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LONG TIME DYNAMICS FOR A COUPLED LAME SYSTEM
WITH PAST HISTORY

MAHDI FATIMA ZOHRA'!, REMIL MELOUKA?, AND HAKEM ALI®

ABSTRACT. The focus of the present paper is on the investigation of the long time
dynamical behavior for a coupled Lamé system with past history. First, we establish
the existence of a global solution under some suitable assumptions. Furthermore,
we prove the existence of a global attractor with finite fractal dimension. A result
on the existence of exponential attractors for the system is also derived.

1. INTRODUCTION

Let © be a bounded domain in R? with smooth boundary 9€2. We consider
the long-time dynamics of the following coupled Lamé system

“+o00
Uy + v — Aou — / wi(8)Au(t — s)ds + duy
0
+ g (z,t — 1) + fi(u) = hy, in 2 x (0, 400),

—+o00
vy + oau — Agv — / wo(s)Av(t — s)ds + davy
0

(1.1) + povy(x,t — 1) + fa(v) = ho, in Q x (0, +00),
u(z,t) =v(x,t) =0, on 08 x (0, 4+00),
(u(x,0),v(z,0)) = (up(x), vo(x)), in €,
(ug(x,0),v(2,0)) = (ug(x), v1(x)), in €,

w(z, t — 1) = qi(x, t — 1), in Q x [0, 7],
vz, t — 1) = go(x,t — 73), in Q x [0, 72,
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54 F. Z. MAHDI, M. REMIL, AND A. HAKEM

where u = (u1, ug, u3) and v = (vq, v9, v3) represent displacements, f; and f, represent
nonlinear critical source terms, h; and ho represent external forces, and A, denotes
the elasticity operator defined by

Ae = pAu+ (A + p)Vdivu,
where A and p are Lamé constants which satisfy
>0, A4+p>0,

where 7; > 0, 1 = 1,2, is a time delay, 1, ds, yt1, o are positive real numbers and
(ug, w1, vg, v1) are given initial data. The Lamé system is a fundamental mathematical
model in the theory of isotropic elasticity. It has been studied by several researchers
because of its significant applications. Concerning the Lamé system that includes a
memory term we refer to Bchatnia and Guesmia [3], who considered the Lamé system
in 3-dimension bounded domain with infinite memories

+oo
u” — Aou + / g(s)Au(t — s)ds = 0.
0

The authors proved that the system is well-posed and stable. They also found that the
solutions converge to zero at infinity in terms of the growth of infinite memory. For
the coupled Lamé system, Beniani and Taouaf [5] investigated a coupled Lamé system
with viscoelastic damping in the first equation and two strong discrete time delays,
proving the existence by using Faedo-Galerkin method and finding an exponential
decay. Similar models have been studied by several authors, see [8,15] and the
references therein. In the context of the dynamics of Lamé systems with frictional
damping, we first refer to [1,7,23, 28], where the authors prove the existence of a
global attractor using the quasi-stability results developed by Chueshov and Lasiecka
[10,12].

The paper is organized as follows. In Section 2, we present the preliminaries.
In Section 3, we analyze the well-posedness of the system (3.5) using semigroup
methods. In Section 4, we give an overview of the abstract results in the theory of
infinite dimensional dynamical systems. Moreover, we establish the existence of finite
dimensional global and exponential attractors.

2. ASSUMPTIONS

We consider the following assumptions in this paper.
For the memory terms w;, we suppose that w; : Rt — R* are differentiable non-
increasing function and integrable on R such that

+00 +oo
p— / wi(s)ds =o; >0, / w(s)ds =w?, i=1,2,
0 0

and there exist constants k; satisfying

(2.1) wi(s) < —kjw;(s), forall s € RT.
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Let the external force h € (L*(2))? and the nonlinear term f € C?(2), we assume
that

(2.2) f(w)] < cp(T+ul), ¢ >0,uecRi=1,23,
which implies that, for some C' > 0,
(2.3) |f(u) — f(0)| < O+ |ul® + [v]*)|u—v], forall u,v € R.

Also, we suppose that for some m € (0, A1), where A\; > 0 is the first eigenvalue of —A,

3 m
(2.4) Flu) = ;/O fi(s)ds = = Juf* = m;
and

(2.5) fw)u > mlu|®> — my.

3. WELL POSEDNESS AND ENERGY ESTIMATES

In order to prove the well-posedness result, we introduce as in [28] the following
new variables

z1(x, pyt) = wy(x, t —1p), in Qx(0,1) x (0,+00),

3.1
(3-1) zo(x, pyt) = ve(x,t — Tap), in Qx (0,1) % (0,4+00).

Then, we obtain

nizie(z, p,t) + z1p(x, p,t) =0, in Q x (0,1) x (0, +00),
Tozor(x, p,t) + 22p(x, p,t) =0, in Q2 x (0,1) x (0, +00).

~—

(3.2)

~—

Additionally, following [19], we define the new variables

m(x,t,s) =u(z,t) —u(x,t —s), in Qx (0,400) x (0,400),

(3.3) me(z,t,s) = v(z,t) —v(z,t —s), inQx(0,400) x (0, +00).

These functionals satisfy

O + 0sm —uy =0, in Q x (0,+00) x (0, +00),

3.4
(34) O + Osno — vy =0, in  x (0,4+00) X (0, +00).

To convert our problem to a system of first-order ordinary differential equations, we
denote the following

77?(3:,3) =n;(z,0,s), i=1,2.
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Therefore, the problem (1.1) takes the form

+o0
Uy + av — Agu — / w1(s)Ani(s)ds + d1uy
0
+ p1z1(x, 1,t) + fi(u) = hy, in Q x (0, +00),
+o0
v + ou — Agv — / wa(8)Ang(s)ds + davy
0
+ ,LLQZQ(:Z', 1,t) + fz(v) = ho, in O x (0, —I-OO),
T z16(x, p, t) + 21p(x, p, t) = 0, in 2 x (0,1) x (0, 4+00),
(3.5) Tozat(, p, t) + 220(x, p, t) = 0, in 2 x (0,1) x (0, 4+00),
u(z,t) =v(x,t) =0, on 90 x (0, 400),
m(x,t,s) =mn(x,t,s) =0, on 092 x (0,400) x (0,+00),
n(z,t,0) = na(z,t,0) =0, in Q x (0, +00),
(u(z,0), v(x,0)) = (up(), vo(x)), in ©,
(Ut((l‘,O),Ut(.'E,O)) = (ul(x)7v1(x))7 in €2,
u(z,t — 1) = g1(xz, t — 1), in Q x [0,7],
Ut(.T,t—TQ):gg(.T,t—TQ), in O x [0,7‘2].

Let & and & be positive constants such that
{7'1,“1 <& <1 (200 — ),
Tofty < & < T2(202 — p2).

In order to consider the relative displacement 1 as a new variable, we introduce the
L?-space

(3.6)

M= 12, (R™ () = {m: BT = B | [ wu()| (o) s}
with the energy space
H = (H;(Q))? x (L*(Q))* x (L*(Q x (0,1)))% x M x M?,

which is a Hilbert space with norm

+oo
Il = [ il Vm(s)l3ds, i =12,

and the inner product

+o0
(mi, Lo = / wi(8)Vni(s)VYi(s)ds, i=1,2.
0

To prove the global well-posedness of (3.15) by using semigroup method, we intro-
duce as in [16], the derivative 1, i = 1,2, as an operator form. Define the operator
T by

Tni = —nis, mi € D(T), i=1,2,
with
D(T) = {n € M | n;s € M,n;(0) =0, = 1,2},
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which is the infinitesimal generator of translation semigroup. In particular,

+oo
(T = [ i) IVmlds, m e D(T)i =12,
and the solution of
me=Tm+u, m(0)=0 and ny=Tn+v, n(0)=0,

has an explicite formula.
Next, we introduce the following Cauchy problem of abstract first order evolutionary
operator equation
aUu
(3.7) dt
U(0) = Uy = (uo, u1,v0,v1, go(, =71), Go(, —72), 0%, 13),

(t)=AU+F, t>0,

_ T
where U = (U,Ut,’U,Ut, 2172:277717772) and

Ut
—+o00
” —av 4+ Acu + / wi(8)Amds — 0yuy — prz1(x, 1,1)
0
Ut V¢
v +oo
—au + Av + / wa(8)Anads — dovy — paza(x, 1,1)
Al "= 0
1 —*le(%p) t)
29 711
n _*22;)(1;7p7 t)
Up 72
ug + Ty
v + 11
and
0
—fl(lb) + hl
0
F— —fg(l)) -+ hg
0 )
0
0
0

with the domain D(A) of A, which is defined by
DA)={U e H,AU € H,n; € D(T),i=1,2}.
We define the inner product in H
(U, 05 = /Q wetind + /Q vihde + o1 /Q VuViads + o /Q VoVidz

+a/(vﬂ+u1~))da:—l—(,u—|—)\)/ divudivﬁdw+(u+)\)/divudivﬂdw
Q Q Q
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+o00 “+o00
—I—/ wl(s)/QVmVﬁldxds—k/ wg(s)/QVnQVﬁdeds
0 0

! 1
+& /Q/o z1(x, p)21(z, p)dpdx + &, /Q/o 2(x, p)Za(w, p)dpdz.
The well-posedness of the problem (3.5) is ensured by the following theorem.

Theorem 3.1. Assume that (2.1)=(2.4) and py < 1, p2 < 42 hold. Then, we have
the following results.

(i) Given Uy € H, then the problem (3.5) has a wunique mild solution
U e C(]0,+00), H) with U(0) = U.

(i7) If Uy and Uy are two mild solutions of the problem (1.1), then there exists a
positive constant Cy = Cy(U1(0),Uz(0)), such that
(3.8) UL () — Us(t)]|3c < T UL(0) — Us(0)|g¢, for all0 <t <T.

(1ii) If Uy € D(A), then the above mild solution can be improved as a strong
solution.

Lemma 3.1. The operator A in (3.7) is the infinitesimal generator of a Cy semigroup
in JC.

Proof. First, we show that the operator A is dissipative. For U € D(A), we have
(AU, Uy = — (51/ uldr — (52/Qvt2dx - ul/ 21 (z, Dude
by [T aEITmlEds + 5 [ Tl
—,ug/ zo(x, 1)vydr — —// 21p(x, p)2i(z, p)dpdx
- 52/ /1 200(2, p)z2(2, p)dpdz.
m JaJo TP ’

By using the integration by parts and Young inequality

&1 / 2 &2 / 2
=|—-0+=+ = d —0y + — 4+ == d
(AU, Uy ( 1+ 5 +271 Qut T+ 2+ 5 +272 Qvt 0

by [T aEITmlEds + 5 [ Tl

+ (“21 = 5;) /sz(:c, )dz + (‘;2 . ;Z) /ng(x, 1)dz.

Hence, (AU, U) < 0. Consequently, the operator A is dissipative.
Now, we will prove that the operator I — A is surjective. For this purpose let

<f17f27f37f47f5af67f77f8)T € j{’ Wwe are IOOking for U = (u7utavvvtazl72277717n2)T €
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D(A) solution of the following system of equations

u—u = fi,

U + v — (,u - w(f) Au— A+ p)V(divu) — /0+OO wy(s)An(s)ds
+ 0uy + 2z (, 1, 8) = fo

v— v = fs,
0 ee
v+ ou — (u - w2> Av— (A4 p)V(dive) — /0 wa(s)Ana(s)ds
3.9
(3.9) + 020y + pazo(w, 1,1) = fu,

2+ =21, =[5,
T1

2o + —22, = [,
T2

m—u— T = fr,
Ny — v — Ty = fs.

From the first and the third equations in (3.9), we have
uy =u— fi,
{vt =v — f3.
Then, it is clear that v, € Hj(Q),v; € Hi(Q). Furthermore, by (3.9), we can find

zi(1 =1,2) as z1(x, p) = w(x), 2o(x, p) = ve(x).
Following the same approach as in [24], we obtain easily

(3.10)

1
21(x, p) = ug(x)e™ ™ + Tle_"“/ fs(x,0)e’do,
0

1
zo(x, p) = vy(x)e P + 7'267'”72/ fo(z,0)e’do.
0

Exploiting (3.10), we get
1

(3.11) z1(x, p) = u(x)e™ ™ — fre”"" + e / fs(w,0)e’ ™ do,
0

1
2(2,p) = v(w)e™ ™ — foemT + Tze_pm/ fo(w,0)e’™do.
0

Using (3.9)—(3.10), the functions u, v satisfy the following system

(1+d)u+ av— (u - w?) Au— A+ p)V(divu) — /;OO wi(s)An(s)ds
+ w2, 1) = fo+ (1+601)f,

+oo
(1+ 09)v + au — (u — wS) Av— (A4 p)V(dive) — / wa($)Ana(s)ds

0
+ /1/222(', 1) = f4 + (1 + 52)f3.
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Solving the system is equivalent to finding (u,v) € (H*(Q) N H3())? such that
/Q(l + 61 + e "™ ud + avii + (p — &) VuVi + (A + p)divudiva
+ (-, 1)ade = /Q(an 4 (14 8) i)z

/Q(l + 8y + proe )0 4 aud + (u — @3) VoV + (A + p)dive dive

¥ pioz(-, 1)oda = /ﬂ(m 4 (14 85) fs, 0)da

with @) = [;F e~*w;(s)ds.
From (3.11), we have

z1(x, 1) = w(x)e™™ + 20(x), 22(x,1) = v (x)e™™ + Z(x),

(3.12)

where

1
2o(x) = —freT ™ + e /0 f5(z,0)e’™do,

1
Zo(x) = —fze T + e /0 fo(x,0)e’™do.

It is clear from the above formula that 2y, Zy depend only on f1, f3, f5, f6. Conse-
quently, the problem (3.12) is equivalent to problem

(3.13) a((u,v)(a,v)) = l(a,v),
where

a((u,v) (@, 7)) = /Q (1 + 6y + e it + (1 + 85 + prae ™™ v
+ a(vi + ud))dx + /Q((,u — O))VuVi + (p — @) VuVa)de
+ /Q((A + pydivadiva) + (A + p)div v div o) de

and
I(@, D) :/ (fatu 4 (1 + 61) frlt — pyzoti)dx + /Q(f477 + (14 d2) f30 — poZo0)dx

+/ 0 _ g0 Vf1Vudx+/ 0 OV foVida

-1, (/0 an(s) [ €V fa(r)drds ) Viida
-, (/JOO als) [ €V fy(r)drds) Vide.

It is easy to verify that a is continuous and coercive, and [ is continuous. So,
applying the Lax-Milgram theorem, we deduce that for all (@,0) € (HJ(Q))?, the
problem (3.13) admits a unique solution (u,v) € (H}(Q))?. Applying the classical
elliptic regularity, it follows from (3.12) that (u,v) € (H*(Q)NH}(Q))?. Therefore, the
operator I —A is surjective. Consequently, we can infer that the operator A is maximal
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dissipative in H. Since D(A) is dense in H, thus we can conclude that the operator
A is the infinitesimal generator of a Cy-semigroup in H, by the Lummer-Phillips
theorem. The proof is now complete. O

Lemma 3.2. The function F is locally Lipschitz.
Proof. Let U' = (u',u},vi,v}, 2], 25, n1,m3) and U? = (u? u?,v3 v?, 22, 22, m3,n3).
Then, we have
IF(U) = F(V)llsc <[[f(u') = fF@)]5 + 1f (") = F0*)]]3
<O+ [Ju'fl§ + e lI§) e’ — u?|[g
+C(L+ (G + 190" = v*g

<Kol V(u' —u?)|l; + Kol V(v —v?)]l3

<Kol|U = V[3.
So, the operator F' is locally Lipschitz in H. The proof is hence complete. 0

Proof of the Theorem 3.1. We deduce from Lemma 3.1 and Lemma 3.2, that the
Cauchy problem has a unique local mild solution

(3.14) U(t) = Ay + | LA F(U(s))ds,

defined in a maximal interval (0, tyayx). If tnax < +00, then limy_, o [|U(t)||5c = +o00.
Let U(t) be a mild solution with Uy € D(A). By using Theorem 6.1.5 in Pazy [26],
we conclude that it is a strong solution. It follows from (3.17) that for all ¢ > 0

V@I < o (B(0) + C),
1
which, by density, holds for mild solutions. Then, it is a contradiction with (3.17) and
therefore t,,.x = +00, that is, the solution is global. The proof of (i) of Theorem 3.1 is
complete. By using (3.14) we obtain the inequality (3.8), the local Lipschitz behavior
of F and Gronwall’s inequality. Then, we can obtain the continuous dependence on
the initial data for mild solutions. This proves the item (i7) of Theorem 3.1. By using
Theorem 6.1.5 in Pazy [26], we know that any mild solutions with initial data in D(A)
are strong. Then, the proof of Theorem 3.1 is therefore complete. 0

In what follows, we present some useful inequalities related to the energy functional.
The total energy associated with the problem (3.5) is given by

1 1 01 09
1 E :—/ 2 7/ 2 7/ 2 7/ 2
(3.15) E(t) 5 Qutdx—i—z Qvtdaz—l— 5 QVu dx + 5 QVU dx
A A
+—|—,u/ ]divu!2dx++'u/ \divv!gdx+a/ uvdz
2 Ja 2 Ja Q

& = dpdi + &2 L2 dpd
+§ oo Zl(“%/),t) P m—I—E alo ZQ(xapat) pazx
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1 1
—l—§||771||§&—{—§||772||§V[+/QF1(u)dx/QF2(U)dx—/ﬂh1ud:E—/thvdx.
Then, we can get the following lemma.

Lemma 3.3. If (u,v, 21, 22,m,12) is the solution of the problem (3.5), then for any
t > 0 the energy E(t) satisfies

(3.16) _&_M/z Ud_fz_uz/z Y
27_1 2 Qzl(x7 7)33 2 27_2 QZ2(:C7 7)3:

1 ftoo 9

by [k ImBds + 5 [ Tl

and there exist two positive constants Cy and Cy which are independent data in H,
such that for any t > 0, we have

E(t) >C4 (/ ufd:v+/ vfd:n+/ VquaH—/ Vvidr
Q Q Q Q

—|—/Q|divu|2dx+/9|divv\2dx+/guvdx+HmHi[—I—anH?w

1 1
[ [ S ptdpde s [ [ o t)dpd)
QJo QJo
—c(/h2d /h2d>—2 .
2 Q 1 :U+ Q 2 T mf

Proof. Multiplying the first equation in (3.5) by u;, the second by v; and integrating
over {2 and using integration by parts, we get

(/ d:v+/ d:v+2a/uvd93+u/ |Vu|2d:z—|—u/ Vol2dz
2 dt Q Q Q

) /Q (div uf2dz + (1 + A) /Q |v\2dx>
=— 51/ urdr — 52/ vidr — ul/ 21 (z, 1, t)udx
Q Q Q

+oo
+u2/ zg(x,l,t)vtd:c—/ wl(s)/ Any(s)udrds
Q 0 Q

“+oo
—i—/ w2(s)/ Ang(s)vdxds.
0 Q

Since u; = 11t + M5, we infer that

+oo
[ nls) [ V(o) Vudrds =3 - SlmlBor 5 [ o) I9m s

(3.17)

we integrate by parts to obtain

oo d 2 e, 2
(3.18) | e IVmids = = [ Wl ()T 3ds.
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Mulplying the third equation in (3.5) by %21 (z, p,t) and integrating over Q x (0, 1),
we obtain

51// z1e(x, p,t)21(z, p, t)dpde = —7// — 2 (x, p, t)dpda
271 op
= —51/ (zl (z,1,t) — 27 (:U,O,t)) dz.

211 Jo

(3.19)

Due to Young’s inequality, we have
M1 H1
f1 /Q 21 (x, 1, t)wdx /Q N, 1, t)dw + = 5 /ngda:,
(3.20) ,ug/ zo(x, 1, t)upde < o / 25 (z,1,t)dx + %/ vidr.
Q Q Q

A combination of (3.18)—(3.20), leads to

/ fl 431 / 2 52 j25) / 2
<t) - (51 21 2 Q e d 2 27 2 Q Vi

A
|

1
o [ hNTmlds + 5 [ o) IVmlds,
Invoking the condition (3.6), we have
&1 H1 &1
S, St M St M
e T R P
§2 o §o o
by — 2 2o 22
2o 2 2 2m

Therefore, (3.16) holds.
Let us check the inequality (3.17). Using the assumption (2.5), the Poincaré and
Young inequalities, for any x we infer that

/Q(F(u)+F(v))d:p—/g(h1u+h2v)dx
> (2”;1+;1)/Qw2dx— (%+ )/w?d:c
_ i (/ hid:mu/ hgd:c> ~omy,

we put Cy = - — 2my, and conclude that (3.17) holds. O

4. LONG-TIME DYNAMICS

In this section, we establish the existence of finite dimensional global and expontial
attractor of the problem (3.5).
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4.1. Generation of dynamical system. We recall some fundamentals of theory
concerning attractors of nonlinear infinite dimensional systems which can be found in
[12]. We will focus more specificaly on [10].

e Let X be a Banach space, the one-parameter operator S(t) : X — X, ¢t > 0, is
said to be a semigroup if

S(ti +ts) = S(t)S(t2) and  S(0) = Id,

hold for all t;,t5 > 0, where Id is the identity operator. The existence of global
attractor relies on two properties, namely, dissipativeness and compactness.

e A dynamical system is called dissipative if it possesses an absobing set By C X
for the semigroup S(t), t > 0, that attracts any bounded set B C X in a finite time
t1 = t1(B) > 0 such that for all t > ¢;, we have

S(t)B C B,.

e For compactness, a dynamical system (3, S(¢)) is called asymptotically compact
if for any bounded B C H and sequence {x,} C B, the sequence {S(t,)z,} has
convergent subsequence whenever ¢, — 400.

e A compact set A C X is called a global attractor of semigroup S(t) if

(i) A is strictly invariant with respect to S(¢), i.e., for all ¢ > 0,

S(t)A = A,
(ii)) A attracts any bounded set B C X, i.e., for any € > 0 there exists a time
t1 = t1(e, B) > 0 such that for all ¢t > ¢, (¢, B),
S(t)B C O (A),

where O(Y) is an e-neighborhood of a set Y in X.
e The fractal dimension of compact set M in a metric space X, is a number defined
by
In N(M,e)
dim7 M = li ——
im} im Eg}g n(lje)
where N (M) is the minimal number of closed balls with radius € > 0 which covers M.

Definition 4.1 ([9]). The unstable manifold M (N) is defined as the family of y € X
such that there exists a full trajectory wu(t) satisfying

u(0) =y and Jim distx (u(t),N) =0,
where N is the set of equilibrium for S(t).

Theorem 4.1 ([10]). Assume that the gradient system (S(t), X) with corresponding
Lyapunov functional ® is asymptotically compact. Moreover, assume that

o &(S(t)z) — +oo if and only if ||z||x — +o0,

e the set of equilibrium N is bounded.

Then, the gradient system (S(t), X) possesses a compact global attractor A C X,
which has the structure A = M, (N).
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Remark 4.1. A semi-norm nx(-) defined on a Banach space X is compact if there
exists a sequence x; — 0 weakly in X such that nx(z;) — 0. Let X,Y,Z be three
reflexive Banach spaces with X compactly embedded in Y and put H = X xY x Z.
Considering the dynamical system (H, S(t)) given by an evolution operator

S(t)UO = (U,Ut,v,vt,21,22,7717771,772), (u()aulav()aU17907g0’n?7773) € 3{7
where u, v, 21, 29, and 1y, e have the regularity
u,v € C(RX)NCHRTY), 21,20 € CRYZ), mi,me € C(RT; Z).

The dynamical system (3, S(t)) is quasi-stable on a set B C I if there exists a
compact semi-norm ny on X and nonnegative scalar functions a(t) and ¢(t), locally
bounded in [0, +00), and b(t) € L'(R') with lim;_, ., b(t) = 0, such that

IS@ UL = S Va5 < a(®)||Ur — Va5
and
IS® UL = SE)Ua][5 <b®)[IU7 — Va5
+ ¢(t) sup [nx(ul(s) —u?(s)) + nx(v'(s) — v2(s))}2,
0<s<t
for any Uy, U; € B.

Theorem 4.2 ([10]). Let (X, S(t)) be a dynamical system and suppose that the system
is quasi-stable on every bounded positively invariant set B C X. Then, (X, S(t)) is a
asymptotically compact.

Theorem 4.3 ([10]). Let (X, S(t)) be a gradient system and suppose that the system
is quasi-stable on every bounded positively invariant set B C X. Then, (X, S(t)) has
a global attractor A = M, (N) with finite fractal dimension, where N is the set of
equilibrium for S(t), My (N) is the unstable manifold for N. Moreover, the generalized
finite fractal dimensional exponential attractor also exists under suitable condition

for S(t).
Our main result is the following.

Theorem 4.4 ([10]). Suppose that assumptions of Theorem 3.1 and the given initial
data (ug,uy, v, V1, 9o, Go, MY, 15) € H for the problem (3.5) hold. Then, we have the
following results.

The gradient system (H,S(t)) for the problem (3.5) possesses a compact finite
fractal dimensional global attractor A C JH,which has the structure as

A = M (N),

where N = {y € H | S(t)y = y} for all t > 0 is the set of stationary points and
M (N) be the unstable manifold from the set emanating from the set N.

Moreover, the gradient system has a generalized exponential AP C H with finite
fractal dimension.
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To prove Theorem 4.4, we will show that the gradient system (3, S(t)) is dissipative
and asymptotically compact.

4.2. Gradient systems.

Lemma 4.1. Assume that assumptions of Theorem 3.1 and the given initial data
(ug, U1, Vo, V1, 9o, Go, 105 19) € H for the problem (3.5) hold. Then, the dynamical
system (H, S(t)) is gradient.

Proof. For the given initial data Uy = (ug, u1, vo, v1, go, o, n°,19) € H, it yields that
U(t) = S(t)Uo = (u, ug, v, 01, 21, 22,71, 7o)

is a solution trajectory for the dynamical system (3, S(t)) of the problem (3.5). Let
K(S(t)U) be the energy along the solution S(t)U. Then, from (3.16), we see that
t — K(S(t)U) is non-increasing. Let us suppose K(S(t)Uy) = S(t)Uy, for all t > 0.
Then, we discover that

& M1 2 & 2 2
S I . L — (5 = 2= =
(1 o =t ) el = (8= 52 = )

1 [too
- (61 _ M) J A de 45 [ Vs
0

27’1 2
S22 L ree

Since all terms have the same sign, we discover

[ I TmlBas = kllnl = o
Then, ny(x, s) = na(z, s) = 0. Using (3.4) we conclude that
(4.1) u(z,t) = v(x,t) =0, a.e. in QxR*.
From (4.1) and (3.1), we conclude Uy = (ug, v9,0,0,0,0,0,0) is a stationary point of
dynamical system (3, S(t)), which implies (H, S(t)) is a gradient system. O
4.3. Existence of absorbing set.

Theorem 4.5. Suppose that assumptions of Theorem 3.1 hold and the given initial
data

(ug, w1, Vo, V1, 9o, Go, 105 19) € H. Then, the gradient system (3, S(t)) has a bounded
set B C H.

Lemma 4.2. Let (u,us, v, vy, 21, 22,m1,12) be the solution of the problem (3.5). We
define the functional F(t) by

F(t) :/uutdx+/ vvtd:v—i—(sl/ u2dx+52/ vidx.
Q Q 2 Ja 2 Ja
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Then, it holds for any ¥ > 0
'(t) §/ dx—i—/ 2dx — Qa/ wvdx — / (A + ) |div ul*da

— [+ mldivelde + 1 (e + Il

/21 x,l,t)dx+u2/z§(x,1,t)dx
2 Ja
—ﬂ/gzhfdx—k@/ﬂhgdeerf,

where \; > 0 denotes the first eigenvalue of —A in H}(Q).

Proof. After differentiation, we easily obtain
F'(t) = /ut dx+/ m da:—i—/ v? d:}c—l—/ VU dx
/ dx — 2a/ w.vdx — oy / Vulder — 02/ Vo?dz
— ()\—I—,u)/ﬂ|d1vu| dx — (/\-I—M)/Q|d1VU| dx
(4.3) — I /Q z1(z, 1, t)u dx — ps /Q 21 (z, 1, t)v dz
—/Qfl(u)udx—/ fg(v)vdx—i-/ hludx+/9hgvdx
/+OO /Vu YV (s)dxds
—/%o )/QVv(t)Vng(s)dxds.

Young’s inequality and Poincaré’s inequality imply

2

(4.4) / z1(z, 1, t)ude < %/ 2 (z,1,t)dx + —/ Vu?dr,
Q Q

similarly, we have

(4.5) /QzQ(x, 1, t)vdx < 'u22 /ng(m, 1,t)dx + 2)\1/ Vvidz

and

400 1
. - < wh 2 I3,
(4.6) ‘ /0 wl(s)[)Vu(t)an(s)dxds _woc/QVu dx + 4CH771HM
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Using (2.5), we obtain
(4.7) —/Qf(u)udm < ::/QVUde—I—mf.
Inserting (4.4)-(4.7) into (4.3), (4.2) is proven. O

Lemma 4.3. Let (u,u, v, vy, 21, 22,m,12) be the solution of the problem (3.5). We
define the functional J1(t) by

T(t) = — /0 T n(s) ( /Q ut(t)m(s)dx) ds,

1

3w, wam
J{(t) S( 61—|— 20>/Q dl“i‘ <01w0+ ;)\1 4A1>/VU2dx

1
ﬂ/ VUde+()\+u)wé/ ]divu!Qda:—Fulwé/ 2 (z,1,t)dw
AL Jo Q Q

@ Lo At O L
+<4>\1+4+ Totet ot )\+2>\>“mHM

which satisfies

(4.8)

B ()1 2,
2w Jo

Proof. 1t is clear that

Ji(t) =— /O+OO wi($) (/Q utt(t)nl(s)dx> ds — /0+00 wi(s) (/Q udt)u(t)dx) ds
[Tt ([ wetma()de) ds.

Exploiting Young inequality and Poincaré inequality, we get

(4.9)

+o0 1
(4.10) / wi(8) (av(t)n(s)dx)ds < %/ Voldr + iHmH?\,[,
0 /\1 Q 4/\1

/ ( /0+°O wl(s)Am(S)dg) ( /O+oo wl(S)?ﬁ(s)ds) < wlml2

and
( )/omm@ ([ weOma()da) ds = [ (=) [ waltym(s)dz) ds
4.11 ]

<P [ utde = e [T ko) O s
where I} = — [;F* w](s)ds.

Noticing the estimtes (4.10)—(4.11), we easily deduce the inequality (4.8). The proof
is hence complete. ]
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Lemma 4.4. Let (u,uy, v, vy, 21, 22,m1,12) be the solution of the problem (3.5). We
define the functional Jy(t) by

Rot) == [ (o) ([ wltm(s)d) s,

2

3w wam
Jé(t) S( 52—|— 20>/Qvfdl’+ (O'ng"— /0\1 4)\1>/v'y2dm

2
ﬂ/ Vuldr + (A + p) wg/ |div v |2 dz + ,ulwg/ 23(z,1,t)dx
AL Jo Q Q

+ &+7+)‘+7'“+ _ﬁ_i_{_&_‘_i || ||
4 4 g 4N 4N 12lln

which satisfies

T ) IVeli2d
. W2(3)|| 772||2 S,

where ly = — [;F° wh(s)ds.

Lemma 4.5. Let (u,us, v, vy, 21, 29,1, M2) be the solution of the problem (3.5). Then,
the functional I1(t) defined by

1
(4.12) L (t) :7'1/9/0 e 23 (x, p, t)dpda,

satisfies the following estimate

1
(4.13) I(t) < —e ™™ <’7’1/Q/ 2(z, p, t)dpda:—i—/ﬂzf(x,p, t)dx) +/Qufd:c.
0

Proof. Differentiating (4.12) with respect to t and using the third equation of the
system (3.5), we have

1
I(t) = 27'1// e "Pzu(x, p, t)z(z, p, t)dpde
aJo
1
:—2// e Pz ,(x, p, t) 2 (z, p,t)dpde
aJo
1 0
= [, ) g, E o 0)dpde
= —7'1// 2z, p,t dpdx—l—/ urdr — Tlp/ 23 (z, p, t)dx

< —e <Tl// 22z, p, t)dpdx+/ 21 (z, p, t)da:) +/ uldz.
aJo Q Q

Therefore, (4.13) holds. O

Lemma 4.6. Let (u,us, v, vy, 21, 22,1, M2) be the solution of the problem (3.5). Then,
for the functional I5(t) defined by

1
L(t) =7 [ [ ez, p, dpdr,
QJ0o
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the following inequality holds

1
L(t) < —e ™ (72// z%(x,p,t)dpdx—i—/ z%(x,l,t)dx) +/ vidx.
o Jo Q Q

Now, we define the Lyapunov functional
(4.14) L(t) = NE(t)+cF(t) + Ji(t) + Jo(t) + L (t) + L(1).
Then, we obtain the following lemma using the multiplier method.

Lemma 4.7. Let (u,us, v, vy, 21, 22,1, M2) be the solution of the problem (3.5) for N
large enough there exist two constants v, and vy depending on N, e such that for any
t>0

(4.15) nB(t) = Col[[hall3 + 1hall2) < L(t) < v2E(t) + Colllha |13 + [[ha][2)-
Proof. From (4.14), we obtain

€ €01
_ <[z 1 2 2
|L(t) — NE(t)] < (2 —i—wO) /Qutdx—i— (2)\1 + 2/\1>/ Vu“dx

2 2 / 2 R / 2
—|—<2+w0) Qvtdx+<2/\1+2)\1> vi e
1
—|—7'1// zf(x,p,t)dpda?%—@/ﬂ/ 23(z, p, t)dpdz
0

1
I (HmHM + [l
s0E< >,

(4.16)

with C' = max{5 + wp, 55- + 5 2A1  Tis Do L1 i=1,2.
Combining (3.17) and (4.16), we choose N large enough that v, = N — C >0 and
= N + C > 0. This complete the proof. O

Proof of Theorem 4.5. From the previous lemmas we get
L'(t) <— «91/ urdr — 6’2/ vidr — 93/ Vuldr — 94/ Vvidz

—05/ |dlvu|2dx—06/ |div v da:—QOz/ uvdx

sl + sl S8 [ itar 8 [ par

1
—7'16_”// zf(m,p,t)dpdx—ﬁe_m// 22(z, p, t)dpdx
o Jo aJo

—«97/ Z%(I,l,t)dl’—gg/ 22(x,1,t)dx
0 Q

N oo
(5 = g ) L ANl
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N oo
e O

2 2&)3/\1

We choose N large enough so that

&1 1 1 (1)

06b=N|6 — = "] —e—wyo — — —1

1 (1 27_1 9 WpO1 >0,
& M2 2 8

0o =N (6, — 22 — 2} _ 5 —1

2 <2 9y 5 002 > 0,

05 =(g — wp) (A + ) > 0,
O =(e — wi) (A + ) > 0,

2
07:N<2€;—/;1>+6_71—€;h—u1wé>0,

2
98:N<€2—/L2>+6_72—8/;2—[L2w3>0,

27'2 2
€ o o Atpu 1 01 11 1
-t LAy S50
ol 4C+4>\1+ 4 + 4 +W0+4>\1+4)\1+2>\1 ’

LR S TR SN . S S
= 4+ —F+ =+ —+w —_ —= 4+ — )
270 T 4 0T N AN 2y

We choose our constants very carefully and properly so there exists a constant § =

min{@l, 92, 03, (94, 95, 067 97, 08} Hence,

N l
L'(t) < — 0F SR

+o0
) [ tevmza

2 2w\
+ @llmellic + Csllhall3 + Callhll3 + Cs,

N [ +oo
+(5 - aa ) [ el + sl

and we can choose N such that % — 20}%/\ >0, % -3 122/\ > 0, so it follows that
01 Wo AL
(4.17) L'(t) < = 0E(t) + aallmllae + s2llnzllzc + Callhall3 + Callhall3 + Cs.

From the assumption (2.1), we have that

1 oo
Imillae < =1 : wWi(s)IVi(s)ll2ds.
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Together with (4.17), we conclude that there exists a positive constant € such that
L)<= 0B() — [ wi(s)IVmllds
— [ A IV lBds + Culla [+ Clhal}3 + C.
Let L(t) = L(t) + ¢ E(t). Using (3.15), we get
L'(t) < =0E(t) + Cs||ha |5 + Cullha|l + Cs.
From (4.17) we have
(418) @) — Gl + 1hald) < E(t) < 5B() + ol + 1ha2),
h

where 1] = vy + g5, Uy = 15 + 5. Along with (4.18), we obtain

5 0.
L'(t) < 72L(t) + Cyllha |3 + Cillhall3 + C5

and

- N

L'(t) < L(0)e™t + Ci||h |3 + Chlhall3 + CL.
Using (4.18) again, we get

L =
E(t) < 5 (1E(0) + Callha |3 + Callhall3)) €77 + C4 | ha 3 + CfllR2l3 + CE.
In view of (3.15), we infer

—0
(s e, v, 05, 21, 20,71, m2) 150 < Coe™ " + Chllhall3 + C5[[hall3 + C5.

Then, there exists an absorbing ball B(0, R) with radius

R > /Gyl 3+ Cy|hall3 + C3,

for the dynamical system (3, S(t)). Hence, we complete the proof of Theorem 4.5. [

4.4. Quasi-stability.

Lemma 4.8. Suppose that assumptions of Theorem 3.1 and the given initial data
(uo, u1, 0,1, 9o, Gos MY, M) € H. Let us consider a bounded subset B C H and two
weak solutions Ul = (u',ui, vl v}, 21, 22 ni,nd) and U? = (u?, u?, v, v?, 23, 23, m3,n3)

of the problem (3.5) and initial data Uy,Us € B. Then,
IS(tU = SOU 5
<125 = 23+ Co sup (lu' (1) = w*@)F + [0 () = (D))
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Proof. For any U},U2 € B, let U',U? be the corresponding solutions. Let W (t) =
<(I), \IJ) Zl? Z27 Clv C2>T = Ul(t) - U2<t> = (ul _u27 ! _U27 Z% _Z%7 Z% _Zga 77% _77%7 77% _773)
Then, W (t) verifies

+oo
q)tt +a¥ — Aeq) + (51CI)t — /0 W1<S)A<1(S>d8
+Mlzl(x717t)+f(ul) _f(uz) :07 in 2 x (O,—FOO),

+oo
Uy +a® — AV + 6,0, — / wo(s)Als(s)ds
0

+ paZo(w, 1,t) + f(v') — f(v?) =0, in Q x (0, +00),

T1Z1(%, p, t) + Z1y(, p, t) = 0, in % (0,1) x (0, +00),
ToZor(z, p,t) + Zop(x, p,t) = 0, in Q x (0,1) x (0, +00),
Gt + Cis = Py, in 2 x (0, +00) x (0, 4+00),
Cot + Cos = Wy, in Q x (0, +00) x (0, 4+00),

with the initial and boundary conditions
Ul(o) - U2(O) = ((1)07 ®17 qua \1117 JOa j07 C?a Cg)

We denote the associated energy functional by
mon L 2 1 2 ﬂ/ 2 @/ 2
_ﬂﬂ—24®ﬂx+24WMx+2 [ vordr + 2 [ votde
A A
—l—a/ @\pdwr”/ ]div®]2da:++u/ div W[2da
0 2 Q 2 Q
+ 51/ /1 Z(x, p, t)dpdx + 52/ /1 7Z3(z, p, t)dpdx
2 JaJo T 2 JaJo T

1 1
+ 5“@”?« + 5”@”%&

To adress the difference between the nonlinear terms f(u') — f(u?) and f(v') — f(v?),
we recall the following result. The proof can be found in [9].

(4.19)

Proposition 4.1. There exists a constant Ky such that

/Ot/Qevsg(ul(S)) — F(u¥(5)))Py(s)dxds
(4.20) t ~
S%W£EWM+MA@W@®MHM@ﬁw@@

where v is any positive constant. Moreover,
[ () = fu)eds < Kol

Now, we define the following multipliers by

5
B(t) :/ <I>t<1>dx+/ \Ilt\lldx+51/ <I>2dx+—2/ W2z,
Q Q 2 Ja 2 Ja
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Du(t) == [ ws) ([ @) (5)d) s,
Da(t) == [ (o) ( [, wa00als)d) s,

1
Gi(t) =m / / e 7 (x, p,t)dpde,
QJO0

1
G (t) :7'1// e T Z3(x, p, t)dpdz.
aJo

Using the similar technique as in the proof of Theorem 4.5, we have
/@dx+/\lldm—<al )\ wo)/VCI)dx
+ (az R ) Ve — 2a/ OUdz
2\
~ +u)/ \div ®[2dz — ()\+u)/ div U[2de

/22 2,1, 0)dz + 12 /22 2,1,0)d

+ (H@HM + H@\m) - /Q (f(u!) = f(u))@da

— / v?))Wdx

LK
D) g( 15, + 3“‘)) / O2dr + (01w0—|— o °“>/vq>2dx

At 01 ! wp 2

* (4/\1 Tt Dy I3
awO/V\IIQd:ch()\Jru)wo/ Idiv ®[2dz

I

and

() IVGil3ds + puws [ 23,1, 8)d,

2w
3 1 K
Di(t) < < 20y + w0> / U2dx + <02w0 + — e M) / VU2dx
At 02 H2 wy 2
* (4/\1 1 I an a3

awO/V¢>2d:v+()\+,u wo/ div ®[2dz

ly
20.)%)\1 0

() IVGli3ds + poed [ Z3(w,1,8)da.
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In addition, we define the Lyapunov functional £(t) by

L(t) = NE(t) 4+ eB(t) + Dy(t) + Do(t) + G1(t) + Ga(t).

Following the same approach as in the previous argument, we get

£(t) < — X1/ Oz — Xz/ W2y — Xg/ Volds — X4/ VUl
Q Q Q Q

—X5/ div ®[2da —Xﬁ/ div W|2dz — 2a/ Udz
Q 9] QO

1
+xell Gl +xsllld = me™ [ [ 22w, p.t)dpda

1
- 7'26_72/9/0 Z3(x, p,t)dpdr — Xg/QZf(x, 1,t)dx
N L

+oo
v [, 230+ (5 - ) [T welvalzs

N l o
i < o )/; wy(s)|Véll3ds

2 2wi)\
+ N [ () = )@z + N [ (") = £(2) Ve
—c [ (F) = flu?)@dr — & [ (F(u") = f(u?))®da.

Then, setting N large enough, we have

2
2
XQ_(N<52—§22—‘;2> — <w§52+0> —1>0,
1 aw?
X3—5(01—2)\1—Wéc)—)\10 0,
1 awp
X4 =€ (02—2/\1—@%0) —/\—10 0,
X5 =(€ — wo)(A+ ) >0,
Xe =(g —wi) (A + ) >0,
€ a o AFp L0 {1 W}

_E a2 At o B e
Xs=—+——+—+ ot T oy T o

2
X9:N<€1—M>+e_“—€2u1—,u1wé>0,

> 0,

75
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2
€
10 =N (% — p;) +e 7 — % —,ugwg > 0.

Consequently, there exists a positive constant y = min{x1, X2, X3, X4; X5, X65 X9, X10}
such that

. +00 Hoo
L) < —xEW) —@ [ wl()IVGl3ds == | wh(s)IVGlEds + Q).

with

Qt) = N [ (f(u!) = F@) e + N [ (F0") = F02)Wrdde + Ko (|0 + [0])
Let £(t) = L£(t) 4+ wsE(t). It is easy to verify that there exist two positive constants
(1, B2 such that
(4.21) BE(t) < L(t) < BLE(t).
Taking into account (4.19), we conclude that

dL(t)
dt
which leads to

< —xE(t) 4+ Q(1).
We set v = 5"—2,
E(t) < L(0)e " + / =90 (5)da.
0
Combining this with (4.21), we obtain

BUE(t) <Poe B(0) + Ko sup (1] + [[¥13)
+ Net /Ot e [ () = J() @i
s e [ e L) = fe)widz.

Using the estimate (4.20), we get, for some K{ > 0,
B(t) <KpB(0)e " + Ky sup (1@ + [ ¥]5)
O<s<t

t
+ Kpe ™ /0 e (|luf (3113 + 1uf (s)I[3) E(t)ds
t ~
+ e [ (o} (5)I3 + E(s)113) Et)ds.
Then, applying the Gronwall’s lemma for e B (t), we obtain

B < (KB 4 1 s, (191 + 1912))
(422) 0<s<t

xexp (Kb [ (1) + 12 + 1o ()3 + e () 18) ds)
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By the uniform bounded of Z in H, we can denote

/O1 (It ()13 + 1 (I3 + g (515 + [[07 ()3) ds = C.

Therefore, the inequality (4.22) implies

B(t) <Kye"i| 25 — Z|lsce™"
+ K0 sup ([lut(8) = w2 ()3 + (o' (1) = *(0)]3) -
0<s<t
Hence, the proof of Lemma 4.8 is complete. 0

Proof of Theorem 4.4. Lemma 4.1, Lemma 4.5 and Lemma 4.8 imply that the gradient
system (3, S(t)) is dissipative and assymptotical smothness. Along with Theorem 4.3,
we can obtain that (H, S(t)) has a finite dimensional global and exponential attractors
A and A®P respectively. Moreover, A has the structure A = M, (N). U
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