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A TOTALLY RELAXED SELF-ADAPTIVE SUBGRADIENT
EXTRAGRADIENT SCHEME FOR EQUILIBRIUM AND FIXED

POINT PROBLEMS IN A BANACH SPACE

OLAWALE KAZEEM OYEWOLE1,2, HAMMED ANUOLUWAPO ABASS1,2,
AND OLUWATOSIN TEMITOPE MEWOMO1

Abstract. The goal of this paper is to introduce a Totally Relaxed Self adaptive
Subgradient Extragradient Method (TRSSEM) together with an Halpern iterative
method for approximating a common solution of Fixed Point Problem (FPP) and
Equilibrium Problem (EP) in 2-uniformly convex and uniformly smooth Banach
space. We prove the strong convergence of the sequence generated by our proposed
method. The proposed method does not require the computation of a projection
onto a feasible set, it instead requires a projection onto a finite intersection of sub-
level sets of convex functions. Our result generalizes, unifies and extends some
related results in the literature.

1. Introduction

Let C be a nonempty, closed and convex subset of a real Banach space E with dual
space E∗. Let E be endowed with the duality pairing ⟨·, ·⟩ of element from E and E∗,
and also the corresponding norm ∥ · ∥. Let f : C × C → R ∪ {+∞} be a bifunction
such that C ⊂ int(dom(f, ·)), then for every x ∈ C, the Equilibrium Problem (EP)
(see [3, 14]), is to find a point x∗ ∈ C such that

f(x∗, y) ≥ 0, for all y ∈ C.(1.1)

We denote the EP and its solution set by EP (C, f) and Sol(C, f), respectively.

Key words and phrases. Equilibrium problem, strongly pseudomonotone, strong convergence,
Banach space, quasi-ϕ-nonexpansive mapping, fixed point.
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The EP is a generalization of many important optimization problems, such as Varia-
tional Inequality Problem (VIP), Fixed Point Problem (FPP) and so on (see [6, 14]
and the references therein). In particular, if f(x, y) = ⟨Ax, y−x⟩, where A : C → E∗,
is a nonlinear mapping, then EP (C, f) (1.1) reduces to the classical VIP introduced
by Stampacchia [47] (see also [36,38,41,52]), which is to find a point x∗ ∈ C such that

⟨Ax∗, y − x∗⟩ ≥ 0, for all y ∈ C.(1.2)

There are two important directions of research on EP: These are the existence
of solution of EP and other related problems (see [14, 29] for more details) and the
development of iterative algorithms for approximating the solution of EP, its several
generalizations and related optimization problems (see [1,12,13,33,34,42–44] and the
references therein).

In 2018, Hieu [24] introduced some methods for solving strongly pseudomonotone
and Lipschitz type bifunction EPs. We note that a bifunction f satisfies the Lipschitz
type condition, if there exist positive constants c1, c2 ∈ R such that for all x, y, z ∈ C,
the inequality

f(x, y) + f(y, z) ≥ f(x, z) − c1∥x− y∥2 − c2∥y − z∥2

holds.
In general EP, the Lipschitz type condition does not hold and when it does, finding

the constants c1 and c2 is always not an easy task. This does have effect on the
efficiency of the method involved. In addition, in the method of Hieu [24], there is
the need to first solve at least one strongly convex programming problem. Also, if the
bifunction and the feasible sets have complex structures, the computations could be
expensive and time consuming.

Furthermore, the problem of finding a common point in the set of solutions of
different generalizations of EP and the fixed point set of a nonlinear mapping in
Hilbert, Banach and Hadamard spaces have been considered by several authors in
literature (see [25, 39,40,46,51,57]) and the references therein for further reading.

In 2013, Anh [9] introduced an extragradient algorithm for finding a common
element of the fixed point set of a nonexpansive mapping and solution set of an EP
involving pseudomonotone and Lipschitz type continuous bifunction in real Hilbert
space. The author proved a strong convergence result of the sequence generated by
his method under some standard conditions, see [8–10] for related results.

However, in Banach spaces, just like the extragradient method employed by Hieu
[24], many existing methods for approximating a common solution FPP and EP
involving a pseudomonotone bifunctions requires that a strongly convex programming
is solved (see [26,27] and the references therein).

To avoid the assumptions of Lipschitz continuity on the bifunction and solving
strongly convex progamming, Vinh and Gibali [53] introduced two gradient-type
iterative algorithms involving a one-step projection method for solving EP (C, f) (1.1)
and proved strong convergence results for both algorithms with an adaptive step-size
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rule which does not require the Lipschitz condition of the associated method. The
method proposed in [53] involves a projection onto a feasible set, and is known to
be computationally expensive, time and memory consuming if the feasible set is not
simple.

In an attempt to overcome this setback, Censor et al. [17] introduced the subgradient
extragradient method which uses a projection onto a halfspace. Also, He et al. [23]
introduced a TRSSEM for solving the VIP (1.2) in a real Hilbert space. Let Ci :=
{x ∈ H : hi(x) ≤ 0}, where hi : H → R for i = 1, 2, . . . ,m, are convex functions. In
the TRSSEM, the feasible set is given as

C := ∩m
i=1C

i.

On the other hand, for approximating a fixed point of a nonexpansive mapping T,
Mainge [31] introdued an inertial Krasnoselskij-Mann Algorithm as follows:wn = xn + θn(xn − xn−1),

xn+1 = (1 − αn)xn + αnTwn, n ≥ 1,
(1.3)

and proved a weak convergence theorem under some mild assumptions on the sequences
{θn} and {αn}. The term θn(xn − xn−1) as given (1.3) is referred to as the inertial
extrapolation term. It is known that the introduction of the inertial term helps to speed
up the convergence rate of the algorithm. Due to its importance, lots of researchers
have adopted the use of the inertial technique in their quest for approximating the
solutions of fixed point and optimization problem (see [4, 5, 31] and the references
therein).

In this paper, motivated by the works of He et al. [23], Vinh and Gibali [53] and other
related results in literature, we introduce a TRSSEM for approximating a common
solution of FPP and EP in 2-uniformly convex and uniformly smooth Banach space.
We prove a strong convergence result for the sequence generated by the proposed
method under some conditions. Finally, we give some applications of our main result.
The rest of the section is organized as follows. In Section 2, we recall some important
results and definitions that will be useful in establishing our main result. In Section
3, we state our proposed method and then discuss its convergence analysis. We give
some theoretical application of our main result in Section 4 and give a concluding
remark Section 5.

2. Preliminaries

We denote the weak and the strong convergence of a sequence {xn} to a point x by
xn ⇀ x and xn → x, respectively.

Let E be a real Banach space, given a function g : E → R.
• The function g is called Gâteaux differentiable at x ∈ E, if there exists an element

E, denoted by g′(x) or ▽g(x) such that

lim
t→∞

g(x+ ty) − g(x)
t

= ⟨y, g′(x)⟩, y ∈ E,
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where g′ or ▽g(x) is called Gâteaux differential or gradient of g at x. We say g is
Gâteaux on E if for each x ∈ E, g is Gâteaux differentiable at x.

• The function g is called weakly lower semicontinuous at x ∈ E, if xn ⇀ x implies
g(x) ≤ lim inf

n→∞
g(xn). We say that a function g is weakly lower semicontinuous on E,

if for each x ∈ E, g is weakly lower semicontinuous at x.
• If g is a convex function, then it is said to be differentiable at a point x ∈ E if

the following set
∂g(x) = {f ∈ E : g(y) − g(x) ≥ ⟨f, y − x⟩, y ∈ E}(2.1)

is nonempty. Each element ∂g(x) is called a subgradient of g at x or the subdifferential
of g and the inequality (2.1) is said to be the subdifferential inequality of g at x.

The function g is subdifferentiable at x, if g is subdifferntiable at every x ∈ E. It is
well known that if g is Gâteaux differentiable at x, then g is subdifferentiable at x and
∂g(x) = {g′(x)}, that is, ∂g(x) is just a singleton set. For more details on Gâteaux
differentiable functions on Banach space, see [15].

Let C be a nonempty, closed and convex subset of a real Banach space with norm
∥ · ∥ and let J : E → 2E∗ be the normalized duality mapping defined by

J(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2 for all x ∈ E},
where E∗ denotes the dual space of E and ⟨·, ·⟩ the duality pairing between the
elements of E and E∗. Alber [7], introduced a generalized projection operator ΠC an
analogue of the metric projection PC : H → C in the Hilbert space H. He defines
ΠC : E → C by

ΠC(x) = inf
y∈C

{ϕ(y, x) for all x ∈ E}.

In Hilbert spaces PC(x) ≡ ΠC(x).
Consider the Lyapunov functional ϕ : E × E → R+ defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩ + ∥y∥2, for all x, y ∈ E.

In the real Hilbert space, we observe that ϕ(x, y) = ∥x− y∥2. It is easy to see that
(∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥ + ∥y∥)2.

The functional ϕ also satisfies the following important properties:
ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩(2.2)

and
ϕ
(
x, J−1(λJy + (1 − λ)Jz)

)
≤ λϕ(x, y) + (1 − λ)ϕ(x, z),(2.3)

for all x, y, z ∈ E and λ ∈ (0, 1).
Note. If E is a reflexive, strictly convex, and smooth Banach space, then for x, y ∈ E,
ϕ(x, y) = 0 if and only if x = y, see [18, 48].

We are also concerned with the functional V : E × E∗ → R defined by
V (x, x∗) = ∥x∥2 − 2⟨x, x∗⟩ + ∥x∗∥2,(2.4)
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for all x ∈ E and x∗ ∈ E∗. That is, V (x, x∗) = ϕ (x, J−1x∗) for all x ∈ E and x∗ ∈ E∗.
It is well known that if E is a reflexive, strictly convex and smooth Banach space,
then

V (x, x∗) ≤ V (x, x∗ + y∗) − 2
〈
J−1x∗ − x, y∗

〉
,

for all x ∈ E and all x∗, y∗ ∈ E∗, see [50].
Let C be a closed and convex subset of E and T : C → C be a mapping, a point

x ∈ C is called a fixed point of T, if x = Tx. We denote the set of fixed points of
T by F (T ). Let T : C → C be a mapping, a point p ∈ C is called an asymptotic
fixed point of T (see [45]) if C contains a sequence {xn} such that xn ⇀ p and
∥xn − Txn∥ → 0 as n → ∞. We denote by F̂ (T ) the set of asymptotic fixed points
of T. A mapping T : C → C is said to be relatively nonexpansive if F̂ (T ) = F (T )
and ϕ(p, Tx) ≤ ϕ(p, x) for all x ∈ C and p ∈ F (T ) (see [16, 48]). T is said to be
ϕ-nonexpansive if ϕ(Tx, Ty) ≤ ϕ(x, y) for all x, y ∈ C and quasi-ϕ-nonexpansive if
F (T ) ̸= ∅ and ϕ(p, Tx) ≤ ϕ(p, x) for all x ∈ C and p ∈ F (T ).

The class of quasi-ϕ-nonexpansive mappings is more general than the class of
relatively nonexpansive mapping which requires the strict condition F (T ) = F̂ (T )
(see [16, 45,48]).

Let E be a real Banach space. The modulus of convexity of E is the function
δE : (0, 2] → [0, 1] defined by

δE(ϵ) = inf
{

1 − 1
2∥x+ y∥ : ∥x∥ = ∥y∥ = 1, ∥x− y∥ ≥ ϵ

}
.

Recall that E is said to be uniformly convex if δE(ϵ) > 0 for any ϵ ∈ (0, 2]. E is said
to be strictly convex if ∥x+y∥

2 < 1 for all x, y ∈ E, with ∥x∥ = ∥y∥ = 1 and x ≠ y.
Also, E is p-uniformly convex if there exists a constant cp > 0 such that δE(ϵ) > cpϵ

p

for any ϵ ∈ (0, 2].
The modulus of smoothness of E is the function ρE : R+ → R+ defined by

ρE(t) = sup
{1

2(∥x+ ty∥ − ∥x− ty∥) − 1 : ∥x∥ = ∥y∥ = 1
}
.

E is said to be uniformly smooth if limt→0
ρE(t)

t
= 0. Let 1 < q ≤ 2, then E is

q-uniformly smooth if there exists cq > 0 such that ρE(t) ≤ cqt
q for t > 0. It is

known that E is p-uniformly convex if and only if E∗ is q-uniformly smooth, where
p−1 + q−1 = 1. It is also known that every q-uniformly smooth Banach space is
uniformly smooth.

It is widely known that if E is uniformly smooth, then the duality mapping J
is norm-to-norm continuous on each bounded subset of E. The following are some
important and useful properties of J, for further details, see [2, 48].

Let C be a nonempty, closed and convex subset of a real Banach space E and
f : E × E → R ∪ {+∞} be a bifunction. f is said to be
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(i) strongly monotone on C, if there exists γ ≥ 0 such that for any x, y ∈ C

f(x, y) + f(y, x) ≤ −γ∥x− y∥2;
(ii) monotone on C, if

f(x, y) + f(y, x) ≤ 0, for all x, y ∈ C;
(iii) pseudomonotone on C, if

f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0, for all x, y ∈ C;
(iv) strongly γ-pseudomonotone on C, if there exists γ > 0 such that for any

x, y ∈ C

f(x, y) ≥ 0 ⇒ f(y, x) ≤ −γ∥x− y∥2.

From the above, it is clear (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). The converse is generally not
true (see [53]).

We now give the following useful and important lemmas that are needed in estab-
lishing our main results.

Lemma 2.1 ([35]). Let E be a 2-uniformly convex and smooth Banach space. Then
for every x, y ∈ E

ϕ(x, y) ≥ ν∥x− y∥2,

where ν > 0 is the 2-uniformly convexity constant of E.

Lemma 2.2 ([28]). Let E be a smooth and uniformly convex real Banach space and
let {xn} and {yn} be two sequences in E. If either {xn} or {yn} is bounded and
ϕ(xn, yn) → 0 as n → ∞, then ∥xn − yn∥ → 0 as n → ∞.

Lemma 2.3 ([7]). Let C be a nonempty, closed and convex subset of a reflexive,
strictly convex and smooth Banach space X. If x ∈ E and q ∈ C, then

q = ΠCx ⇐⇒ ⟨y − q, Jx− Jq⟩ ≤ 0, for all y ∈ C,(2.5)
and

ϕ(y,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(y, x), for all y ∈ C, x ∈ X.(2.6)

Lemma 2.4 ([55]). Fix a number s > 0. A real Banach space X is uniformly convex
if and only if there exists a continuous strictly increasing function ψ : [0,∞) → [0,∞)
with ψ(0) = 0 such that

∥tx+ (1 − t)y∥2 ≤ t∥x∥2 + (1 − t)∥y∥2 − t(1 − t)ψ(∥x− y∥),
for all x, y ∈ X, λ ∈ [0, 1], with ∥x∥ < s and ∥y∥ < s.

Lemma 2.5 ([54]). Let {an} be a sequence of nonnegative real numbers satisfying the
following relation

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 0,
where
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(a) {αn} ⊂ [0, 1], lim
n→∞

αn = 0 and ∑∞
n=1 αn = ∞;

(b) lim sup
n→∞

σ ≤ 0;
(c) γn ≥ 0, n ≥ 1, and ∑∞

n=1 γn < ∞.

Then, lim
n→∞

an = 0.

Lemma 2.6 ([32]). Let {an} be a sequence of real numbers such that there exists a
subsequence {nj} of {n} such that anj

< anj+1 for all j ∈ N. Then, there exists a
nondecreasing subsequence {mn} ⊂ N such that mn → ∞ and the following properties
are satisfied by all (sufficiently large) numbers n ∈ N: amn < amn+1 and an < amn+1.
In fact, mn = max{i ≤ k : ai < ai+1}.

3. Main Result

In this section, we give a concise and precise statement of our algorithm, discuss
some of its elementary properties and its convergence analysis. The convergence
analysis is given in the next section.

Statement 3.1. Let C be a nonempty, closed and convex subset of a 2-uniformly convex
and uniformly smooth real Banach space E with dual space E∗. For i = 1, 2, . . . ,m,
let hi : E → R be a family of convex, weakly lower semicontinous and Gâteaux
differentiable functions. Let S : E → E be a quasi-ϕ-nonexpansive mapping and
f : C × C → R ∪ {+∞} be a strongly γ-pseudomonotone bifunction satisfying the
following assumptions.

Assumption 3.2. We require the following assumptions for our operator and the solu-
tion set:

A1. f(x, ·) is convex and lower semi-continuous for every x ∈ E;
A2. f is strongly γ-pseudomonotone on C,
A3. Sol(C, f) ̸= ∅;
A4. if {xn}∞

n=0 ⊂ E is bounded, then the sequence {g(xn) ∈ ∂(f(xn, ·))(xn)∞
n=0} is

bounded.
Note. The assumption A4. is quite standard assumption and it holds for example
when f(x, ·) is bounded on bounded subsets (see [11]).

Assumption 3.3. To prove a strong convergence result using Algorithm 3.4, the follow-
ing conditions are needed.

B1. The feasible set C is defined by C := ∩m
i=1C

i, where Ci := {z ∈ E : hi(z) ≤ 0};
B2. lim

n→∞
αn = 0 and

∞∑
n=0

αn = ∞;
B3. 0 < lim inf

n→∞
γn ≤ lim sup

n→∞
γn < 1;

B4.
∞∑

n=1
ϕ(xn, xn−1) < ∞.

B5. lim
n→∞

θn

αn
= 0.
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Algorithm 3.4. (TRSSEM) for EP (C, f)

Step 0. Choose the sequences {θn}, {αn} and {γn} ⊂ (0, 1) satisfying Assumption
3.3, let µ ∈ (0, 1) and β0 > 0. For u ∈ C, select initial points x0 and x1 in C. Set
n = 1.

Step 1. For i = 1, 2 . . . ,m, and given the current iterate wn, construct the family
of half spaces

Ci
n := {z ∈ E : hi(wn) + ⟨h′

i(wn), z − wn⟩ ≤ 0}
and set

Cn = ∩m
i=1C

i
n.

Let wn := J−1(Jxn + θn(Jxn−1 − Jxn)). Take g(wn) ∈ ∂(f(wn, ·))(wn), n ≥ 1, and
compute

zn = ΠCnJ
−1(Jwn − βng(wn)),(3.1)

where βn is given by

βn+1 =

min
{
βn,

µ∥wn−zn∥
∥g(wn)−g(zn)∥

}
, if g(wn) ̸= g(zn),

βn, otherwise.
(3.2)

Step 2. If wn = zn (wn ∈ Sol(C, f)), then set wn = yn and go to Step 3. Otherwise,
compute the next iterate by

yn = ΠQnJ
−1(Jwn − βng(zn)),(3.3)

where
Qn = {w ∈ E : ⟨w − zn, Jwn − βng(wn) − Jzn⟩ ≤ 0}.

Step 3. Compute
(3.4) xn+1 = J−1((1 − αn)Ju+ αn(1 − γn)Jyn + γnJSyn).

Step 4. Set n := n+ 1 and go to Step 1.

Lemma 3.1. If wn = zn, then wn ∈ Sol(C, f).

Proof. Suppose wn = zn, then by (2.5) and (3.1), we have
⟨Jwn − βng(wn) − Jwn, y − zn⟩ ≤ 0, y ∈ C,

or equivalently
(3.5) ⟨g(wn), y − wn⟩ ≥ 0, for all y ∈ C.

Therefore, from (3.5) and the definition of the subdifferential f in the second argument,
we obtain

f(wn, y) = f(wn, y) − f(wn, wn) ≥ ⟨g(wn), y − wn⟩ ≥ 0.
Hence, wn ∈ Sol(C, f). □
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Lemma 3.2 ([56]). The sequence {βn} generated by (3.2) is a motonically decreasing
sequence and

lim
n→∞

βn = β ≥ min
{
µ

L
, β0

}
.

Remark 3.1. Note that if wn = zn and wn = Swn we are at a common solution of
the EP (C, f) and fixed point of the mapping S. In our convergence analysis, we will
assume implicitly that this does not occur after finitely many iterations so that our
Algorithm 3.4 generates an infinite sequence satisfying, in particular wn ̸= zn and
wn ̸= Swn for all n ∈ N.

We now prove some lemmas which are required components of the main result.

Lemma 3.3. The sequence {xn} generated by Algorithm 3.4 is bounded.

Proof. Let x∗ ∈ Sol(C, f), then we have from (2.6), that
ϕ(x∗, yn) =ϕ(x∗,ΠQnJ

−1(Jwn − βng(wn)))
≤ϕ(x∗, J−1(Jwn − βng(zn))) − ϕ(yn, J

−1(Jwn − βng(wn)))
=∥x∗∥2 − 2⟨x∗, Jwn − βng(zn)⟩ − ∥yn∥2 + 2⟨yn, Jwn − βng(zn)⟩
=ϕ(x∗, wn) − ϕ(yn, wn) + 2βn⟨x∗ − yn, g(zn)⟩
=ϕ(x∗, wn) − (ϕ(yn, zn) + ϕ(zn, wn)

+ 2⟨yn − zn, Jzn − Jwn⟩) + 2βn⟨x∗ − yn, g(zn)⟩
=ϕ(x∗, wn) − ϕ(yn, zn) − ϕ(zn, wn)

+ 2⟨yn − zn, Jwn − Jzn⟩ + 2βn⟨x∗ − yn, g(zn)⟩.(3.6)
Now, we have from (3.6) that

2βn⟨x∗ − yn, g(zn)⟩ =2βn⟨x∗ − zn, g(zn)⟩ + 2βn⟨zn − yn, g(zn)⟩
=2βn⟨x∗ − zn, g(zn)⟩ + 2⟨yn − zn,−βng(zn)⟩.(3.7)

Substituting (3.7) into (3.6) and using the strongly pseudomonotonicity of f, we
obtain
ϕ(x∗, yn) =ϕ(x∗, wn) − ϕ(yn, zn) − ϕ(zn, wn) + 2⟨yn − zn, Jwn − Jzn⟩

+ 2βn⟨x∗ − zn, g(zn)⟩ + 2⟨yn − zn,−βng(zn)⟩
=ϕ(x∗, wn) − ϕ(yn, zn) − ϕ(zn, wn) + 2⟨yn − zn, Jwn − βng(zn) − Jzn⟩

+ 2βn⟨x∗ − zn, g(zn)⟩
≤ϕ(x∗, wn) − ϕ(yn, zn) − ϕ(zn, wn)

+ 2βn⟨yn − zn, Jwn − βng(zn) − Jzn⟩ + 2βnf(zn, x
∗)

≤ϕ(x∗, wn) − ϕ(yn, zn) − ϕ(zn, wn)
− 2βnγϕ(x∗, zn) + 2⟨yn − zn, Jwn − βng(zn) − Jzn⟩

≤ϕ(x∗, wn) − ϕ(yn, zn) − ϕ(zn, wn) + 2⟨yn − zn, Jwn − βng(zn) − Jzn⟩.(3.8)
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By the definition of Qn and Cauchy-Schwartz inequality, we have

⟨yn − zn, Jwn − βng(zn) − Jzn⟩ =2⟨yn − zn, Jwn − βng(zn) − Jzn⟩
+ 2βn⟨yn − zn, g(wn) − g(zn)⟩

≤2βn∥yn − zn∥∥g(wn) − g(zn)∥.(3.9)

Using (3.2) and Lemma 2.1 in (3.9), we get

⟨yn − zn, Jwn − βng(zn) − Jzn⟩ ≤2 µβn

βn+1
∥yn − zn∥∥wn − zn∥

≤2 µβn

βn+1

√
ϕ(yn, zn)

ν

√
ϕ(zn, wn)

ν

≤ µβn

νβn+1
(ϕ(yn, zn) + ϕ(zn, wn)).(3.10)

Therefore, from (3.8) and (3.10), we have

ϕ(x∗, yn) ≤ ϕ(x∗, wn) −
(

1 − µβn

νβn+1

)
(ϕ(yn, zn) + ϕ(zn, wn)).(3.11)

From (2.3) and (3.4), we have

ϕ(x∗, xn+1) =ϕ(x∗, J−1(αnJu+ (1 − αn)(1 − γn)Jun + γnJSyn))
=ϕ(x∗, J−1(αnJu+ (1 − αn)(1 − γn)Jyn + (1 − αn)γnJSyn)
≤αnϕ(x∗, u) + (1 − αn)(1 − γn)ϕ(x∗, yn) + (1 − αn)γnϕ(x∗, Syn)
≤αnϕ(x∗, u) + (1 − αn)ϕ(x∗, yn)
≤αnϕ(x∗, u) + (1 − αn)ϕ(x∗, wn)

−
(

1 − µβn

νβn+1

)
(ϕ(yn, zn) + ϕ(zn, wn))

≤αnϕ(x∗, u) + (1 − αn)ϕ(x∗, wn).(3.12)

From Algorithm 3.4, we have

ϕ(x∗, wn) =ϕ(x∗, J−1(Jxn + θn(Jxn−1 − Jxn)))
≤(1 − θn)ϕ(x∗, xn) + θnϕ(x∗, xn−1),

hence

ϕ(x∗, xn+1) ≤ αnϕ(x∗, u) + (1 − αn)((1 − θn)ϕ(x∗, xn) + θnϕ(x∗, xn−1))
≤ αnϕ(x∗, u) + (1 − αn)(ϕ(x∗, xn) + ϕ(x∗, xn−1))
≤ max{ϕ(x∗, u), (ϕ(x∗, xn) + ϕ(x∗, xn−1))}
...
≤ max{ϕ(x∗, u), (ϕ(x∗, x1) + ϕ(x∗, x0))}, n ≥ 1.(3.13)
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This implies that {ϕ(x∗, xn)} is bounded. Therefore, {xn} is bounded. Consequently,
{g(yn)} is bounded and by the nonexpansiveness of the projection operator and the
mapping S, we have that {zn}, {wn}, {yn} and {Syn} are bounded. □

The boundedness of {xn} implies that there is at least one weak limit point. The
next result provides a condition under which each of such weak limit is in the solution
set of the equilibrium problem.

Lemma 3.4. Let {xnk
} be a subsequence of {xn} converging weakly to a point p ∈ C

and suppose that the conditions ∥wni
− zni

∥ → 0 and ∥wni
− xni

∥ → 0 as i → ∞ hold
on this subsequence. Then p ∈ Sol(C, f).

Proof. From Lemma 2.5 and the definition of subdifferential, we have
0 ≤ ⟨x− zni

, Jzni
− (Jwni

− βni
g(wni

))⟩
= ⟨x− zni

, Jzni
− Jwni

⟩ + ⟨x− zni
, βni

g(wni
)⟩

= ⟨x− zni
, Jzni

− Jwni
⟩ + ⟨x− wni

, βni
g(wni

)⟩ + ⟨wni
− zni

, βni
g(wni

)⟩
≤ ⟨x− zni

, Jzni
− Jwni

⟩ + ⟨wni
− zni

, βni
g(wni

)⟩ + f(wni
, x).(3.14)

Passing limit to the inequality in (3.14), we have
f(p, x) ≥ 0, for all x ∈ C. □

In proving the strong convergence of our Algorithm 3.4, the underlying idea relies on
certain estimate and other classical properties of the iterates which are given in the
next lemmas below.

Lemma 3.5. The sequence {xn} generated by Algorithm 3.4 satisfies the following
estimates:

(i) an+1 ≤ (1 − αn)an + αnbn;
(ii) −1 ≤ lim sup

n→∞
bn < +∞,

where an = ϕ(x∗, xn) and bn = θn

αn
ϕ(x∗, xn−1) + 2⟨Ju− Jx∗, xn+1 − x∗⟩.

Proof. Let pn = (1 − γn)Jyn + γnJSyn, then from (2.4), we have
ϕ(x∗, xn+1) =ϕ(x∗, J−1(αnJu+ (1 − αn)Jpn))

≤V (x∗, αnJu+ (1 − αn)Jpn − αn(Ju− Jx∗))
− 2⟨−αn(Ju− Jx∗), J−1(αnJu+ (1 − αn)Jpn)⟩

≤V (x∗, αnJx
∗ + (1 − αn)Jpn) + 2αn⟨Ju− Jx∗, xn+1 − x∗⟩

≤αnV (x∗, Jx∗) + (1 − αn)V (x∗, Jpn) + 2αn⟨Ju− Jx∗, xn+1 − x∗⟩
≤αnϕ(x∗, x∗) + (1 − αn)ϕ(x∗, pn) + 2αn⟨Ju− Jx∗, xn+1 − x∗⟩
≤(1 − αn)ϕ(x∗, pn) + 2αn⟨Ju− Jx∗, xn+1 − x∗⟩
≤(1 − αn)(1 − γn)ϕ(x∗, yn) + γn(1 − αn)ϕ(x∗, Syn)

+ 2αn⟨Ju− Jx∗, xn+1 − x∗⟩
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≤(1 − αn)ϕ(x∗, yn) + 2αn⟨Ju− Jx∗, xn+1 − x∗⟩
≤(1 − αn)ϕ(x∗, wn) + 2αn⟨Ju− Jx∗, xn+1 − x∗⟩
=(1 − αn)((1 − θn)ϕ(x∗, xn) + θnϕ(x∗, xn−1) + 2αn⟨Ju− Jx∗, xn+1 − x∗⟩

≤(1 − αn)ϕ(x∗, xn) + αn

(
θn

αn

ϕ(x∗, xn−1) + 2⟨Ju− Jx∗, xn+1 − x∗⟩
)
.

This established (i). Next we proof (ii). Since {xn} is bounded, then we have

sup
n≥0

bn ≤ sup
(
θn

αn

ϕ(x∗, xn−1) + 2∥Ju− Jx∗∥∥xn+1 − x∗∥
)
< ∞.

This implies that lim sup
n→∞

bn < ∞. Next we show that lim sup
n→∞

bn ≥ −1. Assume the
contrary, that is lim sup

n→∞
bn ≤ −1. Then there exists n0 ∈ N such that bn < −1 for all

n ≥ n0. Then for all n0 ∈ N, we get from (i), that
an+1 ≤(1 − αn)an + αnbn

<(1 − αn)an − αn

=an − αn(an + 1) ≤ an − αn.

Taking lim sup of both sides in the last inequality, we have

lim sup
n→∞

an ≤ an0 − lim
n→∞

n∑
i=n0

αi = −∞.

This contradicts the definition of {an} as a nonnegative integer.
Therefore, lim sup

n→∞
bn ≥ −1. □

We now present our main theorem.

Theorem 3.5. Let C be a nonempty, closed and convex subset of a 2-uniformly convex
and uniformly smooth real Banach space E and hi : E → R be a family of convex,
weakly lower semicontinuous and Gâteaux differentiable functions, for i = 1, 2, . . . ,m.
Let f : E × E → R ∪ {+∞} be a bifunction satisfying conditions A1-A4, let S :
C → C be a quasi-ϕ-nonexpansive mapping such that Γ = {Sol(C, f) ∩ F (S)} ̸= ∅.
Let {θn}, {βn} and {αn} be sequences in (0, 1) satisfying Assumption 3.3, then the
sequence {xn} generated by Algorithm 3.4 converges strongly to p = ΠΓu, where ΠΓ is
the projection of C onto Γ.

Proof. Let p ∈ Γ, we divide the proof into two cases.
Case I Suppose that there exists n0 ∈ N such that {ϕ(x∗, xn)} is monotone non-

increasing. Since {ϕ(x∗, xn)} is bounded, then it is convergent and
ϕ(x∗, xn) − ϕ(x∗, xn+1) → 0, as n → ∞.(3.15)

Since pn = J−1((1 − γn)Jyn + γnJSy), then from Lemma 2.4, we have
ϕ(x∗, pn) = ϕ(x∗, J−1((1 − γn)Jyn + γnJSy))
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= V (x∗, (1 − γn)Jyn + γnJSy)
= ∥x∗∥2 − 2⟨x∗, (1 − γn)Jyn + γnJSy⟩ + ∥(1 − γn)Jyn + γnJSy∥2

= ∥x∗∥2 − 2(1 − γn)⟨x∗, Jyn⟩ − 2γn⟨x∗, JSyn⟩ + (1 − γn)∥yn∥2 + γn∥Syn∥2

− γn(1 − γn)ψ(∥Jyn − JSyn∥)
= ϕ(x∗, yn) + ϕ(x∗, Syn) − γn(1 − γn)ψ(∥Jyn − JSyn∥)
≤ ϕ(x∗, yn) − γn(1 − γn)ψ(∥Jyn − JSyn∥).(3.16)

Therefore, from (3.4), (3.11) and (3.16), we have
ϕ(x∗, xn+1) = ϕ(x∗, J−1(αnJu+ (1 − αn)Jpn))

≤ αnϕ(x∗, u) + (1 − αn)ϕ(x∗, pn)
≤ αnϕ(x∗, u) + (1 − αn)ϕ(x∗, yn) − γn(1 − γn)ψ(∥Jyn − JSyn∥)
≤ αnϕ(x∗, u) + (1 − αn)ϕ(x∗, wn) − γn(1 − γn)ψ(∥Jyn − JSyn∥)
= αnϕ(x∗, u) + (1 − αn)((1 − θn)ϕ(x∗, xn)

+ θnϕ(x∗, xn−1)) − γn(1 − γn)ψ(∥Jyn − JSyn∥)
≤ αnϕ(x∗, u) + (1 − αn)ϕ(x∗, xn) + θnϕ(x∗, xn−1)

− γn(1 − γn)ψ(∥Jyn − JSyn∥).(3.17)
Hence,

γn(1 − γn)ψ(∥Jyn − JSyn∥) ≤αn

(
θn

αn

ϕ(x∗, xn−1) + ϕ(x∗, u)
)

+ (1 − αn)ϕ(x∗, xn) − ϕ(x∗, xn−1).
By using αn → 0, we obtain γn(1 − γn)ψ(∥Jyn − JSyn∥) → 0 as n → ∞. Therefore,
by condition B3 and the property of ψ, we get

lim
n→∞

∥Jyn − JSyn∥ = 0.

Since J−1 is norm-to-norm continuous on bounded subsets of E, we obtain
lim

n→∞
∥yn − Syn∥ = 0.(3.18)

Furthermore, from (3.12), we have

ϕ(x∗, yn) ≤ ϕ(x∗, wn) −
(

1 − µβn

νβn+1

)
(ϕ(yn, zn) + ϕ(zn, wn)).

Therefore, it follows from (3.4) that
ϕ(x∗, xn+1) ≤αnϕ(x∗, u) + (1 − αn)ϕ(x∗, pn)

≤αnϕ(x∗, u) + (1 − α)ϕ(x∗, yn)
≤αnϕ(x∗, u) + (1 − αn)ϕ(x∗, wn)

− (1 − αn)
(

1 − µβn

νβn+1

)
(ϕ(yn, zn) + ϕ(zn, wn))
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≤αnϕ(x∗, u) + (1 − αn)((1 − θn)ϕ(x∗, xn) + θnϕ(x∗, xn−1))

− (1 − αn)
(

1 − µβn

νβn+1

)
(ϕ(yn, zn) + ϕ(zn, wn)).

This implies that

(1 − αn)
(

1 − µβn

νβn+1

)
(ϕ(yn, zn) + ϕ(zn, wn)) ≤αn

(
ϕ(x∗, u) + θn

αn

ϕ(x∗, xn−1

)
+ (1 − αn)ϕ(x∗, xn) − ϕ(x∗, xn+1).

By condition B2 and (3.15), we have (ϕ(yn, zn) + ϕ(zn, wn)) → 0, as n → ∞, thus
lim

n→∞
ϕ(yn, zn) = lim

n→∞
ϕ(zn, wn) = 0.

Since the sequences {yn}, {zn} and {wn} are bounded, we obtain by Lemma 2.2, that
lim

n→∞
∥yn − zn∥ = lim

n→∞
∥zn − wn∥ = 0.(3.19)

From Algorithm 3.4 and condition B4, we obtain
lim

n→∞
ϕ(wn, xn) = lim

n→∞
θnϕ(xn, xn−1) = 0,

and by Lemma 2.2, we get
lim

n→∞
∥wn − xn∥ = 0.(3.20)

It is easy to see from (3.19) and (3.20), that
lim

n→∞
∥xn − zn∥ = ∥xn − yn∥ = 0.(3.21)

Observe also that
ϕ(yn, pn) = ϕ(yn, J

−1((1 − γn)Jyn + γn)JSyn) → 0, as n → ∞.(3.22)
Hence, by Lemma 2.2, we obtain

lim
n→∞

∥yn − pn∥ = 0.

This and (3.21), imply
lim

n→∞
∥xn − pn∥ = 0.

Furthermore,
∥Jxn+1 − Jpn∥ = αn∥Ju− Jpn∥ = αn∥Ju− Jpn∥ → 0, as n → ∞.

Since J−1 is norm-to-norm continuous on bounded subsets of E, we have ∥xn+1−pn∥ →
0, as n → ∞. Hence,

∥xn+1 − xn∥ ≤ ∥xn+1 − pn∥ + ∥pn − xn∥ → 0, as n → ∞.(3.23)
Now, since the sequence {xn} is bounded there exists a subsequence {xni

} of {xn} such
that xn ⇀ q ∈ E. Then, by (3.19), (3.20) and Lemma 3.4, we obtain q ∈ Sol(C, f).
Also, since ∥yn − Syn∥ → 0 and ∥xn − yn∥ → 0 as n → ∞, then we have q ∈ F̂ (S) =
F (S). Therefore, q ∈ Γ.
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We now show that {xn} converges strongly to a point x∗ = ΠΓu. Let {xni
} be a

subsequence of {xn} such that xni
⇀ q and

lim sup
n→∞

⟨Ju− Jx∗, xn+1 − x∗⟩ = lim
i→∞

⟨Ju− Jx∗, xni+1 − x∗⟩.

Since ∥xn+1 − xn∥ → 0 as n → ∞, we have by (2.5), that
lim sup

n→∞
⟨Ju− Jx∗, xn+1 − x∗⟩ = lim

i→∞
⟨Ju− Jx∗, xni+1 − x∗⟩

=⟨Ju− Jx∗, q − x∗⟩ ≤ 0.(3.24)
It follows from Lemma 2.5, Lemma 3.5 (i) and (3.24), that ϕ(p, xn) → as n → ∞.
Therefore, by Lemma 2.2, we obtain

lim
n→∞

∥xn − x∗∥ = 0.

Case II Suppose there exists a subsequence {xnj
} of {xn} such that

ϕ(x∗, xnj+1) > ϕ(x∗, xnj
), for all n ∈ N.

From Lemma 2.6, there exists a non-decreasing sequence {mn} ⊂ N such thatmn → ∞
and the following inequalities hold for all n ∈ N:

ϕ(x∗, xmn) ≤ ϕ(x∗, xmn+1) and ϕ(p, xn) ≤ ϕ(x∗, xmn+1).(3.25)
We note from (3.11) and (3.12), that
ϕ(x∗, xmn) ≤ϕ(x∗, xmn+1) ≤ αmnϕ(x∗, u)

+ (1 − αmn)
[
ϕ(x∗, wmn) −

(
1 − µβmn

νβmn+1

)
(ϕ(ymn , zmn) + ϕ(zmn , wmn))

]
≤αmnϕ(x∗, u) + (1 − αmn) (((1 − θmn)ϕ(x∗, xmn) + θmnϕ(x∗, xmn−1)))

− (1 − αmn)
(

1 − µβmn

νβmn+1

)
(ϕ(ymn , zmn) + ϕ(zmn , wmn))

≤αmn

(
ϕ(x∗, u) + θmn

αmn

ϕ(x∗, xmn−1)
)

− (1 − αmn)
(

1 − µβmn

νβmn+1

)
(ϕ(ymn , zmn) + ϕ(zmn , wmn)).

Hence,

(1 − αmn)
(

1 − µβmn

νβmn+1

)
× (ϕ(ymn , zmn) + ϕ(zmn , wmn))

≤αmn

(
ϕ(x∗, u) + θmn

αmn

ϕ(x∗, xmn−1)
)

+ (1 − αmn)ϕ(x∗, xmn) − ϕ(x∗, xmn).

Since αmn → 0 as n → ∞, it follows that(
1 − µβmn

νβmn+1

)
(ϕ(ymn , zmn) + ϕ(zmn , wmn)) → 0, as n → ∞,
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hence

lim
n→∞

ϕ(ymn , zmn) = lim
n→∞

ϕ(zmn , wmn) = 0.

Since {xmn}, {ymn} and {wmn} are bounded, we have

lim
n→∞

∥ymn − zmn∥ = lim
n→∞

∥zmn − wmn∥ = 0.

Following similar method as in Case I, we obtain

lim
n→∞

∥wmn − Swmn∥ = lim
n→∞

∥xmn+1 − xmn∥ = 0.(3.26)

By Lemma 3.4 and (3.26), we obtain a weak limit q ∈ E of {xmn} such that q ∈ Γ.
Again, since {xmn} is bounded, we can choose a sequence {xmn} of {xmn}, subse-

quencing if necessary such that xmn → q as n → ∞ and

lim sup
n→∞

⟨Ju− Jx∗, xmn+1 − x∗⟩ = lim
n→∞

⟨Ju− Jx∗, xmn+1 − x∗⟩.

Hence, from (2.5), we have

lim sup
n→∞

⟨Ju− Jx∗, xmn+1 − x∗⟩ = lim
n→∞

⟨Ju− Jx∗, xmn+1 − x∗⟩

≤⟨Ju− Jx∗, q − x∗⟩ ≤ 0.(3.27)

From (3.25), we have

0 ≤ϕ(x∗, xmn+1) − ϕ(x∗, xmn)
≤(1 − αmn)ϕ(x∗, xmn)

+ αmn

(
θmn

αmn

ϕ(x∗, xmn−1) + 2⟨Ju− Jx∗, xmn+1 − x∗⟩
)

− ϕ(x∗, xmn).

That is

ϕ(x∗, xmn) ≤ θmn

αmn

ϕ(x∗, xmn−1) + 2⟨Ju− Jx∗, xmn+1 − x∗⟩.(3.28)

Hence, by condition (B5) and (3.27), we obtain ϕ(x∗, xmn) → 0 as n → ∞ and Lemma
2.2 implies ∥xmn − x∗∥ → 0 as n → ∞. Consequently, ∥xn − x∗∥ → 0 as n → ∞.
Therefore, the sequence {xn} converges strongly to x∗ = ΠΓu. □

4. Applications

In this section, we present some theoretical applications of our main result.

4.1. Variational Inequalities Problem. Suppose we define the f in EP (C, f) (1.1),
by:

f(x, y) :=

⟨Ax, y − x⟩, if x, y ∈ C,

+∞, otherwise,
(4.1)
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where A : C → E∗ is a strongly γ-pseudomonotone mapping. Then EP (C, f) (1.1)
reduces to V IP (C,A), that is to find x∗ ∈ C such that

(4.2) ⟨Ax∗, y − x∗⟩ ≥ 0, for all y ∈ C.

We denote the set of solution of (4.2) by Sol(C,A). Recall an operator A is said to
be strongly γ-pseudomonotone, if there exists γ > 0 such that for any x, y ∈ C

⟨Ax, y − x⟩ ≥ 0 ⇒ ⟨Ay, y − x⟩ ≥ γϕ(y, x).

In this situation, Algorithm 3.4 when modified provides a new method for solving
variational inequality problems and fixed point problem for a quasi-ϕ-nonexpansive
mapping. We give the new method as follows.
Algorithm 4.1. (TRSSEM) for V IP (C,A)

Step 0. Choose the sequences {θn}, {αn} and {γn} ⊂ (0, 1) satisfying Assumption
3.3, take η, ρ ∈ (0, 1) and β0 > 0. For u ∈ C, select initial points x0 and x1 in C. Set
n = 1.

Step 1. For i = 1, 2, . . . ,m, and given the current iterate wn, construct the family
of half spaces

Ci
n := {z ∈ E : hi(wn) + ⟨h′

i(wn), z − wn⟩ ≤ 0}
and set

Cn = ∩m
i=1C

i
n.

Let wn := J−1(Jxn + θn(Jxn−1 − Jxn)). Compute

zn = ΠCnJ
−1(Jwn − βnAwn),(4.3)

where βn is given by

βn+1 =

min
{
βn,

µ∥wn−zn∥
∥g(wn)−g(zn)∥

}
, if g(wn) ̸= g(zn),

βn, otherwise.
(4.4)

Step 2. If wn = zn (wn ∈ Sol(C,A)), then set wn = yn and go to Step 3. Otherwise,
compute the next iterate by

yn = ΠQnJ
−1(Jwn − βnAzn),(4.5)

where
Qn = {w ∈ E : ⟨w − zn, Jwn − βnAwn − Jzn⟩ ≤ 0}.

Step 3. Compute

(4.6) xn+1 = J−1((1 − αn)Ju+ αn(1 − γn)Jyn + γnJSyn).

Step 4. Set n := n+ 1 and go to Step 1.
A convergence result for solving VIP(C,A) (4.2) is given below without proof.
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Theorem 4.2. Let C be a nonempty, closed and convex subset of a 2-uniformly
convex and uniformly smooth real Banach space E and hi : E → R be a family
of convex, weakly lower semicontinuous and Gâteaux differentiable functions, for
i = 1, 2, . . . ,m. Let A : C → E∗ be a strongly γ-pseudomonotone operator that is
bounded on bounded sets, let S : E → E be a quasi-ϕ-nonexpansive mapping such that
Γ = {Sol(C,A)∩F (S)} ≠ ∅. Let {θn}, {βn} and {αn} be sequences in (0, 1) satisfying
Assumption 3.3, then the sequence {xn} generated by Algorithm 4.1 converges strongly
to p = ΠΓu, where ΠΓ is the projection of C onto Γ.

4.2. Fixed Point Problem (FPP). Given a closed set C ⊂ E, a fixed point of a
mapping T : C → C is any point x∗ ∈ C such that x∗ = Tx∗. Finding a fixed point
amounts to solving EP (C, f) with

f(x, y) = ⟨x− Tx, y − x⟩, for all y ∈ C.

In this case, we define the operator T = I −A, where I is the identity mapping on C
and A is the operator defined in Subsection 4.1. The method and result given in 4.1,
thus apply.

5. Conclusion

We considered an iterative approximation of a common solution of EP and FPP. We
introduced a totally relaxed self adaptive inertial subgradient extragradient method,
Mann and Halpern iterative technique for solving this problem in 2-uniformly convex
Banach space, which is also uniformly smooth. Our method uses a carefully selected
adaptive stepsize which does not depend on any Lipschitz-type condition neither does
it require the knowledge of the Lipschitz constant of the gradient of pseudomonotone
operator.
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[49] V. Todorčević, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, Springer
Nature, Switzerland AG, 2019. https://doi.org/10.1007/978-3-030-22591-9

[50] R. T. Rockfellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim.
14 (1977), 877–808. https://doi.org/10.1137/0314056

[51] G. C. Ugwunnadi, C. Izuchukwu and O. T. Mewomo, On nonspreading-type mappings in
Hadamard spaces, Bol. Soc. Parana. Mat. (3)39(5) (2021), 175–197. https://doi.org/10.5269/
bspm.41768

[52] V. A. Uzor, T. O. Alakoya and O. T. Mewomo, Strong convergence of a self-adaptive inertial
Tseng’s extragradient method for pseudomonotone variational inequalities and fixed point problems,
Open Math. (2022). https://doi.org/10.1515/math-2022-0429

[53] N. T. Vinh and A. Gibali, Gradient projection-type algorithms for solving equilibrium problems
and its applications, Comput. Appl. Math. 38 (2019), Article ID 119. https://doi.org/10.
1007/240314-019-0894-5

https://doi.org/10.1007/s10915-021-01670-1
https://doi.org/10.1515/dema-2021-0006
https://doi.org/10.23952/jnfa.2020.10
https://doi.org/10.3934/naco.2021004
https://doi.org/10.3934/naco.2021004
https://doi.org/10.1007/s12215-020-00505-6
https://doi.org/10.1007/s11587-021-00624-x
https://1146\T1\textendash 1170. doi:10.3906/mat-1911-83
https://1146\T1\textendash 1170. doi:10.3906/mat-1911-83
https://doi.org/10.1007/s10898-012-9922-3
https://doi.org/10.1142/S1793557121501370
https://doi.org/10.1142/S1793557121501370
https://doi.org/ 10.1007/978-3-030-22591-9
https://doi.org/10.1137/0314056
https://doi.org/10.5269/bspm.41768
https://doi.org/10.5269/bspm.41768
https://doi.org/10.1515/math-2022-0429
https://doi.org/10.1007/240314-019-0894-5
https://doi.org/10.1007/240314-019-0894-5


202 O. K. OYEWOLE, H. A. ABASS, AND O. T. MEWOMO

[54] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull.
Aust. Math. Soc. 65 (2002), 109–113. https://doi.org/10.1017/S0004972700020116

[55] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127–1138.
https://doi.org/10.1016/0362-546X(91)90200-K

[56] J. Yang and H. W. Liu, Strong convergence result for solving monotone variational inequal-
ities in Hilbert space, Numer. Algorithms 80 (2019), 741–752. https://doi.org/10.1007/
s11075-018-0504-4

[57] F. Yang, L. Zhao and J. K. Kim, Hybrid projection method for generalized mixed equilibrium
problem and fixed point problem of infinite family of asymptotically quasi-ϕ-nonexpansive map-
pings in Banach spaces, Appl. Math. Comput. 218(10) (2012), 6072–6082. https://doi.org/
10.1016/j.amc.2011.11.091

1School of Mathematics, Statistics and Computer Science,
University of KwaZulu-Natal,
Durban, South Africa
2DSI-NRF Center of Excellence in Mathematical and Statistical Sciences,
(CoE-MaSS) Johannesburg, South Africa
Email address: 1217079141@stu.ukzn.ac.za
Email address: 2216075727@stu.ukzn.ac.za
Email address: 3mewomoo@ukzn.ac.za

https://doi.org/10.1017/S0004972700020116
https://doi.org/10.1016/0362-546X(91)90200-K
https://doi.org/10.1007/s11075-018-0504-4
https://doi.org/10.1007/s11075-018-0504-4
https://doi.org/10.1016/j.amc.2011.11.091
https://doi.org/10.1016/j.amc.2011.11.091

	1. Introduction
	2. Preliminaries
	3. Main Result
	4. Applications
	4.1. Variational Inequalities Problem
	4.2. Fixed Point Problem (FPP)

	5. Conclusion
	Acknowledgements.

	References

