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SOME GENERALIZATIONS INVOLVING THE POLAR
DERIVATIVE FOR AN INEQUALITY OF PAUL TURAN

M. Y. MIR!, S. L. WALI!, AND W. M. SHAH!

ABSTRACT. For a polynomial P(z) := Z?:o ajz? of degree n having all zeros in
|z| <1, It is known:

lan] + aol

P(2)] ;<n+ "") P

In this paper, besides the generalization of the above inequality, we extend some
well-known results to the polar derivative of a polynomial.

1. INTRODUCTION

For each positive integer n, let P,, denote the linear space of all polynomials P(z) :=
_oa;z’ of degree at most n over the field C of complex numbers. If P € P, and P’
be its derivative, then concerning the estimate of |P’(z)| in terms of |P(z)| on |z| = 1,
Bernstein [2] proved the following;:
(1.1) max |P'(2)| < nmax | P(2)].
Equality holds in (1.1) only if P has all its zeros at the origin. It stands natural to ask
what happens to inequality (1.1), if we impose restrictions on the location of zeros
of P. In this connection, the following inequalities are the earliest belonging to this
domain of ideas, which have a clear impact on the subsequent work carried forward
since then.
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If P € P, has all zeros in |z| > 1, then

(1.2) max|P'(2)] < 5 max |P(z)]

and if P € P, has all zeros in |z| < 1, then

(L3) max|P'(2)] > 5 max |P(2)]
Inequality (1.2) was observed by Erdos and later verified by Lax [6], whereas inequality
(1.3) was established by Turan [10].

By involving the coefficients of the polynomial P(z), Dubinin [3] refined inequality
(1.3). More precisely, he proved:

If all the zeros of a polynomial P € P, lie in |z| < 1, then

P 2 ;(HW"“O')W(Z»

|an| + [aol

Various Turan-type inequalities have appeared in the literature wherein the underlying
polynomial is replaced by some more general class of functions and, the derivative of
the function by some operators which, in particular generalize the ordinary derivative.
Polar derivative of a polynomial with respect to a point « is one such operator for a
polynomial P(z) of degree n, denoted by D,P(z) and is defined as (for references see

[7]) Do P(z) =nP(2) 4+ (o — z)P'(2). It is to be observed that
D,P

lim ——=~ (2)
a—+00 o

= P'(2).

Inequalities have been proved occasionally, which extend the ordinary derivative of
a complex polynomial to the polar derivative. In this paper, we prove some results
concerning the modulus of the polar derivative of a polynomial having all zeros
in |z| <k, & > 1. Our results generalize as well as sharpen some already known
inequalities of Turan type.

2. LEMMAS

Lemma 2.1. If P(z) = z°(ag + a1z + - - - + a,—s2" %), 0 < s < n, is a polynomial of
degree n. > 1 having all its zeros in |z| < 1, then for P(z) # 0, with |z| = 1, we have

(2.1) P(2)] > ;{ms g Vlonel = M}uw.

|an—8|

The above lemma follows from a result due to Govil and Kumar [5].
Next lemma is due to Frappier et al. [4].
Lemma 2.2. If P(z) is a polynomial of degree n > 1, then for R > 1
(2.2) max |P(z)] < R"max |P(z2)| — (R" — R %)|P(0)|, ifn>1

lz|=R l2]=1
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and

(2.3) max | P(2)| < Rmax |P()] = (R = DIPO), ifn= 1.

Lemma 2.3. If P(z) is a polynomial of degree n having all its zeros in |z| < k, k > 1,
then for 0 <l <1

2k" kn—1
2.4 P(2)| > P(z)| —1 in | P
(24) max | P(2)] = 1— 7 max | P(2) (k"+1) min | P(2)]
2kn—1 k-1 k2o
I _ _ ), 2
+1+k:”|an 1|( n n—2 )’ ifn>2
and
2 k2 —
(2.5) llfznfzﬂolyP(Z)l_1 k2ﬁ3§|P(Z)I N ) min P(z)|
k(k — 1) Y
1_|_k2 |a’1|7 an_

The above lemma is due to Rather et al. [§].
We also need the following lemma which is a special case of a result due to Bern-
stein [1].

Lemma 2.4. Let P € P,, has all zeros in |z| < 1 and Q(z) = z”P(%) Then, for
|2l =1
Q'(2) < [P'(2)].

3. MAIN RESULTS.

In this paper, we first prove the following result which is a generalization of a result
due to Rather et al. [9].

Theorem 3.1. If P € P, be such that all the zeros of P(z) = z*(ap + a1z + -+ - +
an_s2""%), 0 < s <mn, liein|z| <k, k> 1, with a zero of multiplicity s, 0 < s < n,
at origin, then for any complex number o, with |a| > k

o k”sans—
max | D.P(2)] 2 "k< o VT r)w IP(2)

kn— S‘CL ‘

, lansal(lal = ( o VP lan] = laol )

|z|=

k?(l +kn_5) [ n— s‘an S|
(3.1) + (k) |nap + aa|,
where ¢(k ) (kﬂ;;l - k:ji;) or (k—21)2 and P (k) = (1 - #) or (1 — %) according

asn > 2 orn=2.
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Proof. Since all zeros of P(z) lie in |z| < k, k > 1, with an s-fold zero at the origin,
therefore g(z) = P(kz) is a polynomial of degree n > 1, having all zeros in |z| < 1
with an s-fold zero at the origin. Applying Lemma 2.1 to g(z), we get

an S‘an s _\/70)
3.2 > —|In+s+
(32) 19'(2)] 2( =

Also,

1Dag(2)] = Ing(2) + (= 2)g'(2)| = |al - |9'(2)] = Ing(2) — 2¢'(2)].

Since g(z) has all its zeros in |z| < 1, therefore by using Lemma 2.4, it can be easily
shown that for |z| =1

19'(2)] = Ing(2) — z4'(2)].
This gives |Dag(2)| > (Ja| — 1)|¢'(2)|. Using (3.2), we get

(3.3) Dag(2)] = 192 (nHJk" "lan S'_V""") 9(2)].
2 [fn— s|an s|

Note that by hypothesis |a|/k > 1, therefore on replacing g(z) by P(kz), we have

DojuP(kz) = nP(kz) + (% — 2)kP'(k=).

Hence, from (3.3), we get

—k kn S|an S
(3.4) maX\Da/kP(le)‘ > o |2k (n—i—s—i— \/7 \/7) |Z‘ 1 kz)|.

|z|= kn 5|a |

Equivalently,

« K flap—s
85 masp.p(e) = 2k ( 2 WL*@F) nax | P(2)].

Since P(z) = z°¢(z), where ¢(z) is a polynomial of degree n — s and D, P(z) has
degree n — 1, therefore using (2.2) of Lemma 2.2 for n > 2, R =k > 1, we have

(3.6) ey [DaP(2)] < k" max | Do P(2)| = (K" = K" %)|nag + aa].

Now using (3.6) in (3.5), we get

ket max |D P (2)| — (k"' — k" *)|nag + aa|

— kn—s n—s|
(3.7) Sl =k VRl Vol 1P
2k /kn—s|an_s| |z|=k
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Now using (2.4) of Lemma 2.3 for ¢(z) with [ = 0, we have

2fn—s 2k,n—s—1 ks — 1 kn—s—? -1
> —_— -_— .
Tn‘aXW( )’—{1+kn_51£1|§>1<’¢(2)‘+1+kn_slans1’( I n—s—Z)}

Since

1
max | Da¢(2)] = ;5 max|[DaP(2)] and - max|Dag(2)] = max|DaP(2)].

We get for n > 2,
(3.8)

2k,n 2k,n71 k,nfs -1 k.n7372 -1
P > P ——|Ap—s— — .
ma | <>|_{ — max |P(2) |+ |an51|( —— n_s_g)}

|2|=k 1+ k=5 Jz]=1 1+ kn—s
Combining (3.8) and (3.7), we conclude that

(o ST

D,P
glgfl (= )|—1+k" -

N lan—s—1|(Ja —)k‘) (n+s+ \/m_ | |a0’)¢(k)

k(1 + kn—s
+ (k) |nag + aaq|,
where ¢(k) = (kn*s_l - kn*sf_l) and (k) = (1 - k%) . This proves the result for

n—s n—s—2
the case n > 2. The result for the case n = 2 can be obtained by using inequalities

(2.3) of Lemma 2.2 and (2.5) of Lemma 2.3. This completely proves Theorem 3.1. [

If we divide both sides of (3.1) by |a| and letting o — +o00, we get the following.

Corollary 3.1. If P € P,, be such that all the zeros of P(z) = z°(ap + a1z + - -+ +
an_s2""%), 0< s <m, liein |z| <k, k> 1, except a zero of multiplicity s, 0 < s < n,

at the origin, then
/kn S|an s / )|
fn— 5|CL | \ | 1
+ ‘CLn,S,1| \/ k= 8|a” 5 \/
k(l—l-k‘n*s) [ en— S|an s|

(3.9) + ¥ (k)]ail,
where ¢(k), (k) are defined in Theorem 3.1.

1
P >
1|rn‘a>1<| ()|_1+kn8(n+s+

Remark 3.1. For s = 0 Theorem 3.1 reduces to a result due to Rather et al. [9].
Remark 3.2. For k = 1, Corollary 3.1 reduces to inequality (2.1).

We next prove the following.
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Theorem 3.2. If P € P, be such that all the zeros of P(z) = z°(ap + a1z + -+ - +
an_s2""%), 0 < s <mn, liein|z| <k, k> 1, with a zero of multiplicity s, 0 < s < n,
at the origin, then for any complex number o with |o| > k and for 0 <1 < 1, we have

max | D, P(2)] > n+ s+ \/k”—5|an_s| —m e
X a e
|z|=1 kn(l + k.nfs) \/kn—s|an_8| —Im

n n+s
x (k 1‘r£1|zi)1<|P(z)| lm)+w((|a| k?)llzlli}ﬂp(zﬂ

+ (M + 17 >lm) + L_kimn_s_ﬂ
ks k-t k(1 + kn—s)

VE o lan_| — tm — \/]a|
\/k'”*s\an_s| —Im

where m = min. |, |P(2)| and ¢(k), (k) are defined in Theorem 3.1.

(3.10) X (n + s+ )(b(k:) + [nap + aa | (k),

Proof. By given hypothesis all zeros of P(z) lie in |z| < k,k > 1 with an s-fold zero at
the origin. Also, if at least one zero of P(z) lie on |z| = k, then m = min,|—, |[P(z)| =0
and the result follows from Theorem 3.1. So we assume all zeros of P(z) lie in
|z| < k with s-fold zeros at the origin. Hence, in this case m > 0. Therefore,
f(2) = P(kz) has all zeros in |z| < 1 with m = min,—; |P(2)] = min; = |f(2)|.
Hence |f(z)| > m for |z| = 1. Therefore, by Rouche’s theorem for some complex d
with |d] < 1, F(z) = f(z) — dmz" has all zeros in |z| < 1 with s-fold zeros at the
origin. Using value of F'(z) in (3.3), we get

1 kn=sa,_, — om| —+/|a
D.FE) 2 A sy VI Vool )
2
\/|k”—5an_5 — dm)|

Using the fact that T'(z) = ;IZI is non-decreasing function of z and

k" s + 0m| > k" %|ay,_s| — [0|m >0,

we get
— 1 k»n—s Ap—s| — 5 m — a
| DoF(2)| = o n+ s+ \/ [an—s] = 9] \/| ol ().
: \/kn_slan—s| - |5|m
Equivalently,
— kn—s Aps| — 5 m — a
Dupf() — 90 | 5 ol =k n+8+¢ |an—s| — |3 o]
k 2k \/k.n—s|anis| o |5‘m

(3.11) x |f(2) — 6mz"].
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Now, by simple deduction of Laguerre theorem [6, p. 52] on the polar derivative of a
polynomial that for any « with |o| > k,

Da/k(f(z) - 5mz”) = Da/kf(z) _ nn]iadzn—l

has all its zeros in |z| < 1. This implies |Dq/i(f(2)] > %M”*l. Hence, we can
choose argument of § suitably, so, that from (3.11) for |z| =1

5 —k k" =5|a,—s| — om — \/]a
|Dayif(2)] — nmalld Z|a| n+ s+ \/ | | lao
k 2k \/kn*sklnfs\ — [6]m

x (|f(2)] = [dm]).
Equivalently,

la| — k \/kn_s|an—8| = [6lm — /laol
Dapf () 25 (454 7(2)
" 2k S lan_o = [olm

_ k5| a,—s| — [0|m — /]
B B L e e et LTI A T
2k \/kn—s’an_s| — [8]m

nm|a|o|
o
Now replacing f(z) by P(kz) and proceeding as in the proof of Theorem 3.1, we get

—k kn=sla,—_s| — [0lm — +/|a
max |DoP(2)| > [ g 4 Ve lan o] 19 [0 max | P(2)]
|2|=k 2k \/k.n—s|an_s| — |8|m |2|=k

_ kn=sla,—s| — [0lm — +/|a
ol k(.. VE = lan s — [8lm — /lao| sim 4 "ledld]
\/k"*‘*]an_s\ —om k

As in the proof of Theorem 3.1, P(z) = z°¢(z) has all zeros in |z| < k, k > 1.
Therefore, from (2.2) of Lemma 2.2 and (2.4) of Lemma 2.3, with

(3.12) -

1
ax|DaP(2)],  min|Dag(2)| = ;- min [DaP(2)

max | D,o(z = —
x1Das(2) s mi

= —m
|z|=k ks |z|=1
and
max | Dag(z)| = max | Do P(2)],
we get from (3.12) by taking § =1 with n > 2,
k" max |DP(2)| — (k" — k" %) |nag + aay|

_ k" s|a,—s| — Im — y/]a 2k™
o] k(n+s+\/ ] |o|){ k P

ma
2 S lan | — Im 4 ks
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kn—s _ 1 an_l Upys kn—s 1 kn—s—Q -1
+l(k”5+1> Irzrllgzi‘P(Z”—i_ k”|s—|—1 1’< n—s n—s—Q)}
ol -k \/k;n—8|an,s| —Im \/|a0‘lm+ nml(|
2 \/kn—s|anis| —Im 2k
slm
"ok
Thus on simplification, we get for 0 <1 < 1 and n > 2

_ k=5 a,—s| — Im — y/]a
s D P()] 21 VE = an| Vlaol
l2]=1 k™ (1 4+ kn=s) \/k"*5|an_8| —Im

x (K" max | P(z)] — Im)

n+s o] 1
T (“a’ ~ ) max|P)l+ (k ’ k”—1>lm)

al + k)

(k= lal).

|Oz‘ —k \/kn_s|an—5| —lm — ‘a0|
|y 1| [+ 5+
k’(l + kn 8) \/kn—s|an_8’ —Im
slm
x ¢(k) + |nag + aaqyp(k) + %(k - lal),

where ¢(z) and 9(z) are defined in the statement of Theorem 3.1. This proves the
theorem for case when n > 2. The result for n = 2 can be obtained by using (2.3) of
Lemma 2.2 and (2.5) of Lemma 2.3. This completely proves Theorem 3.2. U

If we divide both sides of (3.10) by |a| and letting o — +o00, we get the following.

Corollary 3.2. If P € P, be such that all the zeros of P(z) = 2°(ap + a1z + - - - +
an-s2""%), 0 < s <mn, liein|z| <k, k> 1, with a zero of multiplicity s, 0 < s < n,
at the origin, then for 0 <[l <1

k" 3|a,_s| — Im — +/|ag
max | P'(z2) L (\/ | | \/‘ ‘)

| >
|z|=1 kn(]_ + kn—s) \/k.nfs’anisl —Im

x (k" max |P(2)] — Im) + ——5_ (max \P(2)] + klszm> + (k)|

|zl=1 14 kn=s \ z1=1
VE = lan—| — tm — \/]a| sim
(3.13) + B ap_s1||n+ s+ (k) — =,
\/k"*5|an,3] —Im 2k

where m = min. | |P(2)| and ¢(k), (k) are defined in Theorem 3.1.
Remark 3.3. For s = 0, (3.10) reduces to a result due to Rather et al. [9].
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