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ON GENERALIZED COMMUTATIVE QUATERNION
BALANCING-TYPE POLYNOMIALS

DOROTA BRÓD1, ANETTA SZYNAL-LIANA1, AND MIROSŁAW LIANA2

Abstract. Generalized commutative quaternions are generalizations of elliptic,
parabolic, and hyperbolic quaternions. They generalize bicomplex numbers, complex
hyperbolic numbers, and hyperbolic complex numbers, too. In this paper, we
introduce and study generalized commutative quaternion balancing polynomials
and generalized commutative quaternion Lucas-balancing polynomials.

1. Introduction and preliminaries

The set of quaternions H was introduced by Hamilton in 1843 ([5]) in the following
way:

H = {q : q = x0 + x1i + x2j + x3k; x0, x1, x2, x3 ∈ R},

where

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

The multiplication of quaternions is not commutative. Hence, some quaternions
algebra problems are not easy. In [15], Segre modified the definition of a quaternion in
such a way that it admits a commutative property in multiplication, and he introduced
commutative quaternions. The set of commutative quaternions is a 4-dimensional
structure, contains zero divisor, and isotropic elements. Commutative quaternions
have many applications in physics and mechanics (see [3, 10,11]).
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Non-commutative quaternions and commutative quaternions were generalized and
studied by Jafari and Yayli in [6]. Moreover, in [16], Szynal-Liana and Włoch intro-
duced generalized commutative quaternions and studied them in the special subfamily
of quaternions of Fibonacci type. Recall some necessary definitions.

Let Hc
αβ be the set of generalized commutative quaternions x of the form

x = x0 + x1e1 + x2e2 + x3e3,

where x0, x1, x2, x3 ∈ R and for α, β ∈ R quaternionic units e1, e2, e3 satisfy the
equalities
(1.1) e2

1 = α, e2
2 = β, e2

3 = αβ,

(1.2) e1e2 = e2e1 = e3, e2e3 = e3e2 = βe1 and e3e1 = e1e3 = αe2.

The generalized commutative quaternions generalize the following:
• elliptic quaternions for α < 0 and β = 1,
• parabolic quaternions for α = 0 and β = 1,
• hyperbolic quaternions for α > 0 and β = 1,
• bicomplex numbers for α = −1 and β = −1,
• complex hyperbolic numbers for α = −1 and β = 1,
• hyperbolic complex numbers for α = 1 and β = −1.

In [17], generalized commutative quaternion polynomials of Fibonacci type were con-
sidered. We will apply the concept of balancing polynomials and introduce generalized
commutative quaternion balancing-type polynomials.

2. Balancing Numbers and Lucas-balancing Numbers

Balancing numbers were introduced in 1999 by Behera and Panda ([2]). Let n be
a positive integer. Then, n is called a balancing number with balancer r, if it is the
solution of the Diophantine equation

1 + 2 + · · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + r).
The balancing sequence is denoted by {Bn}. In [2], the authors proved that the
balancing numbers satisfy the recurrence relation
(2.1) Bn = 6Bn−1 − Bn−2, for n ≥ 2,

with initial conditions B0 = 0, B1 = 1.
The balancing numbers can be defined by the non-linear first order recurrence

Bn = 3Bn−1 +
√

8B2
n−1 + 1, for n ≥ 1,

with initial condition B0 = 0.
It is well known that n is a balancing number if and only if n2 is a triangular number,

i.e., 8n2 + 1 is a perfect square (see [2]). In [8], the author introduced Lucas-balancing
numbers, defined as follows: if Bn is a balancing number, then Cn =

√
8Bn

2 + 1 is
called a Lucas-balancing number.
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The Lucas-balancing numbers satisfy the same recurrence relation as that of the
balancing numbers, but with different initial conditions:

Cn = 6Cn−1 − Cn−2, for n ≥ 2,

with C0 = 1, C1 = 3.
Balancing numbers and Lucas-balancing numbers are given by the relations called

Binet-type formulas:

Bn = r1
n − r2

n

r1 − r2
, Cn = r1

n + r2
n

2 ,

where r1, r2 are the roots of the characteristic equation r2 − 6r + 1 = 0, associated
with the recurrence relation (2.1), i.e.,

r1 = 3 + 2
√

2, r2 = 3 − 2
√

2.

The balancing numbers are defined for the negative subscripts by formula
B−n = −Bn, for every integer n.

In [12], the author, using a matrix representation of balancing and Lucas-balancing
numbers, obtained several interesting identities for these numbers. We recall some of
them.

Theorem 2.1 ([12]). Let a, b, c, d be integers such that a + b = c + d. Then,
BaBb − BcBd = Ba−kBb−k − Bc−kBd−k,

CaCb − CcCd = Ca−kCb−k − Cc−kCd−k,

BaCb − BcCd = Ba−kCb−k − Bc−kCd−k,

for k = 0, 1, 2, . . .

Corollary 2.1 ([12]). Let n, k be integers. Then,
B2

n+k − B2
n−k =B2nB2k,

B2
n − Bn−1Bn+1 =1,

Bn+1Cn−1 − BnCn =3,

Cn+1Cn−1 − C2
n =8.

Balancing polynomials were introduced in [13] in the following way:
(2.2) Bn(x) = 6xBn−1(x) − Bn−2(x), for n ≥ 2,

with initial conditions B0(x) = 0, B1(x) = 1.
In [9], Lucas-balancing polynomials were considered. They are defined as follows.

(2.3) Cn(x) = 6xCn−1(x) − Cn−2(x), for n ≥ 2,

with initial terms C0(x) = 1, C1(x) = 3x.
For x = 1, we obtain Bn(x) = Bn, Cn(x) = Cn.
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Binet-type formulas for balancing and Lucas-balancing polynomials have the form

(2.4) Bn(x) = rn
1 (x) − rn

2 (x)
r1(x) − r2(x)

and
Cn(x) = rn

1 (x) + rn
2 (x),

where
(2.5) r1(x) = 3x +

√
9x2 − 1, r2(x) = 3x −

√
9x2 − 1, 9x2 − 1 > 0.

By simple calculations we get
(2.6) r1(x) + r2(x) = 6x, r1(x) − r2(x) = 2

√
9x2 − 1, r1(x) · r2(x) = 1.

The first few balancing numbers, Lucas-balancing numbers, and balancing-type
polynomials are given in Table 1.

n 0 1 2 3 4 5
Bn 0 1 6 35 204 1189
Cn 1 3 17 99 577 3363

Bn(x) 0 1 6x 36x2 − 1 216x3 − 12x 1296x4 − 108x2 + 1
Cn(x) 1 3x 18x2 − 1 108x3 − 9x 648x4 − 72x2 + 1 3888x5 − 540x3 + 15x

Table 1. A few first words of balancing-type numbers and balancing-type polynomials

In [4], some interesting properties of the balancing polynomials and Lucas-balancing
polynomials are presented.

Theorem 2.2 ([4]). Let n ≥ 1 be an integer. Then,
Cn(x) =Bn+1(x) − 3xBn(x),

Cn(x) =1
2(Bn+1(x) − Bn−1(x)),

Cn(x) =3xBn(x) − Bn−1(x),
Cn(x) =3xCn−1(x) + (9x2 − 1)Bn−1(x).

Theorem 2.3 ([4]). For n ≥ 1 we have

B′
n(x) = 3nCn(x) − 9xBn(x)

9x2 − 1 , C ′
n(x) = 3nBn(x).

Theorem 2.4 ([4]). The ordinary generating functions are given by

f(x, z) =
+∞∑
n=0

Bn(x)zn = z

1 − 6xz + z2 ,

g(x, z) =
+∞∑
n=0

Cn(x)zn = 1 − 3xz

1 − 6xz + z2 .
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Let n ≥ 0 be an integer. The nth generalized commutative balancing quaternion
gcBn, the nth generalized commutative Lucas-balancing quaternion gcCn are defined
as

gcBn =Bn + Bn+1e1 + Bn+2e2 + Bn+3e3,

gcCn =Cn + Cn+1e1 + Cn+2e2 + Cn+3e3,

where e1, e2, e3 are units satisfying the rules (1.1) and (1.2).
Let x be a real variable. The nth generalized commutative quaternion balancing

polynomial gcBn(x), the nth generalized commutative quaternion Lucas-balancing
polynomial gcCn(x) are defined by

gcBn(x) =Bn(x) + Bn+1(x)e1 + Bn+2(x)e2 + Bn+3(x)e3,(2.7)
gcCn(x) =Cn(x) + Cn+1(x)e1 + Cn+2(x)e2 + Cn+3(x)e3,(2.8)

respectively. If x = 1, then gcBn(1) = gcBn, gcCn(1) = gcCn.

3. Some Identities for Generalized Commutative Quaternion
Balancing-type Polynomials

Theorem 3.1. Let n ≥ 2 be an integer and x be a real variable. Then,
(i) gcBn(x) = 6xgcBn−1(x) − gcBn−2(x),
(ii) gcCn(x) = 6xgcCn−1(x) − gcCn−2(x),

where
gcB0(x) = e1 + 6xe2 + (36x2 − 1)e3,

gcB1(x) = 1 + 6xe1 + (36x2 − 1)e2 + (216x3 − 12x)e3,

gcC0(x) = 1 + 3xe1 + (18x2 − 1)e2 + (108x3 − 9x)e3,

gcC1(x) = 3x + (18x2 − 1)e1 + (108x3 − 9x)e2 + (648x4 − 72x2 + 1)e3.

Proof. For n = 2 we get
gcB2(x) = 6xgcB1(x) − gcB0(x)

=6x + 36x2e1 + (216x3 − 6x)e2 + (1296x4 − 72x2)e3

− e1 − 6xe2 − (36x2 − 1)e3

=6x + (36x2 − 1)e1 + (216x3 − 12x)e2 + (1296x4 − 108x2 + 1)e3.

Let n ≥ 3. By (2.7) and (2.2) we get
gcBn(x) =Bn(x) + Bn+1(x)e1 + Bn+2(x)e2 + Bn+3(x)e3

=6xBn−1(x) − Bn−2(x) + (6xBn(x) − Bn−1(x))e1

+ (6Bn+1(x) − Bn(x))e2 + (6Bn+2(x) − Bn+1(x))e3

=6x(Bn−1(x) + Bn(x)e1 + Bn+1(x)e2 + Bn+2(x)e3)
− (Bn−2(x) + Bn−1(x)e1 + Bn(x)e2 + Bn+1(x)e3)

=6xgcBn−1(x) − gcBn−2(x),
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which ends the proof of (i).
The second part can be proved similarly using (2.8) and (2.3). □

Theorem 3.2. Assume that n ≥ 1 is an integer and x is a real variable. Then,

(3.1) 3xBn(x) − Bn−1(x) = Cn(x).

Proof. (By induction on n) For n = 1 we have 3xB1(x) − B0(x) = 3x = C1(x), for
n = 2 we get 3xB2(x) − B1(x) = 3x · 6x − 1 = 18x2 − 1 = C2(x). Assuming that
formula (3.1) is true for k = 1, 2, . . . , n, we will prove it for n + 1. By the definition
of balancing polynomials we get

3xBn+1(x) − Bn(x) =3x(6xBn(x) − Bn−1(x)) − 6xBn−1(x) + Bn−2(x)
=6x(3xBn(x) − Bn−1(x)) − (3xBn−1(x) − Bn−2(x)).

By the induction hypothesis, we have

3xBn+1(x) − Bn(x) = 6xCn(x) − Cn−1(x) = Cn+1(x).

□

Corollary 3.1. Assume that n ≥ 1 is an integer and x is a real variable. Then,

Bn+1(x) − 3xBn(x) = Cn(x).

By formula (3.1) we get the following result.

Theorem 3.3. Assume that n ≥ 1 is an integer and x is a real variable. Then,

3xgcBn(x) − gcBn−1(x) = gcCn(x).

Corollary 3.2. Assume that n ≥ 1 is an integer and x is a real variable. Then,

gcBn+1(x) − 3xgcBn(x) = gcCn(x).

Now, we will present Binet-type formulas for generalized commutative quaternion
balancing-type polynomials.

Theorem 3.4. Let n ≥ 0 be an integer and x be a real variable. Assume that
9x2 − 1 > 0. Then,

gcBn(x) =rn
1 (x)r̂1(x) − rn

2 (x)r̂2(x)
r1(x) − r2(x) ,(3.2)

gcCn(x) =rn
1 (x)r̂1(x) + rn

2 (x)r̂2(x),(3.3)

where r1(x), r2(x) are given by (2.5) and

r̂1(x) = 1 + r1(x)e1 + r2
1(x)e2 + r3

1(x)e3,

r̂2(x) = 1 + r2(x)e1 + r2
2(x)e2 + r3

2(x)e3.
(3.4)
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Proof. We give the proof of (3.2). The proof of (3.3) is similar.
By (2.7) and (2.4) we get

gcBn(x) =Bn(x) + Bn+1(x)e1 + Bn+2(x)e2 + Bn+3(x)e3

=rn
1 (x) − rn

2 (x)
r1(x) − r2(x) + rn+1

1 (x) − rn+1
2 (x)

r1(x) − r2(x) e1

+ rn+2
1 (x) − rn+2

2 (x)
r1(x) − r2(x) e2 + rn+3

1 (x) − rn+3
2 (x)

r1(x) − r2(x) e3

= 1
2
√

9x2 − 1
(
rn

1 (x)(1 + r1(x)e1 + r2
1(x)e2 + r3

1(x)e3)

− rn
2 (x)(1 + r2(x)e1 + r2

2(x)e2 + r3
2(x)e3)

)
,

which ends the proof. □

Using (3.4), we have

r̂1(x)r̂2(x) =r̂2(x)r̂1(x)
=1 + r1(x)r2(x)α + r2

1(x)r2
2(x)β + r3

1(x)r3
2(x)αβ

+
(
r1(x) + r2(x) + r2

1(x)r3
2(x)β + r3

1(x)r2
2(x)β

)
e1

+
(
r2

1(x) + r2
2(x) + r1(x)r3

2(x)α + r3
1(x)r2(x)α

)
e2

+
(
r3

1(x) + r3
2(x) + r1(x)r2

2(x) + r2
1(x)r2(x)

)
e3

=1 + r1(x)r2(x)α + (r1(x)r2(x))2 β + (r1(x)r2(x))3 αβ

+ (r1(x) + r2(x))
(
1 + (r1(x)r2(x))2 β

)
e1

+
(
r2

1(x) + r2
2(x)

)
(1 + r1(x)r2(x)α) e2

+
(
r3

1(x) + r3
2(x) + r1(x)r2(x) (r2(x) + r1(x))

)
e3.

Hence, by (2.6), we get

r̂1(x)r̂2(x) =1 + α + β + αβ + 6x (1 + β) e1

+ (36x2 − 2) (1 + α) e2 + (216x3 − 12x)e3.
(3.5)

The next theorem presents general bilinear index reduction formulas for generalized
commutative quaternion balancing-type polynomials.

Theorem 3.5. Let a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 be integers such that a + b = c + d.
Then, for a real variable x and 9x2 − 1 > 0 we have

gcBa(x) · gcBb(x) − gcBc(x) · gcBd(x)(3.6)

=

(
rc

1(x)rd
2(x) − ra

1(x)rb
2(x) + rc

2(x)rd
1(x) − ra

2(x)rb
1(x)

)
r̂1(x)r̂2(x)

36x2 − 4 ,
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gcCa(x) · gcCb(x) − gcCc(x) · gcCd(x)(3.7)

=
(
ra

1(x)rb
2(x) + ra

2(x)rb
1(x) − rc

1(x)rd
2(x) − rc

2(x)rd
1(x)

)
r̂1(x)r̂2(x),

where r1(x), r2(x) are given by (2.5) and r̂1(x)r̂2(x) is given by (3.5).

Proof. Using (3.2) and the fact that a + b = c + d we have
gcBa(x) · gcBb(x) − gcBc(x) · gcBd(x)

=−ra
1(x)rb

2(x)r̂1(x)r̂2(x) − ra
2(x)rb

1(x)r̂2(x)r̂1(x)
36x2 − 4

+ rc
1(x)rd

2(x)r̂1(x)r̂2(x) + rc
2(x)rd

1(x)r̂2(x)r̂1(x)
36x2 − 4

=

(
rc

1(x)rd
2(x) − ra

1(x)rb
2(x) + rc

2(x)rd
1(x) − ra

2(x)rb
1(x)

)
r̂1(x)r̂2(x)

36x2 − 4 ,

which ends the proof of (3.6). The formula (3.7) can be proved similarly. □

For special values of a, b, c, and d, we obtain the Catalan, Cassini, Vajda, d’Ocagne,
and Halton-type identities, respectively.

Assume that r1(x), r2(x) are given by (2.5), r̂1(x)r̂2(x) is given by (3.5) and x is a
real variable. Let 9x2 − 1 > 0.

Corollary 3.3 (Catalan-type identities for generalized commutative quaternion bal-
ancing-type polynomials). Let n ≥ 0, k ≥ 0 be integers such that n ≥ k. Then,

gcBn+k(x) · gcBn−k(x) − (gcBn(x))2 =
2 −

(
r1(x)
r2(x)

)k

−
(

r2(x)
r1(x)

)k
 r̂1(x)r̂2(x)

36x2 − 4 ,

gcCn+k(x) · gcCn−k(x) − (gcCn(x))2 =
(r1(x)

r2(x)

)k

+
(

r2(x)
r1(x)

)k

− 2
 r̂1(x)r̂2(x).

Corollary 3.4 (Cassini-type identities for generalized commutative quaternion bal-
ancing-type polynomials). Let n ≥ 1 be an integer. Then,

gcBn+1(x) · gcBn−1(x) − (gcBn(x))2 = − r̂1(x)r̂2(x),

gcCn+1(x) · gcCn−1(x) − (gcCn(x))2 =(36x2 − 4)r̂1(x)r̂2(x).

Corollary 3.5 (Vajda-type identities for generalized commutative quaternion bal-
ancing-type polynomials). Let n ≥ 0, m ≥ 0, k ≥ 0 be integers such that n ≥ k.
Then,

gcBm+k(x) · gcBn−k(x) − gcBm(x) · gcBn(x)

=

(
rm

1 (x)rn
2 (x)

(
1 −

(
r1(x)
r2(x)

)k
)

+ rn
1 (x)rm

2 (x)
(

1 −
(

r2(x)
r1(x)

)k
))

r̂1(x)r̂2(x)

36x2 − 4 ,
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gcCm+k(x) · gcCn−k(x) − gcCm(x) · gcCn(x)

=
rm

1 (x)rn
2 (x)

(r1(x)
r2(x)

)k

− 1
+ rn

1 (x)rm
2 (x)

(r2(x)
r1(x)

)k

− 1
 r̂1(x)r̂2(x).

Corollary 3.6 (d’Ocagne-type identities for generalized commutative quaternion
balancing-type polynomials). Let n ≥ 0, m ≥ 0 be integers such that n ≥ m. Then,

gcBn(x) · gcBm+1(x) − gcBn+1(x) · gcBm(x)

=

(
rn

1 (x)rm
2 (x) − rn

2 (x)rm
1 (x)

)
r̂1(x)r̂2(x)

2
√

9x2 − 1
,

gcCn(x) · gcCm+1(x) − gcCn+1(x) · gcCm(x)

=
(
rn

1 (x)rm
2 (x) − rn

2 (x)rm
1 (x)

)
(r2(x) − r1(x)) r̂1(x)r̂2(x).

Corollary 3.7 (The first Halton-type identities for generalized commutative quater-
nion balancing-type polynomials). Let n ≥ 0, m ≥ 0, k ≥ 0 be integers such that
n ≥ k. Then,

gcBm+k(x) · gcBn(x) − gcBk(x) · gcBm+n(x)

=
(
r1(x)n−k − r2(x)n−k

) (
r1(x)m − r2(x)m

) r̂1(x)r̂2(x)
2
√

9x2 − 1
,

gcCm+k(x) · gcCn(x) − gcCk(x) · gcCm+n(x)

=
(
r2(x)n−k − r1(x)n−k

) (
r1(x)m − r2(x)m

)
r̂1(x)r̂2(x).

Corollary 3.8 (The second Halton-type identities for generalized commutative quater-
nion balancing-type polynomials). Let n ≥ 0, k ≥ 0, s ≥ 0 be integers such that n ≥ k,
n ≥ s. Then,

gcBn+k(x) · gcBn−k(x) − gcBn+s(x) · gcBn−s(x)

=
(r1(x)

r2(x)

)s

+
(

r2(x)
r1(x)

)s

−
(

r1(x)
r2(x)

)k

−
(

r2(x)
r1(x)

)k
 r̂1(x)r̂2(x)

9x2 − 1 ,

gcCn+k(x) · gcCn−k(x) − gcCn+s(x) · gcCn−s(x)

=
(r1(x)

r2(x)

)k

+
(

r2(x)
r1(x)

)k

−
(

r1(x)
r2(x)

)s

−
(

r2(x)
r1(x)

)s
 r̂1(x)r̂2(x).

Theorem 3.6. Let a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 be integers such that a + b = c + d.
Then, for a real variable x such that 9x2 − 1 > 0, we have

gcBa(x) · gcCb(x) − gcBc(x) · gcCd(x)

=
(
ra

1(x)rb
2(x) − ra

2(x)rb
1(x) − rc

1(x)rd
2(x) + rc

2(x)rd
1(x)

) r̂1(x)r̂2(x)
2
√

9x2 − 1
,
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where r1(x), r2(x), r̂1(x)r̂2(x) are given by (2.5), (3.5), respectively.

Proof. Using (3.2) and (3.3), we have
gcBa(x) · gcCb(x) − gcBc(x) · gcCd(x)

= 1
2
√

9x2 − 1
(
ra+b

1 (x) − rc+d
1 (x)r̂2

1(x) + (rc+d
2 (x) − ra+b

2 (x)r̂2
1(x)

+ r̂1(x)r̂2(x)(ra
1(x)rb

2(x) − ra
2(x)rb

1(x) − rc
1(x)rd

2(x) + rd
1(x)rc

2(x)
)
.

Since a + b = c + d, we get
gcBa(x) · gcCb(x) − gcBc(x) · gcCd(x)

= 1
2
√

9x2 − 1
(
r̂1(x)r̂2(x)(ra

1(x)rb
2(x) − ra

2(x)rb
1(x) − rc

1(x)rd
2(x) + rd

1(x)rc
2(x)

)
,

which ends the proof. □

Corollary 3.9. Let n ≥ 0, m ≥ 0, k ≥ 0 be integers. Then,
gcBk(x) · gcCn+m(x) − gcBm(x) · gcCn+k(x)

=
(
rn

1 (x) + rn
2 (x)

) (
rk

1(x)rm
2 (x) − rm

1 (x)rk
2(x)

) r̂1(x)r̂2(x)
2
√

9x2 − 1
,

where r1(x), r2(x), r̂1(x)r̂2(x) are given by (2.5), (3.5), respectively.

4. Generating Functions and Matrix Generators

Theorem 4.1. The generating function of the generalized commutative quaternion
balancing polynomial has the following form

g(t) = e1 + 6xe2 + (36x2 − 1)e3 + (1 − e2 − 6xe3)t
1 − 6xt + t2 .

Proof. Let
g(t) = gcB0(x) + tgcB1(x) + t2gcB2(x) + · · · + tngcBn(x) + · · ·

be the generating function of the generalized commutative quaternion balancing
polynomial. Then,

6xtg(t) = 6txgcB0(x) + 6t2xgcB1(x) + 6t3xgcB2(x) + · · · + 6tnxgcBn(x) + · · · ,

t2g(t) = t2gcB0(x) + t3gcB1(x) + t4gcB2(x) + · · · + tngcBn−2(x) + · · · .

Hence, by the recurrence gcBn(x) = 6xgcBn−1(x) − gcBn−2(x), we get
g(t) − 6xtg(t) + t2g(t)

=gcB0(x) +
(
gcB1(x) − 6xgcB0(x)

)
t +

(
gcB0(x) + gcB2(x) − 6xgcB1(x)

)
t2 + · · ·

=gcB0(x) +
(
gcB1(x) − 6xgcB0(x)

)
t.
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Thus,

g(t) =
gcB0(x) +

(
gcB1(x) − 6xgcB0(x)

)
t

1 − 6xt + t2 .

After simple calculations we obtain

g(t) = e1 + 6xe2 + (36x2 − 1)e3 + (1 − e2 − 6xe3)t
1 − 6xt + t2 .

□

In the same way, we can prove the following theorem.
Theorem 4.2. The generating function of the generalized commutative quaternion
Lucas-balancing polynomial has the following form

f(t) =
gcC0(x) +

(
gcC1(x) − 6xgcC0(x)

)
t

1 − 6xt + t2 ,

where gcC0(x) = 1 + 3xe1 + (18x2 − 1)e2 + (108x3 − 9x)e3, gcC1(x) − 6xgcC0(x) =
−3x − e1 − 3xe2 + (1 − 18x2)e3.

The following theorems give some matrix representations of the generalized com-
mutative quaternion balancing-type polynomials.
Theorem 4.3. Let n ≥ 1 be an integer and x be a real variable. Then,

(4.1)
(

gcBn+1(x) −gcBn(x)
gcBn(x) −gcBn−1(x)

)
=
(

gcB2(x) −gcB1(x)
gcB1(x) −gcB0(x)

)
·
(

6x −1
1 0

)n−1

.

Proof. (By induction on n). If n = 1, then the result is obvious. Assuming (4.1) holds
for n, we will prove it for n + 1. By the inductions hypothesis, we get(

gcB2(x) −gcB1(x)
gcB1(x) −gcB0(x)

)
·
(

6x −1
1 0

)n−1

·
(

6x −1
1 0

)

=
(

gcBn+1(x) −gcBn(x)
gcBn(x) −gcBn−1(x)

)
·
(

6x −1
1 0

)

=
(

6xgcBn+1(x) − gcBn(x) −gcBn+1(x)
6xgcBn(x) − gcBn−1(x) −gcBn(x)

)
=
(

gcBn+2(x) −gcBn+1(x)
gcBn+1(x) −gcBn(x)

)
.

□

In the same way, using Theorem 3.3 and Corollary 3.2, one can easily prove the
next result.
Theorem 4.4. Let n ≥ 1 be an integer and x be a real variable. Then,(

gcCn+1(x) −gcCn(x)
gcCn(x) −gcCn−1(x)

)

=
(

3x −1
1 −3x

)
·
(

gcB2(x) −gcB1(x)
gcB1(x) −gcB0(x)

)
·
(

6x −1
1 0

)n−1

.
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Concluding Remarks

In this paper, we define generalized commutative balancing and Lucas-balancing
polynomials of one variable. A sequence bn is the binomial transform of the sequence
an if bn = ∑n

k=0

(
n
k

)
ak. The definitions and properties of the binomial transforms

of balancing and Lucas-balancing polynomials of one variable are presented in [18].
Applications of the binomial transforms of Fibonacci-type sequences in the theory of
hypercomplex numbers can be found, for example, in [7].

The bivariate balancing, Lucas-balancing polynomials, and hybrid generalizations
of these polynomials were studied in [1, 19] and [14], respectively.

It would be interesting to continue this research by examining generalized commuta-
tive balancing and Lucas-balancing polynomials of two variables, also in combination
with their binomial transforms.

Acknowledgements. The authors would like to thank the referee for helpful valuable
suggestions which have led to improvements in this paper.
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