Kragujevac Journal of Mathematics Volume 43(2) (2019), Pages 267–273.

INNER HIGHER DERIVATIONS ON ALGEBRAS

E. TAFAZOLI¹ AND M. MIRZAVAZIRI²

ABSTRACT. Let \mathcal{A} be an algebra. A sequence $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ of linear operators on \mathcal{A} is called a *higher derivation* if d_0 is the identity mapping on \mathcal{A} and $d_n(xy) = \sum_{k=0}^n d_k(x) d_{n-k}(y)$, for each $n=0,1,2,\ldots$ and $x,y\in\mathcal{A}$. We say that a higher derivation \mathbf{d} is *inner* if there is a sequence $\mathbf{a} = \{a_n\}_{n=1}^{\infty}$ in \mathcal{A} such that $(n+1)d_{n+1}(x) = \sum_{k=0}^n a_{k+1}d_{n-k}(x) - d_{n-k}(x)a_{k+1}$, for each $n=0,1,2,\ldots$ and $x\in\mathcal{A}$. Giving a characterization for inner higher derivations on a torsion free algebra \mathcal{A} , we show that each higher derivation on \mathcal{A} is inner provided that each derivation on \mathcal{A} is inner.

1. Introduction

Let \mathcal{A} be an algebra. A linear mapping $\delta: \mathcal{A} \to \mathcal{A}$ is called a *derivation* if it satisfies the *Leibniz rule* $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in \mathcal{A}$. If a is a fixed element of \mathcal{A} then the linear mapping $\delta: \mathcal{A} \to \mathcal{A}$, defined by $\delta(x) = [a, x] = ax - xa$ for $x \in \mathcal{A}$, is a derivation. Such a derivation is called *inner* and is denoted by δ_a . Thus a derivation δ is inner if $\delta = \delta_a$ for some $a \in \mathcal{A}$. In this case we say that δ is an inner derivation implemented by a. For a discussion about derivations, inner derivations, automatic continuity of derivations and the related topics the reader can see [5] and [9].

There are known algebras on which each derivation is inner by an element of the algebra. Furthermore, there are algebras \mathcal{A} for which each derivation is inner implemented by an element of an algebra \mathcal{B} containing \mathcal{A} . For example, each derivation on a C^* -algebra \mathfrak{A} is inner implemented by an element of its weak closure (see [11] and [6]).

When $\delta: \mathcal{A} \to \mathcal{A}$ is a derivation, the sequence $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$, defined by $d_n = \frac{\delta^n}{n!}$, satisfies the generalized Leibniz rule $d_n(xy) = \sum_{k=0}^n d_k(x) d_{n-k}(y)$, for each

Key words and phrases. Derivation, inner derivation, higher derivation, inner higher derivation. 2010 Mathematics Subject Classification. Primary: 16W25. Secondary: 47L57, 47B47, 13N15. Received: August 20, 2017.

Accepted: November 20, 2017.

 $n=0,1,2,\ldots$ and $x,y\in\mathcal{A}$. Since the sequence \mathbf{d} deals with higher powers of δ , such a sequence is called a *higher derivation*. Though this is not the only example of a higher derivation, such a sequence is a typical example and is called an *ordinary higher derivation*. A theorem proved by the second named author [8] gives a one to one correspondence between higher derivations and the family of sequences of derivations in the sense that for each higher derivation $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ on a torsion free algebra \mathcal{A} , there is a sequence $\boldsymbol{\delta} = \{\delta_n\}_{n=1}^{\infty}$ of derivations on \mathcal{A} such that

(1.1)
$$d_n = \sum_{i=1}^n \left(\sum_{\substack{j=1 \ j=1}}^i \frac{1}{r_j + \dots + r_i} \right) \, \delta_{r_1} \dots \delta_{r_i} \right),$$

where the inner summation is taken over all positive integers r_j , with $\sum_{j=1}^i r_j = n$. Conversely, if for a sequence $\boldsymbol{\delta} = \{\delta_n\}_{n=1}^{\infty}$ of derivations on \mathcal{A} we define the sequence $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ by (1.1), then \mathbf{d} is a higher derivation. If we denote this higher derivation by \mathbf{d}_{δ} then we can say that each higher derivation on a torsion free algebra \mathcal{A} is of the form \mathbf{d}_{δ} for some sequence $\boldsymbol{\delta}$ of derivations on \mathcal{A} . For a study about higher derivations, their generalizations, automatic continuity of higher derivations the reader is referred to [1-4,7,10] and [12].

In the present paper, to a sequence $\mathbf{a} = \{a_n\}_{n=1}^{\infty}$ of elements of \mathcal{A} , we correspond a sequence $\mathbf{d_a} = \{d_n\}_{n=0}^{\infty}$ of linear mappings on \mathcal{A} in such a way that $\mathbf{d_a}$ is a higher derivation. We say that $\mathbf{d_a}$ is the inner higher derivation implemented by \mathbf{a} . A higher derivation is then inner if it is implemented by a sequence of elements of \mathcal{A} . Giving a characterization for a higher derivation to be inner, we show that each higher derivation on a torsion free algebra \mathcal{A} is inner if and only if each derivation on \mathcal{A} is inner.

In the following \mathcal{A} is an algebra and I denotes the identity mapping on it. When we talk about a higher derivation $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ we will assume that d_0 is I. This implies that d_1 is a derivation on \mathcal{A} . When d_0 is not the identity mapping, we deals with the σ -derivation d_1 , where σ is d_0 .

2. The Results

Inner higher derivations will be defined as a special case of higher derivations. In the next definition we define an inner property for a sequence of linear operators on an algebra. As we will see in Lemma 2.1, a sequence of linear mapping with the inner property is automatically a higher derivation.

Definition 2.1. Let \mathcal{A} be an algebra and $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ be a sequence of linear operators on \mathcal{A} with $d_0 = I$. We say that \mathbf{d} has the inner property if there is a sequence $\mathbf{a} = \{a_n\}_{n=1}^{\infty}$ in \mathcal{A} such that $(n+1)d_{n+1}(x) = \sum_{k=0}^{n} a_{k+1}d_{n-k}(x) - d_{n-k}(x)a_{k+1}$, for each $n = 0, 1, 2, \ldots$ and $x \in \mathcal{A}$.

Prior to anything, we show that a sequence possessing the inner property is indeed a higher derivation.

Lemma 2.1. Let \mathcal{A} be an algebra and $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ have the inner property. Then \mathbf{d} is a higher derivation.

Proof. We use induction on n to show that $d_n(xy) = \sum_{k=0}^n d_k(x)d_{n-k}(y)$, for each $n = 0, 1, 2, \ldots$ and $x, y \in \mathcal{A}$. This is clear for n = 0, since $d_0 = I$. Suppose that this is true for n. For n + 1 we have

$$(n+1)d_{n+1}(xy) = \sum_{k=0}^{n} \delta_{a_{k+1}}(d_{n-k}(xy))$$

$$= \sum_{k=0}^{n} \delta_{a_{k+1}}(\sum_{\ell=0}^{n-k} d_{\ell}(x)d_{n-k-\ell}(y))$$

$$= \sum_{k=0}^{n} \sum_{\ell=0}^{n-k} \delta_{a_{k+1}}(d_{\ell}(x))d_{n-k-\ell}(y) + \sum_{k=0}^{n} \sum_{\ell=0}^{n-k} d_{\ell}(x)\delta_{a_{k+1}}(d_{n-k-\ell}(y)).$$

Changing variables implies

$$(n+1)d_{n+1}(xy) = \sum_{r=0}^{n} \left[\sum_{k=0}^{r} \delta_{a_{k+1}}(d_{r-k}(x)) \right] d_{n-r}(y) + \sum_{\ell=0}^{n} d_{\ell}(x) \left[\sum_{k=0}^{n-\ell} \delta_{a_{k+1}}(d_{n-k-\ell}(y)) \right]$$

$$= \sum_{r=0}^{n} \left[(r+1)d_{r+1}(x) \right] d_{n-r}(y) + \sum_{\ell=0}^{n} d_{\ell}(x) \left[(n-\ell+1)d_{n-\ell+1}(y) \right]$$

$$= \sum_{\ell=1}^{n+1} \left[\ell d_{\ell}(x) \right] d_{n-\ell+1}(y) + \sum_{\ell=0}^{n} d_{\ell}(x) \left[(n-\ell+1)d_{n-\ell+1}(y) \right]$$

$$= \sum_{\ell=1}^{n} (n+1)d_{\ell}(x)d_{n-\ell+1}(y) + (n+1)d_{0}(x)d_{n+1}(y)$$

$$+ (n+1)d_{n+1}(x)d_{0}(y)$$

$$= (n+1) \sum_{\ell=0}^{n+1} d_{\ell}(x)d_{n+1-\ell}(y).$$

Definition 2.2. A higher derivation $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ is called *inner* if it has the inner property.

Lemma 2.1 does indeed show that any inner higher derivation is *a fortiori* a higher derivation. A natural question is: When does a higher derivation inner? Prior to provide an answer for the question, we give a characterization for inner higher derivations.

Lemma 2.2. Let n, k and r_1, \ldots, r_k be positive integers, $r_1 + \cdots + r_k = n + 1$ and $\alpha_{r_1, \ldots, r_i} = \prod_{j=1}^i \frac{1}{r_j + \cdots + r_i}$. Then $\alpha_{r_1, \ldots, r_i} = \frac{1}{n+1} \alpha_{r_2, \ldots, r_i}$.

Proposition 2.1. Let \mathcal{A} be an algebra, $\mathbf{a} = \{a_n\}_{n=1}^{\infty}$ be a sequence in \mathcal{A} and $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ be defined by

(2.1)
$$d_n = \sum_{i=1}^n \left(\sum_{\substack{j=1 \ r_j = n}} \left(\prod_{j=1}^i \frac{1}{r_j + \dots + r_i} \right) \ \delta_{a_{r_1}} \dots \delta_{a_{r_i}} \right),$$

where the inner summation is taken over all positive integers r_j with $\sum_{j=1}^i r_j = n$. Then **d** is an inner higher derivation.

Proof. Let $n+1=r_1+\cdots+r_i$, where r_j 's are positive integers. If $r_1=k+1$, where $0 \le k \le n$, then $n-k=r_2+\cdots+r_i$. Putting $\alpha_{r_1,\dots,r_i}=\prod_{j=1}^i\frac{1}{r_j+\dots+r_i}$ and using Lemma 2.2 we have

$$d_{n+1} = \sum_{i=1}^{n} \left(\sum_{\sum_{j=1}^{i} r_j = n} \alpha_{r_1, \dots, r_i} \, \delta_{a_{r_1}} \cdots \delta_{a_{r_i}} \right)$$

$$= \frac{1}{n+1} \sum_{k=0}^{n} \delta_{a_{k+1}} \sum_{i=1}^{n-k} \left(\sum_{\sum_{j=2}^{i} r_j = n-k} \alpha_{r_2, \dots, r_i} \, \delta_{a_{r_2}} \cdots \delta_{a_{r_i}} \right)$$

$$= \frac{1}{n+1} \sum_{k=0}^{n} \delta_{a_{k+1}} d_{n-k}.$$

This shows that \mathbf{d} has the inner property and hence is an inner higher derivation. \square

The inner higher derivation $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$, defined as in Proposition 2.1, is denoted by $\mathbf{d_a}$ and is called the inner higher derivation implemented by the sequence $\mathbf{a} = \{a_n\}_{n=1}^{\infty}$. When \mathbf{a} is the sequence defined by $a_1 = a$ and $a_n = 0$, for $n \geq 2$, then $\mathbf{d_a}$ is called the ordinary inner higher derivation implemented by the element $a \in \mathcal{A}$.

Theorem 2.1. Let \mathcal{A} be a torsion free algebra and $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ be a higher derivation. Then \mathbf{d} is inner if and only if $\mathbf{d} = \mathbf{d_a}$ for some sequence $\mathbf{a} = \{a_n\}_{n=1}^{\infty}$ in \mathcal{A} . Furthermore, $\mathbf{d_a}$ is an ordinary inner higher derivation if and only if $d_n = \frac{\delta_n^a}{n!}$ for a fixed element $a \in \mathcal{A}$.

Proof. Let **d** be an inner higher derivation. Then d_n satisfies the recursive relation $(n+1)d_n = \sum_{k=0}^n \delta_{a_{k+1}} d_{n-k}$, with the initial value $d_0 = I$. We know that the answer of this recursive relation with a fixed initial value is unique. Thus if we show that the sequence defined as in (2.1) of Proposition 2.1 satisfies the same recursive relation, then we can deduce that $\mathbf{d} = \mathbf{d_a}$. To show this we have

$$(n+1)d_{n+1} = \sum_{i=2}^{n+1} \left(\sum_{\sum_{j=1}^{i} r_j = n+1} (n+1)\alpha_{r_1,\dots,r_i} \delta_{a_{r_1}} \cdots \delta_{a_{r_i}} \right) + \delta_{a_{n+1}}$$

$$= \sum_{i=2}^{n+1} \left(\sum_{r_1=1}^{n+2-i} \delta_{r_1} \sum_{\sum_{j=2}^{i} r_j = n+1-r_1} \alpha_{r_2,\dots,r_i} \delta_{a_{r_2}} \cdots \delta_{a_{r_i}} \right) + \delta_{a_{n+1}}$$

$$= \sum_{r_1=1}^{n} \delta_{r_1} \sum_{i=2}^{n-(r_1-1)} \left(\sum_{\sum_{j=2}^{i} r_j = n-(r_1-1)} \alpha_{r_2,\dots,r_i} \delta_{a_{r_2}} \cdots \delta_{a_{r_i}} \right) + \delta_{a_{n+1}}$$

$$= \sum_{r_1=1}^{n} \delta_{a_{r_1}} d_{n-(r_1-1)} + \delta_{a_{n+1}}$$

$$= \sum_{k=0}^{n} \delta_{a_{k+1}} d_{n-k}.$$

Furthermore, if $a_1 = a$ and $a_n = 0$, for $n \ge 2$ then $\delta_{a_{r_j}} = 0$ whenever $r_j \ge 2$. Thus the inner summation of (2.1) is non-zero only if $r_1 = \cdots = r_i = 1$. In this case we should have i = n and thus $\alpha_{r_1, \dots, r_i} = \frac{1}{n!}$. We therefore have $d_n = \frac{1}{n!} \delta_a^n$, since $\delta_{a_{r_1}} = \cdots = \delta_{a_{r_n}} = \delta_{a_1} = \delta_a$.

We can construct various examples of inner higher derivations using different sequences of elements of \mathcal{A} . Let us see what can occur if we consider the constant sequence $\mathbf{a} = \{a\}_{n=1}^{\infty}$. We need a lemma and a notation.

Lemma 2.3. Let n, i be positive integers with $i \leq n$. If $\beta_{n,i} = \sum_{\substack{j=1 \ j=n}} \alpha_{r_1,\dots,r_i}$ then $\beta_{n,i}$ satisfies the recursive relation $\beta_{n,i} = \frac{\beta_{n-1,i-1} + (n-1)\beta_{n-1,i}}{n}$ with the initial value $\beta_{1,1} = 1$. Moreover, $\beta_{n,1} = \frac{1}{n}$, $\beta_{n,n} = \frac{1}{n!}$ and $\sum_{i=1}^{n} \beta_{n,i} = 1$.

Proof. At first we note that

$$\beta_{n,i} = \sum_{\sum_{j=1}^{i} r_j = n} \alpha_{r_1,\dots,r_i} = \sum_{r_1=1}^{n-(i-1)} \frac{1}{n} \sum_{\sum_{j=2}^{i} r_j = n} \alpha_{r_2,\dots,r_i} = \frac{1}{n} \sum_{k=1}^{n+1-i} \beta_{n-k,i-1}.$$

Now we have

$$\beta_{n,i} = \frac{1}{n} \left(\beta_{n-1,i-1} + \sum_{k=2}^{n+1-i} \beta_{n-k,i-1} \right)$$
$$= \frac{1}{n} \left(\beta_{n-1,i-1} + \sum_{\ell=1}^{n-i} \beta_{n-(\ell+1),i-1} \right)$$
$$= \frac{1}{n} (\beta_{n-1,i-1} + (n-1)\beta_{n-1,i}).$$

Note that $\beta_{n,0} = \beta_{n,n+1} = 0$. An inductive argument thus shows

$$\beta_{n,1} = \frac{1}{n}(0 + (n-1)\beta_{n-1,1}) = \frac{1}{n}$$

and

$$\beta_{n,n} = \frac{1}{n}(\beta_{n-1,n-1} + (n-1) \times 0) = \frac{1}{n} \cdot \frac{1}{(n-1)!} = \frac{1}{n!}.$$

Moreover,

$$\sum_{i=1}^{n} \beta_{n,i} = \sum_{i=1}^{n} \frac{\beta_{n-1,i-1} + (n-1)\beta_{n-1,i}}{n}$$

$$= \frac{1}{n} \left(\sum_{j=1}^{n-1} \beta_{n-1,j} + (n-1) \sum_{i=1}^{n-1} \beta_{n-1,i} \right)$$

$$= \frac{1}{n} (1 + (n-1)) = 1.$$

Values of $\beta_{n,i}$ for $1 \leq i \leq n \leq 7$ are evaluated in the Table 1.

Table 1. Values of $\beta_{n,i}$ for $1 \le i \le n \le 7$

$n \setminus i$	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0
2	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0	0
3	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{6}$	0	0	0	0
4	$\frac{1}{4}$	$\frac{11}{24}$	$\frac{1}{4}$	$\frac{1}{24}$	0	0	0
5	$\frac{1}{5}$	$\frac{5}{12}$	$\frac{7}{24}$	$\frac{1}{12}$	$\frac{1}{120}$	0	0
6	$\frac{1}{6}$	$\frac{137}{360}$	$\frac{5}{16}$	$\frac{17}{144}$	$\frac{1}{48}$	$\frac{1}{720}$	0
7	$\frac{1}{7}$	$\frac{7}{20}$	$\frac{29}{90}$	$\frac{7}{48}$	$\frac{5}{144}$	$\frac{1}{240}$	$\frac{1}{5040}$

Example 2.1. Let $p_n(x) = \beta_{n,1}x + \beta_{n,2}x^2 + \cdots + \beta_{n,n}x^n$ and a be a fixed element of an algebra \mathcal{A} . Then $d_0 = I$ and $d_n = p_n(\delta_a)$ for positive integers n defines an inner higher derivation $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ on \mathcal{A} . To see this note that $\mathbf{d} = \mathbf{d_a}$, where \mathbf{a} is the constant sequence $\{a\}_{n=1}^{\infty}$.

Our ultimate goal is to characterize those torsion free algebras on which all higher derivations are inner.

Theorem 2.2. Let A be a torsion free algebra. Then each higher derivation on A is inner if and only if each derivation on A is inner.

Proof. Theorem 2.3 of [8] shows that each higher derivation **d** on a torsion free algebra is of the form \mathbf{d}_{δ} for some sequence $\boldsymbol{\delta} = \{\delta_n\}_{n=1}^{\infty}$ of derivations on \mathcal{A} . Theorem 2.1 says that **d** is inner if and only if it is defined by (2.1) of Proposition 2.1. This is equivalent to the fact that δ_n is of the form δ_{a_n} for an $a_n \in \mathcal{A}$.

For the converse note that if each higher derivation on \mathcal{A} is inner and δ is an arbitrary derivation on \mathcal{A} then innerness of the ordinary higher derivation $\mathbf{d} = \{d_n\}_{n=0}^{\infty} = \{\frac{\delta^n}{n!}\}_{n=0}^{\infty}$ implies that d_1 is of the form δ_{a_1} for some $a_1 \in \mathcal{A}$. This shows that $\delta = d_1$ is inner.

Acknowledgements. This article is resulted from research project, named "Inner Higher Derivations on Algebras" supported by "Islamic Azad University-Bojnourd Branch".

References

- [1] P. E. Bland, Higher derivations on rings and modules, Int. J. Math. Math. Sci. 15 (2005), 2373–2387.
- [2] W. Cortes and C. Haetinger, On Jordan generalized higher derivations in rings, Turkish J. Math. 29 (2005), 1–10.
- [3] C. Haetinger, *Higher derivations on Lie ideals*, TEMA Tend. Mat. Apl. Comput. **3** (2002), 141–145.
- [4] N. P. Jewell, Continuity of module and higher derivations, Pacific J. Math. 68 (1977), 91–98.
- [5] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. **90** (1968), 1067–1073.
- [6] R. Kadison, Derivations of operator algebras, Ann. of Math. 83 (1966), 273–286.
- [7] R. J. Loy, Continuity of higher derivations, Proc. Amer. Math. Soc. 37 (1973), 505–510.
- [8] M. Mirzavaziri, Characterization of higher derivations on algebras, Comm. Algebra 38 (2010), 981–987.
- [9] J. R. Ringrose, Automatic continuity of derivations of operator algebras, J. Lond. Math. Soc. 5 (1972), 432–438.
- [10] A. Roy and R. Sridharan, Higher derivations and central simple algebras, Nagoya Math. J. 32 (1968), 21–30.
- [11] S. Sakai, Derivations of W*-algebras, Ann. of Math. (2) 83(2) (1966), 273–279.
- [12] S. Satô, On rings with a higher derivation, Proc. Amer. Math. Soc. 30 (1971), 21–30.

¹DEPARTMENT OF MATHEMATICS,

BOJNOURD BRANCH, ISLAMIC AZAD UNIVERSITY,

Bojnourd, Iran

Email address: tafazoli.elham@gmail.com

²Department of Pure Mathematics, Ferdowsi University of Mashhad,

P.O. Box 1159, Mashhad 91775, Iran Email address: mirzavaziri@um.ac.ir Email address: mirzavaziri@gmail.com