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MATRIX FEJER AND LEVIN-STECKIN INEQUALITIES
MOHAMMAD SABABHEH!, SHIVA SHEYBANI?, AND HAMID REZA MORADI?

ABSTRACT. Fejér and Levin-Steckin inequalities treat integrals of the product of
convex functions with symmetric functions. The main goal of this article is to present
possible matrix versions of these inequalities. In particular, majorization results are
shown of Fejér type for both convex and log-convex functions. For the matrix Levin-
Steckin type, we present more rigorous results involving the partial Léewner ordering
for Hermitian matrices. Further related results involving synchronous functions are
presented, too.

1. INTRODUCTION

The theory of convex functions has played a major role in the study of mathematical
inequalities. Related to convex-type inequalities, the Levin-Steckin’s inequality states
that if the function p : [0,1] — R is symmetric about ¢ = 3, namely p (1 —t) = p(¢),

and non-decreasing on [0, %}, then for every convex function f on [0, 1], the inequality

jp(t)f(t)dtﬁjp(t)dt/lf(t)dt

holds true [6]. If p is symmetric non-negative (without any knowledge about its
monotonicity) and f : [a,b] — R is convex, Fejér inequality states that [4]

f<a*2rb> jp(t)dtgo/lp(t)f<(1—t)a+tb)dt§Wojlp(t)dt.
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We notice that Fejér inequality reduces to the Hermite-Hadamard inequality [5] when
p(t) = 1. In mathematical inequalities, it is of interest to extend known inequalities
from the setting of scalars to other objects, such as matrices. In this article, we will be
interested in extending both the Levin-Steckin and Fejér inequalities to the matrices
setting.

In the sequel, M,, will denote the algebra of all n x n complex matrices. The
conjugate transpose (or adjoint) of A € M, is denoted by A*, and then the matrix
A will be called Hermitian if A* = A. When (Az,z) > 0 for all z € C", A is said
to be positive semi-definite and is denoted as A > 0. If A > 0 and A is invertible,
then A is said to be positive (strictly positive or positive definite). When A, B € M,
are Hermitian, we say that A < B if B — A > 0. This provides a partial ordering
on the class of Hermitian matrices. The eigenvalues of a Hermitian matrix A will
be denoted by Aj(A), Aa(A), ..., A\ (A), repeated according to their multiplicity and
arranged decreasingly. That is A\j(A) > A(A) > --- > A, (A).

The relation A < B implies A\;(A) < X\(B) for any such Hermitian matrices
A, B € M,,. However, the converse is not true. This urges the need to discuss,
in some cases, the latter order. For convenience, we will write A(A) < A(B) to mean
that \;(A) < \i(B),i=1,2,...,n

Another weaker ordering among matrices is the so-called weak majorization <,
defined for the Hermitian matrices A, B as

k k
A=<, B ifandonly if Y N(A) <> N(B), k=1,...,n.
i=1 i=1
It is clear that (see [1]) A < B implies A(A) < A(B), which implies A <,, B. It
is customary to obtain one of these orders when extending a scalar inequality to a
matrix inequality. For example, in this article, we obtain

(o 452) e frovi-ssome).

as an extension of Fejér inequality, to the Hermitian matrices A, B with spectra in
the domain of f.
Further, if f is monotone, then

A(O/p(t)f((l—15)A+tB)dzf) gA((O/p(t)dt) f(f‘l);rf(B)),

as matrix inequalities of the Fejér inequality. We remark that integral inequalities
have played a key role in advancing matrix inequalities, as seen in [8,9,12], and the
references therein.

In the next section, we study the possible matrix versions of Fejér inequality, which
implies certain versions of the Hermite-Hadamard matrix inequality [10]. Then log-
convex functions will be deployed to obtain new matrix Fejér inequalities for this
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type of functions, and we conclude with the discussion of the matrix Levin-Steckin
inequality.

2. FEJER MATRIX INEQUALITIES FOR CONVEX FUNCTIONS

We begin with the following weak majorization of Fejér-type inequality.

Theorem 2.1. Let f: J — R be conver and let p : [0,1] — [0, +00) be symmetric
about t = % If A, B € M,, are Hermitian with spectra in the interval J, then

A((jp(t)dt)f<A+B>) (/p 1—tA+tB)dt)

Proof. It f is a convex function, then for any 0 <t < 1, we have

f<m> :f<<1_t)a+tb+(1—t)b+ta>

2 2
(A =tHatth)+ f((1-t)b+ta)
< 5 .
Thus,
(2.1) f(a“’)<f(<1—t)a+tb)+f((1—t)b+ta)
. ) < 2 |

If the function p is non-negative, we get from (2.1),

a+b> Sp(t)(f((l—t)a+tb)+f((1—t)b+ta)>‘

b7 (“ !

Integrating on ¢ € [0, 1], and using symmetry assumption on p, we get

(2.2) (jp(t)dt)f<“b> /p (1—t)a +tb) dt.

If we replace a, b by (Az,x), (Bz,x) respectively, in (2.2), we get

(2.3)
(/p(t)dt) f <<Ax’x> + (Br,x ) /p (1 —1t) (Az,x) +t (Bx,x))dt.

On the other hand, it follows from Jensen’s inequality [11, Theorem 1.2],
FU(L=t)A+tB)z,z)) < (f(1—t) A+tB)x,z).
By multiplying both sides by p (t), we get
p(&) f(((L=t)A+iB)z,x)) <p(t)(f (1 —t) A+tB)x, x).
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Therefore,

(2.4) /p(t)f((((l—t)AthB)x,x))dtg <</p(t)f((1—t)A+tB)dt> H>

Combining inequalities (2.3) with (2.4), we obtain

(2.5) (/lp(t)dt)f<<Ax’$>;<wa> <(/p 1—tA+tB)dt> >

f A+B

Suppose that A\i, ..., A\, are the eigenvalues o with zq,..., 2, as an orthonormal
system of corresponding eigenvectors arranged such that f(Ay) > --- > f(\,). We

have, for 1 < k <n,
B ((froa) 1 (45) =& (froa) ((457) s
(jp dt) f<<AxJ,arj>;<Bx],xj>>

7j=1
1
< /p (1 —1) A+tB)dt) xj,mj>
0

(b the inequality (2.5))

gf:xj (/p(t)f((l—t)A+tB)dt).

-

1

o,
Il

IN
||M?r

o

Namely, for 1 < k < n,

i Aj ((jp(t)dt)f(A;BD gzk:Aj (jp(t)f((l—t)A—i—tB)dt),

Therefore,

A((O/lp(t)dt)f<A+B>) (/p 1—tA+tB)dt) O

3. FEJER INEQUALITIES VIA LOG-CONVEX FUNCTIONS

In this part of the paper, we show a matrix Fejér inequality for log-convex functions.

Theorem 3.1. Let f: (0,4+00) — (0,+00) be log-conver and p : [0,1] — (0,400) be
symmetric and normalized in the sense that [y p(t)dt = 1. If A, B € M,, are positive,

then
A (logf (A ; B)) <w A (log/olp(t)f((l Y tB)dt) .
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Proof. When f is convex, by (2.3), we have

f (<A *2‘ Bx,x>> < /Olp(t)f (1= )A + tB)a, 2)) dt,

for any unit vector x. Since f is log-convex and A, B are positive, it follows that

log f <<A —;_ B:L‘,CC>> < /Olp(t) log f(((1 —t)A+tB)x,x)dt.

Noting that log is a concave function and that du(t) := p(t)dt is a probability measure,

we have
A+ B 1
log £ ((“5=w.2)) < [ p(0)1og f (1= A+ tB)a,z) d
0
1
= [ tog (1 = A+ tB)z, ) dp()
< log / (1 = ) A+ tB)a, z)) du(t)
= log /0 PO (L= 1)A+ tB)a,x)) dr
for any unit vector x. Now, let Ay,..., A\, be the eigenvalues of ‘”TB with orthonormal

eigenvectors i, Tg, ..., Z,, so that f(A;) > -+ > f(A,). Then, for 1 < k < n,

> (tog £ (457 =ilogf<m

i)
< ﬁ:log/ (1= t)A+tB)xy,a;)) dt
zij (log/ (1—1) A+tB))dt).

RN
Il
—

This completes the proof. [l

As a consequence, we have the following.

Corollary 3.1. Let f: (0,4+00) — (0,+00) be log-convex and p : [0,1] — (0, +00) be
symmetric and normalized. Then

lill)\j<f<A+B)>§li[ (/1 (1—t)A+tB)dt) k=1.... n

for any positive matrices A, B € M,,.




812 M. SABABHEH, S. SHEYBANI, AND H. R. MORADI

Proof. From Theorem 3.1, we have

éAj <1ogf(A+B)) ZA (log/ 1—tA+tB))dt>,

which is equivalent to

S log ), (f (A + B)) <3 log ), (/Olp(t)f((l —HA +tB))dt> .
=1 j=1
Consequently,
g TT (f <A+ B)) <loe [\, (/Olp(t)f((l - t)A+tB)dt) ,
=1 =1
which implie; the desired inequality. ] O

4. LEVIN-STECKIN MATRIX INEQUALITIES

We present a new inequality of Levin-Steckin type. The significance of this inequality
is its validity for any positive function p without imposing any conditions on its
symmetry or monotony.

Theorem 4.1. Let f:[0,1] — R be convex differentiable and let p : [0,1] — [0, +00)
be continuous. Then

/ dt/ dt+(/f dt/ tp(t)dt — /1tf’(t)dt/01p(t)dt>g/olf(t)p(t)dt.

Further,
1

/lp(t) t)dt + 5 /P dt—/p(t)tf’(t)dtS/lp(t)dt/f(t)dt.

0

Proof. For the convex differentiable function f and s,t € [0, 1] we have
(4.1) f(s) + F'(s)(t =) < f(1).
Since p(t) > 0, it follows that

p(t)f(s) +p) ' (s)(t — s) < p(t)f(t), st €[0,1].

Integrating this inequality over t € [0, 1] then over s € [0, 1] implies

f(s)ds t)dt + f'(s)ds | tpt)dt — | sf'(s)ds | p(t)dt) < 1f(t)p(t)dt
Jy s [t ([t [t [Feya o) < |

which is equivalent to the first desired inequality.
For the second inequality, integrating (4.1) over ¢ € [0, 1], we obtain

ro+re (i) < [roa
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If we put s = t, we have

)+ f @) (1—t) s/lf(t)dt-

Multiplying both sides by p (), we get

pOFO+p0 0 (3-1) <p) [ @) ar

Again, if we take integral over ¢t € [0, 1], we infer that

[p@ 7@t [p@) @t~ [p@yer @ae< [pea [ 5

This completes the proof. [l

Corollary 4.1. Let f :]0,1] — R be convez differentiable and let p : [0, 1] — [0, +00)
be symmetric about % and non-decreasing on {O, %} . Then

/01 f’(t)dt/o1 tp(t)dt < /01 tf'(t)dt /Olp(t)dt‘

Proof. This follows from the first inequality in Theorem 4.1 because when p is sym-

1
2

/0 1f(t)p(t)dt§ / f(t)dt /0 1 p(t)dt. -

metric about % and non-decreasing on [O ], we have

1
0
Assume that 7, and o, are two arbitrary weighted symmetric operator means with
0 <t <1. A real-valued continuous function f :.J C R — R is operator 73-0;-convex
if
J(ATB) < f(A)ouf (B),

for Hermitian A, B € M,, whose spectra are contained in J. For t = %, we say f is
operator 7-0, and we write

(4:2) f(ATB) < f(A)of (B).
An important example of operator mean is the arithmetic mean, which is denoted by
V., as the weighted version, for 0 <t < 1.

To prove the next lemma, we need the following important property of the weighted
operator means:

(4.3) (AT, B) 7y (AT3B) = AT1—p)arysB, o, B,7 € [0,1].
Lemma 4.1. Let f: J CR — R be an operator 1,-04-convex and let x € C*. Then
F(t) = (f(AnB)z,z)

1s conver on 0 <t < 1.
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Proof. Indeed,

r(14)-

<AT@ B) x, $>

((AnB) 7 (A7.B)) x,x)  (by (4.3))
(AnB)of (Ar.B)x,x) (by (4.2))
(

<
—
(
(f (A7B) Vf (AT,B) . 1)

/
f
/
f

since arithmetic mean is the biggest one among symmetric means)

(
<f (ATt )Z‘,l’> <f (ATSB) $,$>
2

_F)+F(s)
5 )
This completes the proof. O

Theorem 4.2. Let A, B € M,, be two Hermitian matrices with spectra contained in
J, let f be operator Ty-o-convex and p : [0,1] — [0, +00) be symmetric about t = %

72

0/1p(t)f(ATt 0/1 / (A7B) dt.

0

and non-decreasing on [0 l}. Then

Proof. Let x € M, be a unit vector. Then

<</p f(AnB ) >/p f (ARB) z, 2) dt

< /lp(t) dt/(f (A7,B)z, z) dt

_ <</1p(t) dt/lf(ATtB) dt) m>

where we have employed Lemma 4.1. This completes the proof. [l

The case 7, = 0; = V4, in Theorem 4.2, reduces to
(4.4) /p (1—1)A+tB) dt</p dt/f (1—t)A+tB)dt.

The following theorem gives a reverse for the inequality (4.4) by employing the
Mond-Pecari¢ method [11].

Theorem 4.3. Let [ : [m, M] — R be convez and let p : [0,1] — [0, +00) be symmetric
about t = % If A, B € M,, are Hermitian with spectra in the interval [m, M|, then for
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any o > 0

1

/p / (1—t)A+tB) t<6/p dt]—i—a/p F((1—1)A+tB)dt,
0

_ _ IO (m) _ My(m)—my(M)
where § = max {asz +bs —af (2)}, ap = SFmp™ and by = ZEHEIE

Proof. Since f (x) < ayx + by, we get by the functional calculus
f((l—t)A—l—tB) S&f((l—t)A—i-tB)—i-bf[.

By taking integral over 0 < ¢ <1 , we reach

/1f<<1_t)A+tB)dtgaf(A’gB)+be.
0

This implies

/1p / l—tA+tB)dt<af(/1p(t)dt>A;B—i—bf(/lp(t)dt)f.

Hence for any vector v,

<(/1p(t)dt/1f((1t)A+tB)dt> y,y>§af (/lp(t)dt)<(A—l2-B)y7y>+/p(t)dtbf.
0

0

Now, by (2.3), we can write

1

1
<(/p<t>dt/f<<1—t>A+tB>dt) y,y>—a/p<t>f<<<<1—t>A+tB>y7y>>dt
0 0

0
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Thus,
<(/p(t)dt/f((1—t)A—l—tB)dt)y,y>
<8 [pWdt+a [p@)f((1—t)A+1B)y.y)dt
<8 [pWdt+a [p(®)(F(1—t) A+tB)y.y) dt
(bo [11, Theore?le])
<( (/p dt)[—l—a/p 1—tA+tB)dt) >
as desired. 0

5. FURTHER INEQUALITIES VIA SYNCHRONOUS FUNCTIONS

We say that the functions f,g : J — R are synchronous (asynchronous) on the
interval J if they satisfy the following condition, for all s,t € J,

(f () = F(s) (g (t) —g(s)) = (£)0.

It is obvious that if f, g are monotonic and have the same monotonicity on the interval
J, then they are synchronous on J while if they have opposite monotonicity, they are
asynchronous.

Related to the Levin-Steckin inequality, the celebrated Cebysev inequality [2] states
that if f and g are two functions having the same monotonicity on [0, 1], then

jf(t)dtflg(t)dtS/lf(t)g(t)dt

For some Cebysev type inequalities for Hilbert space operators, see [7].
The following result provides a refinement and a reverse of this inequality via
synchronous functions.

Theorem 5.1. Let f,g:[a,b] — R be synchronous functions on the interval |a,b].
Then

min bla/bf?(t)dt(bla/bf(t)alt)2 /b dt—(b_ /g )
ia/bfmg(t (_a/f )( /g<t>dt)

IN
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b b 2 b b 2
<max{bla/f2(t)dt (b_la/f(t)dt) ,bia g> (t)dt — (bia/g(t)dt) }

If f and g have opposite monotonicity then

b b 2 b b 2
min{bla/ﬂ(t)dt (bla/f(t)dt) ,ﬁ/gQ(t)dt— (bla/g(t)dt> }

g(bia/bf(t)dt)( /g dt)—/f
2
<max{blaa/bf2(t)dt (b_laa/f(t)dt) ,b_la/bgz(t)dt (bia/bg(t)dt) }

a a

Proof. We prove the first inequality. The second inequality goes likewise, and we omit
the details. We have

F@)gt)+f(s)g(s) = (F)g(s)+f(s)g(?))
=) =F(s)(g(t) —g(s))
=[(f () =1 (5) (g (@) =g (s))]

=11 &) = f(s)llg(t) =g (s)

) —
>min {(f (t) = f ()" (

(9
=min { /() + £ (s) - f(t)f(S),gz(t)Jrg?(S)—2g(t)g(8>}-
Therefore,

min { £2 (s) + 2 (t) = 2 (s) £ (£) ,¢* (£) + g* (s) — 29 (£) g (5)}
<f(t)g(t)+ <> (5) = (f (D) g (s)+ f(5)g (1)
Consequently,

b b
min{b a) f2 (s /f2 t)ydt—2f (s / (t)dt /gz(t)dt—i—(b—a)g?(s)—2g(s)/g(t)dt}

b

/f B dt+ (b a f(s)g(s)—9(8)/f(t)dt—f(s)/g(t)dt

Upon integration, this implies

Imn{zwcz/' cﬁ—2(/f ) ba)292@ﬁ#2<jg(ﬂdgz}
§2(b—a)/bf<t>g(t)dt—2/f(t)dt/g(t)dt

a
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Multiplying both sides by a0 Ve obtain,

)

mln{ /f2 t)dt — (bla/bf(t)dtf,bla/bg?(t)dt (bla/bg(t)dt)z}
_b—a/f dt_(b— /f )(b—a/bg(t)dt)'

The second inequality is obtained from the same arguments and the following relation

max {2 (s) + /7 (1) = 2f (5) [ (1), 6> () + 9* () =29 (1) g (s) }
>f () g )+ f(s)g(s) = (f()g(s)+ f(s)g(t)). O

In the following result, we establish a refinement and a reverse for the Levin-Steckin
inequality.

Theorem 5.2. Letp : [0,1] — R be a symmetric about t = 1, namelyp (1 —t) =p(t),

and non-decreasing on [0, 2} then for every convex function f on [0,1],

1

/p(t)f( S/p dto/f

0
1/2 2 12 1

— min 2/p()dt—(/p(t)dt),;/(f()-i-fl—t dt—(;/ )+ f(1—1t)d ) :
0 0 0 0

A similar but reversed inequality holds if we replace min with max.

Proof. If f is symmetric and convex, by Theorem 5.1, we have

1

p(t) dt/f(t) dt

0

([ fron)([rome from) - fons [ riom

0 1/2 1/2

1/2 1/2 1/2 2 12 1/2 2
>2 [ pt)f(®)dt+mind2 [ p>()dt— |2 [ p(t)dt| .2 | fP@t)dt— |2 [ f(t)dt
(o2 [rom) s [rom-(2fs0s) |
2

A o _

0

1 1/2 1 1/2 1 2
/p()f(t)dt+min{2/p2(t)dt (/p(t)dt) ,2/f2(t)dt— (/f(t)dt) }
0 0

0 0 0
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Namely,

p(t dt—i—mln{Q 1//2p (t)dt — (jp(t)dt)z,z 72f2(t)dt— (jf(t)dt)Q}
/ £) dt.

We shall now consider an arbitrary f. For convex f, the function w is convex
and symmetric so that we can use the above inequality. Hence,

O\H o—__

1
/p@f@ﬁ

Jop@f 0+ fyp(1-t) £ (1L t)de jp@f@+fﬂ—ﬂ
0

0 0 0

2 1 2 12 1
pQ(t)dt—(/p(t)dt),;/(f()—i—f1—t dt—(;/ )+ f(1—t)d )}

which yields the desired inequality. 0

We can improve the second inequality in Theorem 5.1 in the following way.

Theorem 5.3. Let f,g: J — R be synchronous functions on the interval [0,1]. Then

1
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Proof. We have
f(@)

=(f(t

=[(f () -

=|f(t

() + f (s
(s))(
()
—f ()l

—
|

- =
Q —
=2

-9
t)—g
—g(s)]
P19t —g(s)°)

(PO+ @)+ +9(5) =209 () g(s) + [ (1) [ ()

S —
/\Q
&~

IN

/N
—~
\ ~—
—~
~
~—
'
—~
Va)
~—
~—

N~ N~

Therefore,

F®)g@®)+f(s)g(s) = (f(B)g(s)+ f(s)g ()
S; (f7 @)+ (5)+g* () +9° () = 2(9 (1) g (5) + f (1) £ () -

The remaining part of the proof is similar to the proof of Theorem 5.1, so we omit
the details. O
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