∪
{

All the elements of order 2β
q∏

i=1
pηi

i , where 0 ≤ ηi ≤ αi, 1 ≤ β ≤ s,

q ≤ k − 1, certainly pj does not exist in the multiplication
}

∪
{

All the elements of order 2β
k∏

i=1
pηi

i , where 1 ≤ ηi ≤ αi, 1 ≤ β ≤ s

}
,

with a1, a2j, a3j and a4 as first, second, third and forth set sizes which constructed
A0j, respectively. Moreover, assume

Aj ={All the elements of order power of pj, 1 ≤ j ≤ k}

∪
{

All the elements of order
q∏

i=1
pηi

i , where 0 ≤ ηi ≤ αi, q ≤ k,

certainly pj exists in the multiplication
}

∪
{

All the elements of order 2β
k∏

i=1
pηi

i , where 1 ≤ ηi ≤ αi, 1 ≤ β ≤ s

}

∪
{

All the elements of order 2β
q∏

i=1
pηi

i , where 0 ≤ ηi ≤ αi, 1 ≤ β ≤ s,
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q ≤ k − 1 certainly pj exists in the multiplication
}
,

with b1j, b2j, b3j = a4 and bj4 = aj2 as first, second, third, forth set sizes which
constructed Aj, respectively. Obviously A0j and Aj’s are independent sets 1 ≤ j ≤ k.
For 1 < t ≤ k, construct A0t and At somehow they do not have any common elements
with all the sets A0s and As, with s < t. The value of ai and bij can be obtained
similar to the previous parts. Since replacing of them by their values makes the
appearance of the computations more complicated so we work with ai and bij. By
these hypothesis, the independent polynomial is

f(x) =2s+1
k∏

i=1
pαi

i x+
α(ΓD2n

)∑
ω=2

(a1

ω

)
+
(
a4

ω

)
+

k∑
j=1

3∑
i=2

(
aij

ω

)
+
(
a1 + a4

ω

)

+
k∑

j=1

3∑
i=2

(
aij + a1

ω

)
+

k∑
j=1

3∑
i=2

(
aij + a4

ω

)

+
k∑

j=1

(a1 + a2j + a3j

ω

)
+
(
a4 + a2j + a3j

ω

)
+
(
a1 + a4 + aij

ω

)
+

k∑
j=1

(
a1 + a4 + a2j + a3j

ω

)

+
k∑

j=1

 2∑
i=1

(
bij

ω

)
+

3∑
i=1

4∑
ℓ=i+1

(
bij + blj

ω

)
−
(
b3j + b4j

ω

)

+
2∑

i=1

3∑
ℓ=i+1

4∑
k=ℓ+1

(
bij + blj + bkj

ω

)
+
(
b1j + b2j + b3j + b4j

ω

)xω,

such that in the selection
(∑

yi

ω

)
at least one element choose from each sets with sizes

yi. Moreover, if ω >
(∑

yi

ω

)
, then put zero for

(∑
yi

ω

)
.

(iii) Assume n = 2s. In this case, the largest independent set for ΓD2n is D2n \ {1}.
The independent polynomial is,

f(x) = 2s+1x+
2s+1−1∑

ℓ=2

(
2s+1 − 1

ℓ

)
xℓ.

It is clear that the singleton contains the identity element is a perfect code for ΓD2n

and independent sets with more than one elements are not perfect codes.

Proposition 3.1. Γ∗
D2n

does not have any perfect code.

Proof. Initially, let n = ∏k
i=1 p

αi
i , where pi’s are odd prime numbers. Consider the

singleton subset of vertices X = {x}. If the vertex x is of order pβj

j (or 2), where
1 ≤ j ≤ k and 1 ≤ βj ≤ αj. Thus, elements of order pβ′

j

j (or 2) outside of X, are not
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adjacent to x, 1 ≤ β′
j ≤ αj. Note that the existence of such elements outside of X

is clear, as n ≥ 4. Suppose |x| = ∏q
i=1 p

βi
i , q ≤ k. If pj appear in the multiplication

of prime numbers in the order of x, then there is an element of order pωj

j does not
join to x. Therefore, the independent sets with one element are not perfect codes.
According to the first part of argument before the proposition, if an independent set
have more than one element, then it contains just elements of order 2 or just elements
of order power of pj and multiplication of prime powers that include pj. In both cases,
there is a vertex that join to more than one vertex inside them not exactly one. Thus,
independent set with more than one element is not a perfect code. If n = 2s∏k

i=1 p
αi
i

or 2s, the assertion follows similarly. □

Proposition 3.2. For the total perfect code of Γ∗
D2n

, we have the following cases.
(i) If n = ∏k

i=1 p
αi
i , then two-element subset of vertices which contain an element

of order 2 and an element of order ∏k
i=1 p

βi
i is a total perfect code, where pi’s are

odd prime numbers and 1 ≤ βi ≤ αi. The number of such total perfect codes are∏k
i=1 p

αi
i

(
⌜M⌝
⌞k⌟

)
, where notations were defined in Theorem 2.1 (i).

(ii) If n = 2s∏k
i=1 p

αi
i , then Γ∗

D2n
does not have any total perfect code.

(iii) For n = 2s, Γ∗
D2n

does not have any total perfect code.

Proof. The proof of first and third part is clear, let us prove the second part.
(ii) Let T ⊆ V (ΓG) be a total perfect code for the graph. If x ∈ T and the order

of x is power of 2, then it has a unique neighborhood y ∈ T , by definition of total
perfect code. Thus the order of y is the multiplication of prime numbers which divide∏k

i=1 p
αi
i . All the vertices outside T have a unique neighborhood inside T except a

vertex v of order 2β ∏k
i=1 p

βi
i , 1 ≤ β ≤ s and 1 ≤ βi ≤ αi. We can not consider v inside

T , since there is no neighborhood for it inside T . Let us construct T , by use of other
vertices. If x ∈ T of order ∏q

i=1 p
ωi
i and y ∈ T is its neighborhood, then |y| = ∏q′

i=1 p
′ω′

i
i

or 2β ∏q′

i=1 p
′ω′

i
i , where pωi

i and p
′ω′

i
i divides ∏k

i=1 p
αi
i and gcd(∏q

i=1 p
ωi
i ,
∏q′

i=1 p
′ω′

i
i ) = 1,

q, q′ ≤ k. An element of order ∏k
i=1 p

αi
i outside T does not join to any vertex inside

T . □

Consider the coprime graph of the cyclic group Zn.
(i) If n = ps, then ΓZn has ps singleton independent sets. Clearly, its independence

number is ps − 1 and it has
(

ps−1
ℓ

)
independent sets with ℓ elements.

(ii) Let n = ∏k
i=1 p

αi
i . The coprime graph of Z∏k

i=1 p
αi
i

has ∏k
i=1 p

αi
i singleton inde-

pendent sets. Moreover, every subsets of the following sets are samples of independent
sets of ΓZ∏k

i=1 p
αi
i

. Let

A0j =
{
All the elements of order pβj

j

}
,

A1j =
{

All the elements of order
k∏

i=1
pαi

i

}
∪
{
All the elements of order pβj

j

}
,
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A2 =
{

All the elements of order
k∏

i=1
pαi

i

}
∪
{

All the elements of order
q∏

i=1
pβi

i

}
,

where 1 ≤ j ≤ k, 1 ≤ βj ≤ αj, 2 ≤ q ≤ k − 1 and in A2,
∏q

i=1 p
βi
i , it is possible

that some βi be zero and the order of elements in the set {All the elements of order∏q
i=1 p

βi
i } include at least one prime number pi in its multiplication.

Now, let 2 ≤ ℓ ≤ α

(
ΓZ∏k

i=1 p
αi
i

)
,

A0 =
k∑

j=1


αj∑

βj=1
φ(pβj

j )

ℓ

 , A1 =
k∑

j=1

(
φ(∏k

i=1 p
αi
i )

w1

)( αj∑
βj=1

φ(pβj

j )

w2

)
,

where w1 ≥ 1, 2 ≤ w1 + w2 ≤ ℓ and A2 =
k∑

r=1

(
φ(∏k

i=1 p
αi
i )

u1

)(k−1∑
j=2

⌜Mpr⌝
⌞ j ⌟
u2

)
, where

u2 ≥ 1, 2 ≤ u1 + u2 ≤ ℓ. Furthermore, the notation ⌜Mpr⌝
⌞ j ⌟ is defined similar to

Theorem 2.1(i), such that in choosing the prime power numbers from the set M , some
power of pr is selected. By this hypothesis, the number of independent sets with ℓ
elements is more than A0 + A1 + A2.

Suppose ΓZn has a total perfect code T . Since the greatest common divisor of order
of identity element (zero) with respect to all other element orders is one so 0 ∈ T .
By definition 0 has a unique neighborhood inside T , say x. As every vertex of total
perfect codes cover exactly one vertex of the graph, there is just one other vertex
outside of T . Hence, n = 2, 3. The coprime graph of Z∏k

i=1 p
αi
i

does not have any
perfect and total perfect code. Clearly ΓZ2 has a singleton perfect code and ΓZps does
not have any perfect code, where p is a prime and s a positive integer (p ≥ 3 and
s ≥ 1 or p = 2 and s ≥ 2). Note that if we consider the induces subgraph of ΓZps by
omitting the identity, then the set of all vertices, largest independent set, is a perfect
code. There are

(
p(α1+···+αk)

ℓ

)
independent sets of size ℓ for the coprime graph of the

group Zpα1 × Zpα2 × · · · × Zpαk , where 1 ≤ ℓ ≤ α(ΓZpα1 ×Zpα2 ×···×Zpαk
). Clearly, the

coprime graph of Zpα1 ×Zpα2 × · · · ×Zpαk does not have any perfect and total perfect
code.
Theorem 3.1. Suppose Γ∗

G has a total perfect code with two elements T = {g1, g2}
such that |g1| = ∏k

i=1 p
αi
i , |g2| = ∏k′

j=1 q
βj

j , where pi and qj’s are distinct prime numbers.
Then G is non-cyclic and the set of prime divisor of order of G is Π(|G|) = {pi, qj :
1 ≤ i ≤ k, 1 ≤ j ≤ k′}. Moreover, G does not contain an element of order∏s

i=1 p
α′

i
i

∏s′

j=1 q
β′

j

j , where 0 ≤ α′
i ≤ αi, 0 ≤ β′

i ≤ βi and note that α′
i (and also β′

i ) are
not all zero, simultaneously.
Proof. Let x ∈ G, |x| = r, where r is a prime number distinct from pi, qj’s. Then x
join to both g1 and g2 which is a contradiction. Therefore, the only prime numbers
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that divide the order of G are the prime numbers that divide the order of gi’s, i = 1, 2.
Now, if the group G contain an element of order ∏k

i=1 p
αi
i

∏k′

j=1 q
βj

j , then this element is
not in the neighborhood of gi’s and again this is against the definition of total perfect
code. Hence G is a non-cyclic group. □

The definition of total perfect code and coprime graph signify that the coprime
graph does not have any singleton total perfect codes. Moreover, if Γ∗

G has a total
perfect code with more than two elements, then similar result as Theorem 3.1 will be
obtained.
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