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MODULAR TOTAL VERTEX IRREGULARITY STRENGTH OF
REGULAR GRAPHS

TITA KHALIS MARYATI1, FAWWAZ FAKHRURROZI HADIPUTRA2, MARTIN BAČA3,
AND ANDREA SEMANIČOVÁ-FEŇOVČÍKOVÁ3,4

Abstract. Let G be a graph of order n. For a positive integer k, a labeling
f : V (G) ∪ E(G) → [1, k] is called a modular vertex irregular total k-labeling if the
induced weights wf (u) : V (G) → Zn defined by wf (u) = f(u) +

∑
ux∈E(G) f(ux)

(mod n) is a bijection. The smallest k for which there exists a modular vertex
irregular total k-labeling of G is called the modular total vertex irregularity strength
of G. In this paper, we determine the modular total vertex irregularity strength of
disjoint union of cycles. We also present a new bound of the modular total vertex
irregularity strength for regular graphs.

1. Introduction

In the realm of mathematics, graph theory stands as a discipline dedicated to
the exploration of abstract structures known as graphs. These graphs comprise
two fundamental elements: vertices, often referred to as nodes or points, and edges,
which represent the connections between these vertices. Edges can be visualized as
lines or links, forming a network that captures the pairwise relations between the
objects the vertices represent. Graph theory extends its reach by investigating efficient
algorithms or theorems tailored to solve problems arising from graphs. By equipping
us with the tools to understand and manipulate these network structures, graph theory
finds applications in a multitude of fields, including computer science, physics, social
sciences, and beyond.
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Let G be a simple and undirected graph. For a vertex v in G, the notion deg(v)
means the number of vertices adjacent to v in G. A graph is said to be k-regular
if deg(v) = k for every vertex v in G. In general, we say a graph is regular if it is
k-regular for some integer k. An r-factor of a graph G is an r-regular subgraph of G
which contains every vertex of G. For a vertex v of degree 2 in a graph G, a smoothing
on v is a modification of the graph G by deleting vertex v and adding a new edge
on two vertices that were adjacent to v. Any other graph notations may be referred
to [5].

One of the earliest contribution on graph theory can be seen in the work of Petersen
[14] regarding regular graphs.
Theorem 1.1 ([14]). Every regular graph of positive even degree has a 2-factor.

Let k be an integer. A labeling f is said to be a vertex irregular total k-labeling
of G if f : V (G) ∪ E(G) → [1, k] is a map such that every two distinct vertices u
and v satisfy wf(u) ̸= wf(v) with wf(u) = f(u) + ∑

ux∈E(G) f(ux). The smallest k
such that there exists a vertex irregular total k-labeling of G is called the total vertex
irregularity strength of G, which is denoted by tvs(G). This problem was introduced
by Bača et al. [3] back in 2007.

Determining the total vertex irregularity strength of a graph poses a fascinating
challenge. Graph theorists have devoted significant effort to tackle such problem.
Packiam and Kathiresan [13] found the total vertex irregularity strength of disjoint
copies of cycle and path of order 3. Indriati et al. [11] determined the total vertex
irregularity strength of generalized helm graph and modified prisms. Susilawati et al.
[21] considered the total vertex irregularity strength of trees with maximum degree
five. Furthermore, the parameter total vertex irregularity strength of a graph has also
been determined for zero divisor graph [1], convex polytope graphs [4], dodecahedral
modified generalization graph [9], generalized prism graphs [10], certain graphs derived
from a star [15], some cubic graphs [16] and trees [8, 19]. Recently, Susanto et al.
[20] found counterexamples for a conjecture of total vertex irregularity strength of
trees introduced in [8]. Variations of irregularity strength problem can also be seen in
[7, 12, 17, 18, 22], and an extensive list of problems related to graph labeling is given
in [6].

There are several results given by Bača et al. [3] regarding the total vertex irregu-
larity strength of regular graphs, which can be seen below.
Theorem 1.2 ([3]). Let G be an r-regular graph of order n. Then,⌈

n+r
1+r

⌉
≤ tvs(G) ≤ n − r + 1.

Theorem 1.3 ([3]). Let G be a regular Hamiltonian graph of order n. Then,

tvs(G) ≤
⌈

n+2
3

⌉
.

Recently, Ali et al. [2] considered a stronger problem. Let G be a graph of order
n and k be a positive integer. A map f : V (G) ∪ E(G) → [1, k] is called modular
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vertex irregular total k-labeling if the induced weights wf (u) : V (G) → Zn defined by
wf (u) = f(u) +∑

ux∈E(G) f(ux) (mod n) is a bijective map. The smallest k such that
there exists a modular vertex irregular total k-labeling of G is called modular total
vertex irregularity strength of G, which is denoted by mtvs(G).

By definition, it is obvious that every modular vertex irregular total k-labeling
is also a vertex irregular total k-labeling. In fact, if the order of G is n, then the
following inequality holds

tvs(G) ≤ mtvs(G) ≤ n.(1.1)

Ali et al. [2] found a sufficient condition for a graph G to have equal values of tvs(G)
and mtvs(G), which is written as follows.

Theorem 1.4 ([2]). Let G be a graph with tvs(G) = k. If total vertex weights under a
corresponding vertex irregular total k-labeling constitute a set of consecutive integers,
then tvs(G) = mtvs(G) = k.

By preceding result, they are able to find the modular total vertex irregularity
strength of several graphs, such as cycles.

Theorem 1.5 ([2, 3]). Let Cn be a cycle with n ≥ 3 vertices. Then,

tvs(Cn) = mtvs(Cn) =
⌈

n+2
3

⌉
.

Consider the modular vertex irregular total ⌈n+2
3 ⌉-labeling f of a cycle Cn =

v1v2 . . . vn defined in the following way

f(vi) =


⌈

2i−1
3

⌉
, i ∈

[
1,
⌈

n
2

⌉]
,⌈

n+2
3

⌉
, i =

⌈
n
2

⌉
+ 1,⌈

2(n−i)+4
3

⌉
, i ∈

[⌈
n
2

⌉
+ 2, n

]
,

f(vivi+1) =


⌈

2i
3

⌉
, i ∈

[
1,
⌈

n
2

⌉]
,⌈

2(n−i)+3
3

⌉
, i ∈

[⌈
n
2

⌉
+ 1, n − 1

]
,

(1.2)

f(vnv1) =1.

Note that under the labeling f the maximal vertex label is ⌈n+2
3 ⌉ while the maximal

edge label is ⌈n+1
3 ⌉. The vertex weights are distinct consecutive number from the set

[3, n + 2].
In the proof of Theorem 1.2, the constructed labeling satisfies the requirement of

Theorem 1.4. Therefore, the modular total vertex irregularity strength of a regular
graph is bounded as follows.

Corollary 1.1. Let G be an r-regular graph of order n. Then,⌈
n+r
1+r

⌉
≤ mtvs(G) ≤ n − r + 1.
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In this paper, we would like to present a stronger upper bound of mtvs(G) with
respect to Corollary 1.1. First, we provide a modular total vertex irregularity strength
of any 2-regular graph. Then, we attempt to decompose any regular graphs into
disjoint cycles which would yield the desired result. In addition, we are able to
conclude a generalization of Theorem 1.3.

2. Main Results

Theorem 2.1. Let ni, i = 1, 2, . . . , p be positive integers and let n = ∑p
i=1 ni. Then,

mtvs
( p⋃

i=1
Cni

)
=
⌈

n+2
3

⌉
.

Proof. Without loss of generality assume n1 ≤ n2 ≤ · · · ≤ np. Let G =
p⋃

i=1
Cni

and let Gj = ⋃j
i=1 Cni

for any integer j ∈ [1, p]. Since G is a 2-regular graph, then
mtvs(G) ≥ ⌈n+2

3 ⌉ due to Corollary 1.1.
Let Ni = ∑i

j=1 nj, where 1 ≤ i ≤ p. We show that there exists a vertex irregular
total labeling of G which constitutes consecutive weights from 3 and has the largest
label equal to

⌈
n+2

3

⌉
by induction on p. It is true for p = 1, since the labeling f

defined in Equation (1.2) induces consecutive vertex weights from 3 with the largest
label of

⌈
N1+2

3

⌉
. For Gk, k ≥ 2, assume there exists a vertex irregular total labeling

g of Gk which constitutes consecutive weights from 3 with the largest label
⌈

Nk+2
3

⌉
.

Now we prove that there also exists a vertex irregular total labeling of Gk+1 which
constitutes consecutive weights from 3 with the largest label

⌈
Nk+1+2

3

⌉
.

By the assumption, the largest label of g in Gk is
⌈

Nk+2
3

⌉
and the set of induced

weights is [3, Nk + 2]. We split the problem by cases as follows.
Case 1. Nk + 2 = 3q + 1 for some integer q. Thus, q = Nk+1

3 .
Define a total labeling h of Gk+1 as follows

h(v) =

g(v), if v ∈ V (Gk),
f(v) + q − 1, if v ∈ V (Cnk+1),

h(e) =

g(e), if e ∈ E(Gk),
f(e) + q, if e ∈ E(Cnk+1).

Let N(v) denote the open neighborhood of the vertex v. Then, the weights of
vertices in Gk are

wh(v) = g(v) +
∑

u∈N(v)
g(uv) = wg(v) ∈ [3, Nk + 2]
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and the weights of vertices in Cnk+1 are

wh(v) =(f(v) + q − 1) +
∑

u∈N(v)
(f(uv) + q) = wf (v) + 3q − 1

∈[3 + (3q − 1), (nk+1 + 2) + (3q − 1)] = [3q + 2, nk+1 + 3q + 1]
=[Nk + 3, Nk+1 + 2].

Thus, the labeling h induces consecutive vertex weights from 3.
The labels of g are at most

⌈
Nk+2

3

⌉
. The maximal vertex label in Cnk+1 is

max{f(v) : v ∈ V (Cnk+1)} + q − 1 =
⌈

nk+1+2
3

⌉
+ Nk+1

3 − 1

=
⌈

nk+1+2
3 + Nk+1

3 − 1
⌉

=
⌈

nk+1+Nk

3

⌉
=
⌈

Nk+1
3

⌉
and the maximal edge label in Cnk+1 is

max{f(e) : e ∈ E(Cnk+1)} + q =
⌈

nk+1+1
3

⌉
+ Nk+1

3 =
⌈

nk+1+1
3 + Nk+1

3

⌉
=
⌈

nk+1+Nk+2
3

⌉
=
⌈

Nk+1+2
3

⌉
.

Hence, the labels of h are at most
⌈

Nk+1+2
3

⌉
.

Case 2. Nk + 2 = 3q + 2 for some integer q, i.e., q = Nk

3 .
Similarly, define a total labeling h of Gk+1 in the following way

h(v) =

g(v), if v ∈ V (Gk),
f(v) + q, if v ∈ V (Cnk+1),

h(e) =

g(e), if e ∈ E(Gk),
f(e) + q, if e ∈ E(Cnk+1).

Again, the labeling h induces consecutive weights from 3. This follows from the
fact that the weights of vertices in Gk are

wh(v) = g(v) +
∑

u∈N(v)
g(uv) = wg(v) ∈ [3, Nk + 2]

and the weights of vertices in Cnk+1 are

wh(v) =(f(v) + q) +
∑

u∈N(v)
(f(uv) + q) = wf (v) + 3q

∈[3 + 3q, (nk+1 + 2) + 3q] = [3q + 3, nk+1 + 3q + 2] = [Nk + 3, Nk+1 + 2].

The maximal vertex label in Cnk+1 is

max{f(v) : v ∈ V (Cnk+1)} + q =
⌈

nk+1+2
3

⌉
+ Nk

3 =
⌈

nk+1+2
3 + Nk

3

⌉
=
⌈

nk+1+Nk+2
3

⌉
=
⌈

Nk+1+2
3

⌉
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and the maximal edge label in Cnk+1 is

max{f(e) : e ∈ E(Cnk+1)} + q =
⌈

nk+1+1
3

⌉
+ Nk

3 =
⌈

nk+1+1
3 + Nk

3

⌉
=
⌈

nk+1+Nk+1
3

⌉
=
⌈

Nk+1+1
3

⌉
.

Hence, the labels of h are at most
⌈

Nk+1+2
3

⌉
.

Case 3. Nk + 2 = 3q for some integer q, hence q = Nk+2
3 .

Let f ′ be a labeling of Cnk+1 constructed as follows. Take a labeling on Cnk+1+1
from Equation (1.2), and apply the smoothing on the vertex with the weight of 3.
Thus the labeling f ′ is a vertex irregular total

⌈
nk+1+3

3

⌉
-labeling of Cnk+1 inducing

vertex weights from [4, nk+1 + 3]. Now, define a total labeling h of Gk+1 as follows

h(v) =

g(v), if v ∈ V (Gk),
f ′(v) + q − 1, if v ∈ V (Cnk+1),

h(e) =

g(e), if e ∈ E(Gk),
f ′(e) + q − 1, if e ∈ E(Cnk+1).

First, we prove that h induces a consecutive weights from 3. The weights of vertices
in Gk are

wh(v) = g(v) +
∑

u∈N(v)
g(uv) = wg(v) ∈ [3, Nk + 2]

and the weights of vertices in Cnk+1 are

wh(v) =(f ′(v) + q − 1) +
∑

u∈N(v)
(f ′(uv) + q − 1) = wf ′(v) + 3q − 3

∈[4 + (3q − 3), (nk+1 + 3) + (3q − 3)] = [3q + 1, nk+1 + 3q]
=[Nk + 3, Nk+1 + 2].

Thus, the induced vertex weights form the set [3, Nk+1 + 2].
The labels of Gk are at most

⌈
Nk+2

3

⌉
and the largest vertex label in Cnk+1 is

max{f ′(v) : v ∈ V (Cnk+1)} + q − 1 =
⌈

nk+1+3
3

⌉
+ Nk+2

3 − 1

=
⌈

nk+1+3
3 + Nk+2

3 − 1
⌉

=
⌈

nk+1+Nk+2
3

⌉
=
⌈

Nk+1+2
3

⌉
and the maximal edge label in Cnk+1 is

max{f ′(e) : e ∈ E(Cnk+1)} + q − 1 =
⌈

nk+1+2
3

⌉
+ Nk+2

3 − 1

=
⌈

nk+1+2
3 + Nk+2

3 − 1
⌉
=
⌈

nk+1+Nk+1
3

⌉
=
⌈

Nk+1+1
3

⌉
.

Hence, the labels under the labeling h are at most
⌈

Nk+1+2
3

⌉
.

In every case, we have the desired modular vertex irregular total labeling h with
the largest label of

⌈
Nk+1+2

3

⌉
. This implies that mtvs(G) ≤ ⌈n+2

3 ⌉. □
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For example, consider G = C5 ∪ C7 ∪ C10 ∪ C11. Then, n = 5 + 7 + 10 + 11 = 33.
Start with the labeling from (1.2) on C5. Since the largest weight of C5 is 7, then
apply Case 1 from the preceding proof with q = 2. This yield that largest weight of
C5 ∪ C7 is 14. Similarly, apply Case 2 with q = 4 which implies the current largest
label is 24. Finally, apply Case 3 with q = 8. We conclude that the largest weight
and the largest label, respectively of this labeling in G are 35 and 12. Therefore,
mtvs(G) = ⌈n+2

3 ⌉ = ⌈33+2
3 ⌉ = 12. The labeling of G is depicted in Figure 1.

Figure 1. The graph G = C5 ∪ C7 ∪ C10 ∪ C11 with mtvs(G) = 12.

We generalize the notion of an r-factor. Let R be a set of positive integers. An
R-factor of a graph G is a subgraph H which contains every vertex of G such that
every connected component of the R-factor is an r-regular graph, where r ∈ R.

Theorem 2.2. Let R = {r1, r2, . . . , rℓ} be a set of positive integers with r1 < r2 <
· · · < rℓ and let lcm(R) be the least common multiple of integers in R. Let G be a
graph and H be an R-factor of G. Then,

mtvs(G) ≤ max
{

lcm(R)
r1

, mtvs(G − E(H))
}

.

In particular, if R = {r1}, then mtvs(G) ≤ mtvs(G − E(H)).

Proof. Let Oi, i ∈ [1, ℓ] be the union of all connected ri-regular components of H. Let
f ∗ be a modular vertex irregular total k∗-labeling of G − E(H) with k∗ = mtvs(G −
E(H)). Define a total labeling f of G as follows

f(v) =f ∗(v), if v ∈ V (G),

f(e) =


lcm(R)

ri
, if e ∈ E(Oi), i ∈ [1, ℓ],

f ∗(e), if e ∈ E(G) − E(H).

Evidently, the largest label of f is the maximum of k∗ and lcm(R)
r1

. Moreover, the weight
of a vertex v ∈ V (G) is wf(v) = wf∗(t) + lcm(R). This implies that f is a modular
vertex irregular total labeling of G, hence mtvs(G) ≤ max

{
lcm(R)

r1
, mtvs(G − E(H))

}
.

If R = {r1}, then clearly mtvs(G) ≤ mtvs(G − E(H)). □

With preceding theorem, we are able to provide an upper bound of the modular total
vertex irregularity strength of some non-regular graphs. As an example, we consider



534 T. K. MARYATI, F. F. HADIPUTRA, M. BAČA, AND A. SEMANIČOVÁ-FEŇOVČÍKOVÁ

disjoint union of circulant graphs. Let n, m, and 1 ≤ a1 < a2 < · · · < am ≤
⌊

n
2

⌋
be

positive integers. An undirected graph with the set of vertices V = {v0, v1, . . . , vn−1}
and the set of edges E = {vivi+aj

: 0 ≤ i ≤ n − 1, 1 ≤ j ≤ m}, with arithmetic in
the indices being taken modulo n, is called a circulant graph and it is denoted by
Cn(a1, . . . , am). Let G = C8(1, 4) ∪ C9(1, 4) as in Figure 2. Choose H to be the union
of all inner edges of G. Since H is a {1, 2}-factor, and G − E(H) ∼= C8 ∪ C9 then

mtvs(G) ≤ max
{

lcm(R)
r1

, mtvs(G − E(H))
}

= max{2, mtvs(C8 ∪ C9)}

=
⌈

(8+9)+2
3

⌉
= 7.

Figure 2. A modular vertex irregular total 7-labeling of C8(1, 4) ∪ C9(1, 4).

For the previous example we only have an upper bound for mtvs, not the exact
value. Moreover, we can improve the obtained labeling. Do the following. In C9(1, 4),
decrease every vertex label by 2 and labels of all outer edges by 2. This will decrease
the vertex weights by 6. Now, in C9(1, 4) increase labels of all inner edges by 3. This
will add 6 to the vertex weights. Thus, at the end all vertex weights remain the same,
but the maximal label will be 5. Thus, mtvs(C8(1, 4) ∪ C9(1, 4)) ≤ 5. Note that the
value of the mtvs is possible to be 4. Figure 3 presents the modified mtvs labeling of
C8(1, 4) ∪ C9(1, 4).

Furthermore, we can use both Theorem 2.1 and Theorem 2.2 to find an upper
bound of the modular total vertex irregularity strength of even regular graphs.

Theorem 2.3. Let G be an even regular graph of order n. Then,

mtvs(G) ≤
⌈

n+2
3

⌉
.

Proof. By Theorem 1.1, there exists a 2-factor H in the 2r-regular graph G. By
Theorem 2.2, mtvs(G) ≤ mtvs(G − E(H)). The resulting graph G − E(H) is a
2(r − 1)-regular graph and by Theorem 1.1 it contains a 2-factor. We can remove
2-factors repeatedly r −1 times until the resulting graph will be isomorphic to a union
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Figure 3. A modular vertex irregular total 5-labeling of C8(1, 4) ∪ C9(1, 4)

of cycles ⋃p
i=1 Cni

, ∑p
i=1 ni = n. This implies

mtvs(G) ≤ mtvs
( p⋃

i=1
Cni

)
=
⌈

n+2
3

⌉
,

due to Theorem 2.1. □

For odd regular graphs satisfying an additional requirement we have a similar result
as for even regular graphs.

Corollary 2.1. Let G be an odd regular graph of order n containing a 1-factor. Then,

mtvs(G) ≤ ⌈n+2
3 ⌉.

Proof. Let H be a 1-factor of G. Give the label 1 to every edge of H and combine it
with the labeling determined by applying Theorem 2.3 to G − E(H). □

For example, consider the 5-regular graph G which is the union of the complete
graph K6 and the complete bipartite graph K5,5 as depicted in Figure 4. Choose the
1-factor H1 of G denoted by the color green. Similarly, choose the 2-factor H2 of G
denoted by the color orange. It follows that G − E(H1 ∪ H2) ∼= 2C3 ∪ C10, implying

Figure 4. A decomposition of K6 ∪ K5,5.
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mtvs(G) ≤ mtvs(G − E(H1 ∪ H2)) = mtvs(2C3 ∪ C10) =
⌈

(6+10)+2
3

⌉
= 6.

By (1.1), combined with Theorem 2.3 and Corollary 2.1, we have a result for the
total vertex irregularity strength of some regular graphs.
Corollary 2.2. Let G be an even regular graph or an odd regular graph containing a
1-factor and let G be of order n. Then,

tvs(G) ≤
⌈

n+2
3

⌉
.

This result generalizes Theorem 1.3. Let G be an r-regular Hamiltonian graph of
order n. If r is even, then we can apply Corollary 2.2 directly. Meanwhile, if r is odd,
then n must be even. Since G is Hamiltonian with even order, then G has a 1-factor.
Again, simply apply Corollary 2.2 and we have the desired result.

3. Conclusion

In this paper we investigated the existence of modular vertex irregular total labeling
of regular graphs. We determined the precise value of the modular total vertex
irregularity strength of any 2-regular graph that proves the sharpness of the presented
lower bound. Using the concept of the R-factor, we presented a new upper bound
of the modular total vertex irregularity strength for even regular graphs and for odd
regular graphs containing a 1-factor.
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