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SOME NEW INEQUALITIES ON GENERALIZATION OF
HERMITE-HADAMARD AND BULLEN TYPE INEQUALITIES,

APPLICATIONS TO TRAPEZOIDAL AND MIDPOINT FORMULA

İMDAT İŞCAN1, TEKİN TOPLU2, AND FATİH YETGİN3

Abstract. In this paper, we give a new general identity for differentiable functions.
A consequence of the identity is that we obtain some new general inequalities con-
taining all of the Hermite-Hadamard and Bullen type for functions whose derivatives
in absolute value at certain power are convex. Some applications to special means
of real numbers are also given. Finally, some error estimates for the trapezoidal and
midpoint formula are addressed.

1. Introduction

Let f : I ⊆ R→ R be a convex mapping defined on the interval I of real numbers
and a, b ∈ I with a < b. The following double inequality:

(1.1) f

(
a+ b

2

)
≤ 1
b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
is known in the literature as the Hadamard inequality for convex mapping. Inequality
(1.1) holds in the reversed direction if f is concave. More information on these
inequalities can be found in several papers and monographs (see [2, 3]).

Definition 1.1. A function f : I ⊆ R = (−∞,+∞)→ R is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds for all x, y ∈ I and λ ∈ [0, 1].

Key words and phrases. Convex functions, Hermite-Hadamard type inequality, Bullen type in-
equality, general integral ineqaulities, trapezoidal and Midpoint formula.
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Theorem 1.1. Suppose that f : [a, b] → R is a convex function on [a, b]. Then we
have the inequalities:

f

(
a+ b

2

)
≤1

2

[
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)]

≤ 1
b− a

∫ b

a
f(x)dx

≤1
2

[
f

(
a+ b

2

)
+ f(a) + f(b)

2

)]
≤ f(a) + f(b)

2 .(1.2)

The third inequality in (1.2) is known in the literature as Bullen’s inequality.
Lemma 1.1 ([1]). Let f : I◦ ⊂ R → R be a differentiable function on I◦, where
a, b ∈ I◦, with a < b. If f ′ ∈ L[a, b], then

(1.3) f(a) + f(b)
2 − 1

b− a

b∫
a

f(x)dx = b− a
2

1∫
0

(1− 2t)f ′(ta+ (1− t)b)dt.

In [1] Dragomir and Agarwal established inequalities for differentiable convex func-
tions which are related to Hadamard’s inequlity as follows.
Theorem 1.2. ([1, Theorem 2.2]). Let f : I◦ ⊆ R → R be a differentiable mapping
on I◦, a, b ∈ I◦, with a < b. If |f ′| is convex on [a, b], then the following inequality
holds

(1.4)

∣∣∣∣∣∣f(a) + f(b)
2 − 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a (|f ′ (a)|+ |f ′ (b)|)
8 .

Theorem 1.3. ([1, Theorem 2.3]). Let f : I◦ ⊆ R → R be a differentiable mapping
on I◦, a, b ∈ I◦, with a < b and let p > 1. If the new mapping |f ′|p/p−1 is convex on
[a, b], then the following inequality holds
(1.5)∣∣∣∣∣∣f(a) + f(b)

2 − 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a
2(p+ 1)

1
p

[
|f ′ (a)|p/p−1 + |f ′ (b)|p/p−1

2

](p−1)/p

.

In [5], the above inequalities were generalized.
Theorem 1.4. ([5, Theorem 1 and 2]). Let f : I ⊂ R→ R be a differentiable function
on I◦, a, b ∈ I, with a < b and q ≥ 1. If |f ′|q is convex on [a, b], then the following
inequalities hold

(1.6)

∣∣∣∣∣∣f(a) + f(b)
2 − 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a
4

(
|f ′(a)|q + |f ′(b)|q

2

) 1
q

and ∣∣∣∣∣∣f
(
a+ b

2

)
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a
4

(
|f ′(a)|q + |f ′(b)|q

2

) 1
q

.
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In [4], the above inequalities were further generalized.

Theorem 1.5. ([4, Theorem 2.3 and 2.4]). Let f : I◦ ⊂ R → R be a differentiable
function on I◦, a, b ∈ I◦, with a < b and p > 1. If |f ′|

p
p−1 is convex on [a, b], then the

following inequalities hold∣∣∣∣∣ 1
b− a

b∫
a

f(x)dx− f
(
a+ b

2

)∣∣∣∣∣ ≤b− a16

(
4

p+ 1

) 1
p

×
{[
|f ′(a)|p/p−1 + 3|f ′(b)|p/p−1

](p−1)/p

+
[
3|f ′(a)|p/p−1 + |f ′(b)|p/p−1

](p−1)/p
}

and ∣∣∣∣∣ 1
b− a

b∫
a

f(x)dx− f
(
a+ b

2

)∣∣∣∣∣ ≤ b− a
4

(
4

p+ 1

) 1
p

(|f ′(a)|+ |f ′(b)|).

Lemma 1.2 ([7]). Let f : I ⊂ R → R be a differentiable function on I◦, where
a, b ∈ I, with a < b. If f ′ ∈ L[a, b], then

1
2

[
f(a) + f(b)

2 + f

(
a+ b

2

)]
− 1
b− a

b∫
a

f(x)dx

=b− a4

1∫
0

(
1
2 − t

)[
f ′
(
ta+ (1− t)a+ b

2

)
+ f ′

(
t
a+ b

2 + (1− t)b
)]
dt.(1.7)

Corollary 1.1. ([7, Corollary 3.4]). Let f : I ⊂ R → R be a differentiable function
on I◦, where a, b ∈ I, with a < b, and f ′ ∈ L[a, b]. If |f ′| is convex on [a, b], then

(1.8)
∣∣∣∣∣12
[
f(a) + f(b)

2 + f

(
a+ b

2

)]
− 1
b− a

b∫
a

f(x)dx
∣∣∣∣∣ ≤ b− a

16 (|f ′(a)|+ |f ′(b)|).

Corollary 1.2. ([6, Corollary 3.3]). Let f : I ⊂ R → R be a differentiable function
on I◦, a, b ∈ I, with a < b and f ′ ∈ L[a, b]. If |f ′|q is convex on [a, b] for q ≥ 1, then∣∣∣∣∣∣12

[
f(a) + f(b)

2 + f

(
a+ b

2

)]
− 1
b− a

b∫
a

f(t)dt

∣∣∣∣∣∣
≤b− a16

(
1
12

) 1
q [(

9 |f ′(a)|q + 3 |f ′(b)|q
) 1

q +
(
3 |f ′(a)|q + 9 |f ′(b)|q

) 1
q

]
.(1.9)

2. Main Results

In order to establish our main results, we first establish the following lemma.
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Lemma 2.1. Let f : I◦ ⊂ R→ R be a differentiable function on I◦, where a, b ∈ I◦,
with a < b. If f ′ ∈ L[a, b], then the following equality holds

In(f, a, b) =
n−1∑
i=0

1
2n

[
f

(
(n− i)a+ ib

n

)
+ f

(
(n− i− 1)a+ (i+ 1)b

n

)]

− 1
b− a

b∫
a

f(x)dx

=
n−1∑
i=0

b− a
2n2

 1∫
0

(1− 2t)f ′
t(n− i)a+ ib

n

+ (1− t)(n− i− 1)a+ (i+ 1)b
n

dt
.(2.1)

Proof. If we take n ∈ N arbitrarily, then for i ∈ {1, 2, . . . , n − 1} by integration by
parts, we have

Ii =
1∫

0

(1− 2t)f ′
(
t
(n− i)a+ ib

n
+ (1− t)(n− i− 1)a+ (i+ 1)b

n

)
dt

= n

a− b
(1− 2t)f

(
t
(n− i)a+ ib

n
+ (1− t)(n− i− 1)a+ (i+ 1)b

n

) ∣∣∣∣∣
1

0

+ 2n
a− b

1∫
0

f

(
t
(n− i)a+ ib

n
+ (1− t)(n− i− 1)a+ (i+ 1)b

n

)
dt.

By making use of the substitutions x = t (n−i)a+ib
n

+ (1− t) (n−i−1)a+(i+1)b
n

Ii =− n

a− b

[
f

(
(n− i)a+ ib

n

)
+ f

(
(n− i− 1)a+ (i+ 1)b

n

)]

− 2n2

(a− b)2

(n−i−1)a+(i+1)b
n∫

(n−i)a+ib
n

f(x)dx.

Multiplying the both sides by b−a
2n2 , we have

b− a
2n2 Ii = 1

2n

[
f

(
(n− i)a+ ib

n

)
+ f

(
(n− i− 1)a+ (i+ 1)b

n

)]

− 1
b− a

(n−i−1)a+(i+1)b
n∫

(n−i)a+ib
n

f(x)dx.
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Finally, we have
n−1∑
i=0

b− a
2n2 Ii =

n−1∑
i=0

1
2n

[
f

(
(n− i)a+ ib

n

)
+ f

(
(n− i− 1)a+ (i+ 1)b

n

)]

− 1
b− a

n−1∑
i=0

(n−i−1)a+(i+1)b
n∫

(n−i)a+ib
n

f(x)dx

=
n−1∑
i=0

1
2n

[
f

(
(n− i)a+ ib

n

)
+ f

(
(n− i− 1)a+ (i+ 1)b

n

)]

− 1
b− a

b∫
a

f(x)dx. �

Remark 2.1. If we choose n=1 in Lemma 2.1, then (2.1) reduces to (1.3).

Remark 2.2. If we choose n=2 in Lemma 2.1, then (2.1) reduces to (1.7).

Theorem 2.1. Let f : I ⊂ R→ R be a differentiable function on I◦, where a, b ∈ I◦,
with a < b. If |f ′|q is convex on [a, b] for some fixed q ≥ 1, then the following inequality
is satisfied

(2.2) |In(f, a, b)| ≤
n−1∑
i=0

b− a
4n2

[(
2n− 2i− 1

2n

)
|f ′(a)|q +

(
2i+ 1

2n

)
|f ′(b)|q

] 1
q

.

Proof. From Lemma 2.1 and by using the well known Power-mean inequality, we have

|In(f, a, b)|

≤
n−1∑
i=0

b− a
2n2

 1∫
0

|1− 2t| dt
1− 1

q

×

 1∫
0

|1− 2t|
∣∣∣∣∣f ′
(
t
(n− i)a+ ib

n
+ (1− t)(n− i− 1)a+ (i+ 1)b

n

)∣∣∣∣∣
q

dt


1
q

By using the convexity of |f ′|q, we have

|In(f, a, b)|

≤
n−1∑
i=0

b− a
2n2

 1∫
0

|1− 2t| dt
1− 1

q
 1∫

0

|1− 2t|
t ∣∣∣∣∣f ′

(
(n− i)a+ ib

n

)∣∣∣∣∣
q

+ (1− t).
∣∣∣∣∣f ′
(

(n− i− 1)a+ (i+ 1)b
n

)∣∣∣∣∣
q
dt

 1
q
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=
n−1∑
i=0

b− a
2n2

 1∫
0

|1− 2t| dt
1− 1

q
 1∫

0

|1− 2t| t.
∣∣∣∣∣f ′
(

(n− i)a+ ib

n

)∣∣∣∣∣
q

dt

+
1∫

0

|1− 2t| (1− t)
∣∣∣∣∣f ′
(

(n− i− 1)a+ (i+ 1)b
n

)∣∣∣∣∣
q

dt

 1
q

=
n−1∑
i=0

b− a
2n2

(1
2

)1− 1
q


∣∣∣f ′ ( (n−i)a+ib

n

)∣∣∣q + f ′
∣∣∣( (n−i−1)a+(i+1)b

n

)∣∣∣q
4


1
q


=

n−1∑
i=0

b− a
n2(2)2+ 1

q

(∣∣∣∣∣f ′
(

(n− i)a+ ib

n

)∣∣∣∣∣
q

+
∣∣∣∣∣f ′
(

(n− i− 1)a+ (i+ 1)b
n

)∣∣∣∣∣
q) 1

q

Finally, by using the convexity of |f ′|q, we have

|In(f, a, b)| ≤
n−1∑
i=0

b− a
n2(2)2+ 1

q

[(
2n− 2i− 1

n

)
|f ′(a)|q +

(
2i+ 1
n

)
|f ′(b)|q

] 1
q

. �

Remark 2.3. If we choose n = 1 in Theorem 2.1, then (2.2) reduces to (1.6).

Remark 2.4. If we choose n = 1 and q = 1 in Theorem 2.1, then (2.2) reduces to (1.4).

Remark 2.5. If we choose n = 2 in Theorem 2.1, then (2.2) reduces to (1.9).

Remark 2.6. If we choose n = 2 and q = 1 in Theorem 2.1, then (2.2) reduces to (1.8).

Corollary 2.1. If we choose n = 3 in Theorem 2.1, then we obtain∣∣∣∣∣∣16
[
f(a) + f(b) + 2f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)]
− 1
b− a

1∫
0

f(x)dx

∣∣∣∣∣∣
≤b− a

62+ 1
q

[(
5 |f ′(a)|q + |f ′(b)|q

) 1
q +

(
3 |f ′(a)|q + 3 |f ′(b)|q

) 1
q +

(
|f ′(a)|q + 5 |f ′(b)|q

) 1
q

]
.

Theorem 2.2. Let f : I ⊂ R→ R be a differentiable function on I◦, where a, b ∈ I◦,
with a < b. If |f ′|q is convex on [a, b] for some fixed q > 1, then the following inequality
is satisfied
(2.3)

|In(f, a, b)| ≤
n−1∑
i=0

b− a
n221+ 1

q

(
1

p+ 1

) 1
p
[(

2n− 2i− 1
n

)
|f ′(a)|q +

(
2i+ 1
n

)
|f ′(b)|q

] 1
q

,

where 1
q

+ 1
p

= 1.

Proof. From Lemma 2.1 and by using the Hölder inequality, we have
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|In(f, a, b)| ≤
n−1∑
i=0

b− a
2n2

 1∫
0

|1− 2t|p dt


1
p

×

 1∫
0

∣∣∣∣∣f ′
(
t
(n− i)a+ ib

n
+ (1− t)(n− i− 1)a+ (i+ 1)b

n

)∣∣∣∣∣
q

dt


1
q


By using the convexity of |f ′ |q, we have

|In(f, a, b)|

≤
n−1∑
i=0

b− a
2n2

 1∫
0

|1− 2t|p dt


1
p

×

 1∫
0

(
t

∣∣∣∣∣f ′
(

(n− i)a+ ib

n

)∣∣∣∣∣
q

+ (1− t)
∣∣∣∣∣f ′
(

(n− i− 1)a+ (i+ 1)b
n

)∣∣∣∣∣
q)
dt


1
q


=
n−1∑
i=0

b− a
21+ 1

qn2

( 1
p+ 1

) 1
p

×
(∣∣∣∣∣f ′

(
(n− i)a+ ib

n

)∣∣∣∣∣
q

+
∣∣∣∣∣f ′
(

(n− i− 1)a+ (i+ 1)b
n

)∣∣∣∣∣
q) 1

q

.
By using the convexity of |f ′|q, we have

|In(f, a, b)| ≤
n−1∑
i=0

b− a
n221+ 1

q

(
1

p+ 1

) 1
p
[(

2n− 2i− 1
n

)
|f ′(a)|q +

(
2i+ 1
n

)
|f ′(b)|q

] 1
q

.�

Remark 2.7. If we choose n = 1 in Theorem 2.2, then (2.3) reduces to (1.5).

Corollary 2.2. If we choose n = 2 in Theorem 2.2, then we have∣∣∣∣∣∣12
[
f(a) + f(b)

2 + f

(
a+ b

2

)]
− 1
b− a

b∫
a

f(x)dx

∣∣∣∣∣∣
=b− a

23+ 2
q

(
1

p+ 1

) 1
p [

(3|f ′(a)|q + |f ′(b)|)
1
q + (|f ′(a)|q + 3|f ′(b)|q)

1
q

]
.

Corollary 2.3. If we choose n = 3 in Theorem 2.2, then we have∣∣∣∣∣∣16
[
f(a) + f(b) + 2f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)]
− 1
b− a

1∫
0

f(x)dx

∣∣∣∣∣∣
≤ b− a

18 · 6
1
q

(
1

p+ 1

) 1
p
[ (

5 |f ′(a)|q + |f ′(b)|q
) 1

q +
(
3 |f ′(a)|q + 3 |f ′(b)|q

) 1
q
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+
(
|f ′(a)|q + 5 |f ′(b)|q

) 1
q

]
.

3. Applications to Special Means

We consider some special means, for which will get new inequalities. Let a, b ∈ R.

(i) The arithmetic mean: A = A(a, b) := a+ b

2 , a, b ≥ 0.
(ii) The harmonic mean:

H = H(a, b) := 2ab
a+ b

, a, b > 0.

(iii) The logarithmic mean:

L = L(a, b) :=


a, if a = b,
b− a

ln b− ln a, if a 6= b,
a, b > 0.

(iv) The p-logarithmic mean

Lp = Lp(a, b) :=


a, if a = b,[
bp+1 − ap+1

(p+ 1)(b− a)

] 1
p

, if a 6= b,
p ∈ R\{−1, 0}, a, b > 0.

Proposition 3.1. Let a, b ∈ R, 0 < a < b and t ∈ N, t ≥ 2. Then, for all q ≥ 1, the
following inequality holds∣∣∣∣∣

n−1∑
i=0

1
n
A

((
(n− i)a+ ib

n

)t

,

(
(n− i− 1)a+ (i+ 1)b

n

)t)
− Lt

t(a, b)
∣∣∣∣∣

≤
n−1∑
i=0

(b− a)t
n2(2)2+ 1

q

[(
(2n− 2i− 1)

n

)
a(t−1)q +

(
2i+ 1
n

)
b(t−1)q

] 1
q

.

Proof. The proof is immediate from (2.2) in Theorem 2.1, with f(x) = xt, x ∈ [a, b],
t ∈ N, t ≥ 2. �

Remark 3.1. (a) If we choose n = 1, in the Proposition 3.1, we have [5, Proposition 1]
for positive real numbers.

(b) If we choose n = 1 and q = 1, in the Proposition 3.1, we have [1, Proposition 3.1]
for positive real numbers.

Proposition 3.2. Let a, b ∈ R, 0 < a < b and t ∈ N, t ≥ 2. Then, for all q > 1, the
following inequality holds∣∣∣∣∣

n−1∑
i=0

1
n
A

((
(n− i)a+ ib

n

)t

,

(
(n− i− 1)a+ (i+ 1)b

n

)t)
− Lt

t(a, b)
∣∣∣∣∣

≤
n−1∑
i=0

(b− a)t
n221+ 1

q

(
1

p+ 1

) 1
p
[(

(2n− 2i− 1)
n

)
a(t−1)q +

(
2i+ 1
n

)
b(t−1)q

] 1
q

.
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Proof. The proof is immediate from (2.3) in Theorem 2.2, with f(x) = xt, x ∈ [a, b],
t ∈ N, t ≥ 2. �

Remark 3.2. If we choose n = 1, in the Proposition 3.2, we have [1, Proposition 3.2]
for positive real numbers.
Proposition 3.3. Suppose a, b ∈ R, 0 < a < b. Then, for all q ≥ 1, the following
inequality holds∣∣∣∣∣

n−1∑
i=0

1
n
H−1

((
(n− i)a+ ib

n

)
,

(
(n− i− 1)a+ (i+ 1)b

n

))
− L−1(a, b)

∣∣∣∣∣
≤

n−1∑
i=0

(b− a)
n2(2)2+ 1

q

[(
(2n− 2i− 1)

n

)
a−2q +

(
2i+ 1
n

)
b−2q

] 1
q

.

Proof. The proof is immediate from (2.2) in Theorem 2.1, with f(x) = 1
x
, x ∈ [a, b]. �

Remark 3.3. (a) If we choose n = 1, in the Proposition 3.3, we have [5, Proposition 2]
for positive real numbers.

(b) If we choose n = 1 and q = 1, in the Proposition 3.3, we have [1, Proposition 3.3]
for positive real numbers.
Proposition 3.4. Let a, b ∈ R, 0 < a < b. Then, for all q > 1, the following
inequality holds∣∣∣∣∣

n−1∑
i=0

1
n
H−1

((
(n− i)a+ ib

n

)
,

(
(n− i− 1)a+ (i+ 1)b

n

))
− L−1(a, b)

∣∣∣∣∣
≤

n−1∑
i=0

(b− a)
n221+ 1

q

(
1

p+ 1

) 1
p
[(

(2n− 2i− 1)
n

)
a−2q +

(
2i+ 1
n

)
b−2q

] 1
q

.

Proof. The proof is immediate from (2.3) in Theorem 2.2, with f(x) = 1
x
, x ∈ [a, b]. �

Remark 3.4. If we choose n = 1, in the Proposition 3.4, we have [1, Proposition 3.4]
for positive real numbers.

4. Applications to Trapezoided and Midpoint Formulas

Throughout this section, let f : [a, b]→ R be integrable and let It : a = x0 < x1 <
· · · < xt = b be a partition of [a, b] and lk = xk+1 − xk, k = 0, 1, . . . , t − 1. Tseng et
al. described the following notations in [8]:
- the trapezoidal formula

T (f, It) =
t−1∑
k=0

f(xk) + f(xk+1)
2 lk;

- the midpoint formula

M(f, It) =
t−1∑
k=0

f

(
xk + xk+1

2

)
lk;
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- the approximation error of
∫ b

a f(x)dx by T (f, It)

E(f, It) =
∫ b

a
f(x)dx− T (f, It);

- the approximation error of
∫ b

a f(x)dx by M(f, It)

F (f, It) =
∫ b

a
f(x)dx−M(f, It).

In [5] Pearce and Pecaric established the following proposition which is approximation
errors for the trapezoidal and midpoint formulas.
Proposition 4.1. Under the conditions of Theorem 1.4, we have the following in-
equalities

(4.1) |E(f, It)| ≤
1
4

t−1∑
k=0

(
|f ′(xk)|q + |f ′(xk+1)|q

2

) 1
q

l2k ≤
max{|f ′(a)|, |f ′(b)|}

4

t−1∑
k=0

l2k

and

|F (f, It)| ≤
1
4

t−1∑
k=0

(
|f ′(xk)|q + |f ′(xk+1)|q

2

) 1
q

l2k ≤
max{|f ′(a)|, |f ′(b)|}

4

t−1∑
k=0

l2k.

We have the following proposition which reduce (4.1) in Propositions 4.1 as n = 1
on [a, b].
Proposition 4.2. Under the conditions of Theorem 2.1, we have the following in-
equalities∣∣∣∣∣

t−1∑
k=0

n−1∑
i=0

1
2n

[
f

(
(n− i)xk + ixk+1

n

)
+ f

(
(n− i− 1)xk + (i+ 1)xk+1

n

)]
(xk+1 − xk)

−
b∫

a

f(x)dx
∣∣∣∣∣ ≤

t−1∑
k=0

(xk+1 − xk)2

4n2

n−1∑
i=0

[(
2n− 2i− 1

2n

)
|f ′(xk)|q +

(
2i+ 1

2n

)
|f ′(xk+1)|q

] 1
q

≤ 1
4n max{|f ′(a)|, |f ′(b)|}

t−1∑
k=0

(xk+1 − xk)2.

(4.2)

Proof. Apply Theorem 2.1 on [xk, xk+1], k = 0, 1, . . . , t− 1, we get∣∣∣∣∣
n−1∑
i=0

1
2n

[
f

(
(n− i)xk + ixk+1

n

)
+ f

(
(n− i− 1)xk + (i+ 1)xk+1

n

)]
(xk+1 − xk)

−
xk+1∫
xk

f(x)dx
∣∣∣∣∣ ≤ (xk+1 − xk)2

4n2

n−1∑
i=0

[(
2n− 2i− 1

2n

)
|f ′(xk)|q +

(
2i+ 1

2n

)
|f ′(xk+1)|q

] 1
q

.

Taking into account that |f ′|q is convex, we deduce, by the triangle inequality, that[(
2n− 2i− 1

2n

)
|f ′(xk)|q +

(
2i+ 1

2n

)
|f ′(xk+1)|q

]
≤ max{|f ′(a)|q, |f ′(b)|q}.
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Finally, summing over k from 0 to t− 1, we have (4.2). �

Remark 4.1. If we choose n = 1 on [a, b], then the (4.2) reduce to (4.1).

Corollary 4.1. If we choose n = 2 in Proposition 4.2, we get
|E(f, It) + F (f, It)|

≤
t−1∑
k=0

(xk+1 − xk)2

8

[(3
4 |f

′(xk)|q + 1
4 |f

′(xk+1)|
) 1

q

+
(1

4 |f
′(xk)|q + 3

4 |f
′(xk+1)|q

) 1
q

]

≤1
4 max{|f ′(a)|, |f ′(b)|}

t−1∑
k=0

(xk+1 − xk)2.
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