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ON GENERALIZED COMMUTATIVE QUATERNION
BALANCING-TYPE POLYNOMIALS

DOROTA BROD!, ANETTA SZYNAL-LIANA', AND MIROSEAW LIANA?

ABSTRACT. Generalized commutative quaternions are generalizations of elliptic,
parabolic, and hyperbolic quaternions. They generalize bicomplex numbers, complex
hyperbolic numbers, and hyperbolic complex numbers, too. In this paper, we
introduce and study generalized commutative quaternion balancing polynomials
and generalized commutative quaternion Lucas-balancing polynomials.

1. INTRODUCTION AND PRELIMINARIES

The set of quaternions H was introduced by Hamilton in 1843 ([5]) in the following
way:

H={q: ¢ =z + 210 + 225 + x3k; 20, 21, T2, 23 € R},

==k =ijk=—-1, ij=—ji=k, jk=—kj=1i, ki=—ik=j.

The multiplication of quaternions is not commutative. Hence, some quaternions
algebra problems are not easy. In [15], Segre modified the definition of a quaternion in
such a way that it admits a commutative property in multiplication, and he introduced
commutative quaternions. The set of commutative quaternions is a 4-dimensional
structure, contains zero divisor, and isotropic elements. Commutative quaternions
have many applications in physics and mechanics (see [3,10,11]).
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Non-commutative quaternions and commutative quaternions were generalized and
studied by Jafari and Yayli in [6]. Moreover, in [16], Szynal-Liana and Wtoch intro-
duced generalized commutative quaternions and studied them in the special subfamily
of quaternions of Fibonacci type. Recall some necessary definitions.

Let Hf 4 be the set of generalized commutative quaternions x of the form

X = Zg + 161 + T2e9 + X3€3,
where xg, 1, 79,23 € R and for a, 8 € R quaternionic units ey, es, ez satisfy the
equalities
(1.1) el=a, e=08, e =af,
(1.2) €16y = €961 = €3, e9e3 = e3ey = Be; and  ese; = ejez = aes.
The generalized commutative quaternions generalize the following:

e elliptic quaternions for « < 0 and g =1,
e parabolic quaternions for « =0 and g =1,
e hyperbolic quaternions for o > 0 and § =1,

e bicomplex numbers for « = —1 and § = —1,
e complex hyperbolic numbers for « = —1 and § =1,
e hyperbolic complex numbers for « =1 and § = —1.

In [17], generalized commutative quaternion polynomials of Fibonacci type were con-
sidered. We will apply the concept of balancing polynomials and introduce generalized
commutative quaternion balancing-type polynomials.

2. BALANCING NUMBERS AND LUCAS-BALANCING NUMBERS

Balancing numbers were introduced in 1999 by Behera and Panda ([2]). Let n be
a positive integer. Then, n is called a balancing number with balancer r, if it is the
solution of the Diophantine equation

1424---+n—-1)=n+1)+n+2)+---+(n+7r).
The balancing sequence is denoted by {B,}. In [2], the authors proved that the
balancing numbers satisfy the recurrence relation
(21) Bn = 6Bn_1 - Bn_Q, for n Z 2,

with initial conditions By = 0, By = 1.
The balancing numbers can be defined by the non-linear first order recurrence

B, =3B,_1+/8B2_;+1, forn>1,

with initial condition By = 0.
It is well known that n is a balancing number if and only if n? is a triangular number,
i.e., 8n% +1 is a perfect square (see [2]). In [8], the author introduced Lucas-balancing

numbers, defined as follows: if B, is a balancing number, then C, = /8B,% + 1 is
called a Lucas-balancing number.
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The Lucas-balancing numbers satisfy the same recurrence relation as that of the
balancing numbers, but with different initial conditions:

C,=6C,_1—C,_y, forn>2,
with C() = 1, Cl = 3.

Balancing numbers and Lucas-balancing numbers are given by the relations called

Binet-type formulas:
" — o™ r" +r n
B, = - 2 0, =12

r —To 2 ’

where 71, 75 are the roots of the characteristic equation r? — 6r + 1 = 0, associated
with the recurrence relation (2.1), i.e.,

r1 :34—2\/5, 7‘2:3—2\/5.
The balancing numbers are defined for the negative subscripts by formula
B_, =—-B,, forevery integer n.

In [12], the author, using a matrix representation of balancing and Lucas-balancing
numbers, obtained several interesting identities for these numbers. We recall some of
them.

Theorem 2.1 ([12]). Let a,b, c,d be integers such that a +b = c+ d. Then,
BBy — BcBq = Bq—By—k — Be—g Ba—r;,
CuCy — CcCq = CokCpp — CeiCa—r,
B,Cy — B.Cqy = By 1Cp — Be xCay,
fork=0,1,2,...
Corollary 2.1 ([12]). Let n,k be integers. Then,
By — By =DBauBoy,
B2 — B, _1Bpi1 =1,
B,+1Cy1 — B,C,, =3,
Cpi1Cr1 — C? =8.
Balancing polynomials were introduced in [13] in the following way:
(2.2) B,(z) = 6xB,_1(x) — B,_2(x), forn >2,
with initial conditions By(x) = 0, By(z) = 1.
In [9], Lucas-balancing polynomials were considered. They are defined as follows.
(2.3) Cn(z) = 62C,_1(x) — Cp_o(x), forn > 2,

with initial terms Cy(z) = 1, Cy(x) = 3z.
For x = 1, we obtain B, (x) = B, C,(x) = C,,.
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Binet-type formulas for balancing and Lucas-balancing polynomials have the form

(2.4) B,(z) = (@) —r3(z)
! ri(x) — ra(z)
and
Cn(z) = r(x) + 75 (2),
where
(2.5) ri(z) =3z + V922 -1, ry(x) =32 —V922 -1, 92°—1>0.
By simple calculations we get

(2.6) ri(z) + ra(x) =62, r(x) —ro(x) =2v922 — 1, ri(z)-ro(x) = 1.

The first few balancing numbers, Lucas-balancing numbers, and balancing-type
polynomials are given in Table 1.

Lo Jolt[ 2 [ 3 | 4 | 5 |
B, [o]1 6 35 204 1189
n || 1] 3 17 99 577 3363
Bn(z) 0] 1 6z 3622 — 1 21623 — 12z 129621 — 10822 + 1
Cn(z) [ 1] 3z | 182% — 1 | 10823 — 9z | 648z — 7222 + 1 | 3888x° — 54027 + 15z

TABLE 1. A few first words of balancing-type numbers and balancing-type polynomials

In [4], some interesting properties of the balancing polynomials and Lucas-balancing
polynomials are presented.

Theorem 2.2 ([4]). Let n > 1 be an integer. Then,
Cn(z) =Bni1(z) — 328, (x),

Colw) =5 (Baia(x) = Bua(a),
Cn(z) =3B, (z) — Bp-1(2),
Cy(z) =32C,_1(x) + (92 — 1) B,_1 (7).
Theorem 2.3 ([4]). Forn > 1 we have
_ 3nCy(x) — 9B, ()
922 — 1 ’

Theorem 2.4 ([4]). The ordinary generating functions are given by

B! (z) C! (x) = 3nB,(x).

+o0o =
e E Bn n — —_—,
fz,2) n—0 (x)2 1 —6xz + 22
T 1—3zz
9(@;2) =0 (x)2 1 —6zz + 22



ON GENERALIZED COMMUTATIVE... 213

Let n > 0 be an integer. The nth generalized commutative balancing quaternion
gc B, the nth generalized commutative Lucas-balancing quaternion gc C,, are defined
as

gcB, =B,, + B,11€e1 + By 0e2 + Byyses,
gc Gn :Cn —+ Cn+161 + Cn+262 -+ Cn+363,

where ey, €9, e5 are units satisfying the rules (1.1) and (1.2).

Let x be a real variable. The nth generalized commutative quaternion balancing
polynomial gc B, (x), the nth generalized commutative quaternion Lucas-balancing
polynomial gcC,(z) are defined by

(2.7) gc B, (x) =B, () + Bhii1(z)er + Buya(x)ea + Byis(x)es,
(2.8) gcCp(x) =Ch(z) + Cryi(x)er + Cria(x)eg + Crys(x)es,
respectively. If z = 1, then gc B, (1) = gcB,,, gcCpr(1) = gcC,.

3. SOME IDENTITIES FOR GENERALIZED COMMUTATIVE (QUATERNION
BALANCING-TYPE POLYNOMIALS

Theorem 3.1. Let n > 2 be an integer and x be a real variable. Then,
(i) geBp(x) = 6xgeB,_1(x) — gc Bro(z),
(ii) gcCu(z) = 62gcCpri(x) — ge Cps(x),
where
geBo(z) = e1 + 6xey + (3627 — 1)es,
geBi(z) = 1+ 6we; + (362 — 1)ey + (2162° — 122)es,
gcCo(x) =1+ 3ze; + (1827 — 1)ey + (1082 — 92 )es,
gcCy(x) = 3z + (1827 — 1)e; + (1082% — 9z)eq + (6482* — 722% + 1)es.
Proof. For n = 2 we get
gcBo(z) = 629c By (z) — ge Bo(x)
=62 + 362%e; + (2162° — 67)ey + (12962 — 7227)es
—e1 — 6xey — (3627 — 1)es
=61 + (3627 — 1)e; + (2162° — 122)eq + (12962* — 1082% + 1)es.
Let n > 3. By (2.7) and (2.2) we get
gc B, (x) =B, () + Bhti1(v)er + Bpya(x)es + Buys(z)es
=62B,,_1(x) — By_2(x) + (62 B, () — By—1(x))ey
+ (6Bn11(2) — Bu(x))ez + (6Bnia(r) — Buya(x))es
=6x(Bn-1(x) + By (v)er + Bryi(x)es + Bhya(x)es)
— (Bn—2(z) + Bu—1(z)e; + Bp(x)ea + Byii(x)es)
=6zg9cB,,—1(x) — gc B,—2(x),
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which ends the proof of (i).
The second part can be proved similarly using (2.8) and (2.3). O

Theorem 3.2. Assume that n > 1 is an integer and x is a real variable. Then,
(3.1) 3xBy(x) — By_1(x) = Cy(x).

Proof. (By induction on n) For n = 1 we have 3zB;(x) — By(z) = 3z = Cy(z), for
n = 2 we get 3zBy(z) — Bi(z) = 3z - 62 — 1 = 1822 — 1 = Cy(x). Assuming that
formula (3.1) is true for £k = 1,2,...,n, we will prove it for n 4+ 1. By the definition

of balancing polynomials we get
3xByy1(x) — By(x) =32(6xB,(x)
=62 (32 B, ()

n1(x)) — 62B,_1(x) + Bn_o(x)

— B,_
— By1(2)) = 3zBn1(x) — Bua(z)).

By the induction hypothesis, we have
3xBpi1(x) — Bp(x) = 62C,(x) — Chq1(z) = Craa ().

Corollary 3.1. Assume that n > 1 is an integer and = is a real variable. Then,
Byi1(x) — 3zB,(z) = Cy(x).
By formula (3.1) we get the following result.
Theorem 3.3. Assume that n > 1 is an integer and x is a real variable. Then,
3rge B, (z) — ge B_1(x) = geCp(x).
Corollary 3.2. Assume that n > 1 is an integer and = is a real variable. Then,
gc B 11(x) — 3xgc B, () = gcC(x).

Now, we will present Binet-type formulas for generalized commutative quaternion
balancing-type polynomials.

Theorem 3.4. Let n > 0 be an integer and x be a real variable. Assume that
922 — 1> 0. Then,

_ri@)ri(e) = 13(@)rs(a)
(3.2) gcB,(x) = ﬂ) — rg(m)/\ ,
(3.3) g¢Cn(x) =r(z)r1(x) 4 75 (x)r2(2),

where r1(x), ro(x) are given by (2.5) and
(3.4) 7@ =1+ 7ri(x)ey + ri(x)eq + ri(w)es,
7;(?) =1+ry(x)ey +r3(x)ey +ri(w)es.
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Proof. We give the proof of (3.2). The proof of (3.3) is similar.
By (2.7) and (2.4) we get

gc By (x) =Bp(x) + Buyr(w)er + Buya(x)es + Buys(z)es

i) —rg(x) i (e) — gt

ri(z) = ra(z) ri(z) = ra(z)
rit ) — g @) i () — ()
)

({L‘ _T2( ) € + €3

ri(z) — ra(x)
2\/927( o) (1 +ri(z)eg +ri(w)ey + 73 (z)es)

z)

€1

+

15 (@)(1+ ra(a)er + 13 (@)es + r(@)es)),
which ends the proof. 0

Using (3.4), we have

ri(@)rs(@) =ra(z)ri(a)

+ (n@) + ra(@) + P @E@)B + i @)r3@)8) e
+ (T% x) +r3(x) + r(2)rd(z)a + 7‘?(@7“2@)04) es
+ (7"? + r3(z) + ri(z)r3(z) + 7’%(3})7@(:6)) es

Hence, by (2.6), we get

e~ ———

(3.5) ri(x)ro(x) =14+ a+ +af +6x(1+ ) e
' + (3622 — 2) (1+ @) ez + (2162% — 122)e;.

The next theorem presents general bilinear index reduction formulas for generalized
commutative quaternion balancing-type polynomials.

Theorem 3.5. Leta > 0, b >0, ¢c > 0, d > 0 be integers such that a +b = ¢+ d.
Then, for a real variable x and 92% — 1 > 0 we have

(3.6) gcBa(x) - ge By(z) — ge B.(x) - ge By(x)

B (Ti"(x)rél(w) — ri(x)ry(z) + r5(z)ri(z) — 7"5(33)7"1{(9:)) ri(z)ry(z)
- 3622 — 4 ’
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(3.7) gcCu(x) - g Cp(z) — ge Co(x) - ge Cy(x)

= (ri(@)ry(@) + i (@)rt(z) — r(@)rd(e) - r§(@)ri(@)) ri(@)ra(),

where ri(x), ra(x) are given by (2.5) and rl(x)@ is given by (3.5).
Proof. Using (3.2) and the fact that a + b = ¢ + d we have
gcBo(z) - ge Byp(x) — geBe(x) - gc By(x)

—rt(@)rb(@)r(@)ra() — ra(a)rt (@)rs () (2)

3622 — 4
P (@)rd (@) (@)ra(x) + r§(@)rf(@)ry(x)r (z)
3622 — 4
(@i (@) = ri@)rb(@) + r5(@)ri(e) — rg(@)r (@) r(@)r ()
B 3622 — 4 ’
which ends the proof of (3.6). The formula (3.7) can be proved similarly. O

For special values of a, b, ¢, and d, we obtain the Catalan, Cassini, Vajda, d’Ocagne,
and Halton-type identities, respectively.

—_——

Assume that 71 (x), ro(z) are given by (2.5), r(x)ra(x) is given by (3.5) and x is a
real variable. Let 927 — 1 > 0.

Corollary 3.3 (Catalan-type identities for generalized commutative quaternion bal-
ancing-type polynomials). Let n > 0, k > 0 be integers such that n > k. Then,

9CBii(®) - ge B_i(z) — (9eBn(2))* = (2 B (m(@)k B <T2(x)>k) E(SC\)?;(;)

ra(2) @) | 32—
9 Cash(2) - 9¢Cou(r) — (90, (2)" = ((8) () 2) @)

Corollary 3.4 (Cassini-type identities for generalized commutative quaternion bal-
ancing-type polynomials). Let n > 1 be an integer. Then,

9eBoir(2) - g Bua (1) = (90 By () = = ra(@)ra(a),
9cCrir(x) - geCpy(x) — (geCpn(x))® =(3622 — 4)7?(33\)7;(35\)

Corollary 3.5 (Vajda-type identities for generalized commutative quaternion bal-
ancing-type polynomials). Let n > 0, m > 0, k > 0 be integers such that n > k.
Then,

9 Bisi() - ge Booy(x) — ge B () - ge By ()
N 3622 — 4 )
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9 Crnyi () - ge Cpp(z) — ge € () - ge Cp ()

- (r?(az)r&(z) ((E;) - 1) P @) ((8) - 1)) H@@.

Corollary 3.6 (d’Ocagne-type identities for generalized commutative quaternion
balancing-type polynomials). Let n > 0, m > 0 be integers such that n > m. Then,

9gcBn(z) - g¢ Brnya(w) — gc By () - ge B(w)
(@) (@) = @)y @) (@)ra()
B 2912 — 1 ’

gcCpu(x) - gcCra(z) — gcCpyi(x) - ge Cp(x)
= (1 (2)r (@) — 3 (@) (@) (rafa) — 1 (2)) 71 (@) (@)

Corollary 3.7 (The first Halton-type identities for generalized commutative quater-
nion balancing-type polynomials). Let n > 0, m > 0, k > 0 be integers such that
n > k. Then,

9 Buii(x) - ge Bp(x) — ge Br(x) - g¢ Brnyn(2)

= nE ()R (r(2)™ — 1 xmiﬁ@
_<T1(‘T) g 2( ) k)(l( ) 2( ) )2ma

90 Conii () - 90 Co() — GC C(T) - GO Crpyn(x)
= (ra()"™* = 1 ()" (ru0)™ = ra(@)™ )i (@)ra(2),

Corollary 3.8 (The second Halton-type identities for generalized commutative quater-
nion balancing-type polynomials). Letn > 0, k > 0, s > 0 be integers such thatn > k,
n > s. Then,

9cBoik(z) - ge By _p(x) — ge Bis(z) - ge B, s(2)

() () - (i) - () )

gcenJrk(x) gcen k( )_gcen+s( ) gcen s(‘r)

() (2 () - (2 ) e

Theorem 3.6. Leta > 0,b >0, c >0, d > 0 be integers such that a +b = c+ d.
Then, for a real variable x such that 92> — 1 > 0, we have

gcBa(x) - ge Cp(x) — ge Bo(x) - ge Cy(x)

ri(@)rs (o)

= (ri@)ry(z) = (@)} (@) = ri(@)rg(x) + r5(z)ri(x)) 0 — 1
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—

where 1 (x), ro(x), rl(x)@ are given by (2.5), (3.5), respectively.
Proof. Using (3.2) and (3.3), we have
gcB(x) - geCy(z) — g Beo(x) - ge Cy(x)

i (170 = @) + 57a) = 15 @) @)

Fri@)ra(a)(rf (@)r(@) = @)t (e) = ri(@)ri(@) + ri()rs(@).
Since a + b = ¢ + d, we get
g Ba(x) - geCy(x) — ge Be(x) - ge Cal)
= (M@ @)@ = (@) = @) + i),
which ends the proof. O

Corollary 3.9. Letn >0, m > 0, k > 0 be integers. Then,
9¢Bi(x) - gc Crym(x) — ge B (@) - ge Crpr()

—(17(@) + 13(@)) (rE @) (2) — 17 (@)rh(a)) L)

2922 — 1’

where 11 (x), ra(x), r1(x)ra(x) are given by (2.5), (3.5), respectively.

4. GENERATING FUNCTIONS AND MATRIX GENERATORS

Theorem 4.1. The generating function of the generalized commutative quaternion
balancing polynomial has the following form
(1) = e1 + 6zes + (3622 — 1)es + (1 — eg — Gxes)t
o= 1= 6at + 2 ‘

Proof. Let
g(t) = gcBo(z) + tge Bi(x) + t2ge Bo(z) + -+ +t"ge By (x) + - - -

be the generating function of the generalized commutative quaternion balancing
polynomial. Then,

6xtg(t) = 6trge Bo(w) + 6t*xgc By (x) + 6t3wgc Bo(2) + - - - + 6t" 29 By (T) + - - -,
t2g(t) = t?gc Bo(w) + t3gc By (z) + t*ge Bo(x) + -+ +t"gc By o(x) + - - -
Hence, by the recurrence ge B, (z) = 6xgcB,—1(z) — gc B,—a(x), we get
g(t) — Gatg(t) +t*g(t)
=gcBo(z) + (gc Bi(z) — GxQCBU(x)>t + (cho(x) + gcBo(x) — 6xgC Bl(x))tQ 4.
=gcBy(x) + (gc Bi(x) — 6xgc‘Bg(x))t.
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Thus,

o(t) = gcBo(x) + (gc Bi(z) — 6xgcﬂ30(x))t
1 — 6xt + t2 '
After simple calculations we obtain
o(t) = e1 + 6zes + (3622 — 1)ez + (1 — eg — Gxes)t
1 — 6at + t2 ‘

In the same way, we can prove the following theorem.

Theorem 4.2. The generating function of the generalized commutative quaternion
Lucas-balancing polynomial has the following form

gcCo(x) + (gc Ci(z) — 6xge Go(:v))t
fe) = 1 — 6xt + t2 ’
where geCo(x) = 1+ 3ze; + (1827 — 1)es + (10822 — 9z)es, g Ci(x) — 6xgeCo(z) =
—3z — €1 — 3zez + (1 — 18z7%)es.

The following theorems give some matrix representations of the generalized com-
mutative quaternion balancing-type polynomials.

Theorem 4.3. Let n > 1 be an integer and x be a real variable. Then,

o (i ) - (530 ) (7 0)

Proof. (By induction on n). If n = 1, then the result is obvious. Assuming (4.1) holds
for n, we will prove it for n + 1. By the inductions hypothesis, we get

< %fg; i%;g; ) , ( 69{ _(1) )n—l. ( 63{ _(1] )
(B R )% )
6zgc By (z) — chn(xg g B (2) ) e

—ge B, () >—<gc3n+1<x> —ge B, (1) )
O

N ( 6xgc B, (v) — gc By (2

In the same way, using Theorem 3.3 and Corollary 3.2, one can easily prove the
next result.

Theorem 4.4. Let n > 1 be an integer and x be a real variable. Then,

( 9¢Cora(x)  —geCpy(x) )

gcCp(x) —gcC,_1(x)

_<3x —1) (gcﬁg(x) —gc%ﬂx)) (637 -1 >n_1
1 =3z ) \ geBi(x) —gcBolz) | 1 0 '
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CONCLUDING REMARKS

In this paper, we define generalized commutative balancing and Lucas-balancing
polynomials of one variable. A sequence b, is the binomial transform of the sequence
an if b, = >3 (Z)ak. The definitions and properties of the binomial transforms
of balancing and Lucas-balancing polynomials of one variable are presented in [18].
Applications of the binomial transforms of Fibonacci-type sequences in the theory of
hypercomplex numbers can be found, for example, in [7].

The bivariate balancing, Lucas-balancing polynomials, and hybrid generalizations
of these polynomials were studied in [1,19] and [14], respectively.

It would be interesting to continue this research by examining generalized commuta-
tive balancing and Lucas-balancing polynomials of two variables, also in combination
with their binomial transforms.

Acknowledgements. The authors would like to thank the referee for helpful valuable
suggestions which have led to improvements in this paper.

REFERENCES

[1] M. Asci and M. Yakar, On bivariate balancing polynomials, JP Journal of Algebra, Number
Theory and Applications 46(1) (2020), 97-108. http://dx.doi.org/10.17654/NT046010097

[2] A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart. 37(2)
(1999), 98-105. http://dx.doi.org/10.1080/00150517.1999. 12428864

[3] M. Danielewski and L. Sapa, Foundations of the quaternion quantum mechanics, Entropy 22(12)
(2020), Article ID 1424. https://doi.org/10.3390/e22121424

[4] R. Frontczak, On balancing polynomials, Appl. Math. Sci. 13 (2019), 57-66. https://doi.org/
10.12988/ams.2019.812183.

[5] W. R. Hamilton, Lectures on Quaternions, Hodges and Smith, Dublin, 1853.

[6] M. Jafari and Y. Yayli, Generalized quaternions and their algebraic properties, Commun. Fac. Sci.
Univ. Ankara Ser. A1 Math. Stat. 64(1) (2015), 15-27. https://doi.org/10.1501/Commual_
0000000724

[7] A. Ozkog, Binomial transforms for hybrid numbers defined through Fibonacci and Lucas number
components, Konuralp J. Math. 10(2) (2022), 282-292.

[8] G. K. Panda, Some fascinating properties of balancing numbers, Congr. Numer. 194 (2009),
185-189.

[9] B. K. Patel, N. Irmak and P. K. Ray, Incomplete balancing and Lucas-balancing numbers, Math.
Rep. 20(1) (2018), 59-72.

[10] S-C. Pei, J-H. Chang and J-J. Ding, Commutative reduced biquaternions and their Fourier
transform for signal and image processing applications, IEEE Trans. Signal Process. 52(7) (2004),
2012-2031. https://doi.org/10.1109/TSP.2004.828901

[11] D. A. Pinotsis, Segre quaternions, spectral analysis and a four-dimensional Laplace equation, in:
M. Ruzhansky and J. Wirth, (Eds.), Progress in Analysis and its Applications, World Scientific,
Singapore, 2010, 240-246. https://doi.org/10.1142/9789814313179_0032

[12] P. K. Ray, Certain matrices associated with balancing and Lucas-balancing numbers, Matematika
28(1) (2012) 15-22.

[13] P. K. Ray, On the properties of k-balancing numbers, Ain Shams Eng. J. 9(3) (2018), 395-402.
https://doi.org/10.1016/j.asej.2016.01.014


http://dx.doi.org/10.17654/NT046010097
http://dx.doi.org/10.1080/00150517.1999.12428864
https://doi.org/10.3390/e22121424
https://doi.org/10.12988/ams.2019.812183
https://doi.org/10.12988/ams.2019.812183
https://doi.org/10.1501/Commua1_0000000724
https://doi.org/10.1501/Commua1_0000000724
https://doi.org/10.1109/TSP.2004.828901
https://doi.org/10.1142/9789814313179_0032
https://doi.org/10.1016/j.asej.2016.01.014

ON GENERALIZED COMMUTATIVE... 221

[14] M. Rubajczyk and A. Szynal-Liana, On bivariate-balancing and Lucas-balancing hybrinomials,
Symmetry 17(4) (2025), Article ID 537. https://doi.org/10.3390/sym17040537

[15] C. Segre, Le rappresentazioni reali delle forme complesse a gli enti iperalgebrici, Math. Ann. 40
(1892), 413-467.

[16] A. Szynal-Liana and I. Wloch, Generalized commutative quaternions of the Fibonacci type, Bol.
Soc. Mat. Mex. 28(1) (2022). https://doi.org/10.1007/s40590-021-00386-4

[17] A. Szynal-Liana, I. Wloch and M. Liana, Generalized commutative quaternion polynomials
of the Fibonacci type, Ann. Univ. Mariae Curie-Sktodowska, Sect. A LXXVI(2) (2022), 33-44.
http://dx.doi.org/10.17951/a.2022.76.2.33-44

[18] N. Yilmaz, Binomial transforms of the balancing and Lucas-balancing polynomials, Contrib.
Discrete Math. 15(3) (2020), 133-144. https://doi.org/10.11575/cdm.v15i3.69846

[19] N. Yilmaz, The generating matrices of the bivariate Balancing and Lucas-balancing polynomials,
Giimiishane Universitesi Fen Bilimleri Dergisi 11(3) (2021), 761-767. https://doi.org/10.
17714/gumusfenbil . 841087

'FACULTY OF MATHEMATICS AND APPLIED PHYSICS, RzESZOW UNIVERSITY OF TECHNOLOGY,
35-959 RzESZOW, POLAND

2THE FACULTY OF MANAGEMENT, RzESZOW UNIVERSITY OF TECHNOLOGY, 35-959 RZESzZOW,
PoLAND

Email address: dorotab@prz.edu.pl

ORCID iD: https://orcid.org/0000-0001-5181-1725

Email address: aszynal@prz.edu.pl

ORCID iD: https://orcid.org/0000-0001-5508-0640

Email address: mliana@prz.edu.pl

ORCID iD: https://orcid.org/0000-0001-5801-1755


https://doi.org/10.3390/sym17040537
https://doi.org/10.1007/s40590-021-00386-4
http://dx.doi.org/10.17951/a.2022.76.2.33-44
https://doi.org/10.11575/cdm.v15i3.69846
https://doi.org/10.17714/gumusfenbil.841087
https://doi.org/10.17714/gumusfenbil.841087
https://orcid.org/0000-0001-5181-1725
https://orcid.org/0000-0001-5508-0640
https://orcid.org/0000-0001-5801-1755

	1. Introduction and preliminaries
	2. Balancing Numbers and Lucas-balancing Numbers
	3. Some Identities for Generalized Commutative Quaternion Balancing-type Polynomials 
	4. Generating Functions and Matrix Generators
	Concluding Remarks
	Acknowledgements.

	References

