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OPTIMIZING CHANCE CONSTRAINT MULTIPLE-OBJECTIVE
FRACTIONAL MATHEMATICAL PROGRAMMING PROBLEM

INVOLVING DEPENDENT RANDOM VARIABLE

BERHANU BELAY1 AND SRIKUMAR ACHARYA2

Abstract. This manuscript suggests a methodology to solve chance constraint
multiple-objective linear fractional mathematical programming problem in which
the parameters are dependent random variables to each other. The proposed problem
is formulated by taking few of the parameters as continuous dependent random vari-
ables. The proposed model cannot be solved directly by using existing methodology.
Thus in order to solve the proposed model, an equivalent deterministic model is de-
rived. The procedure to solve the proposed model is accomplished in two main steps.
Initially, the proposed multiple-objective chance constraint linear fractional mathe-
matical problem is transformed to deterministic equivalent multiple-objective linear
fractional mathematical programming by the help of chance constrained method. In
the second step, multiple-objective functions, which consist of fractional functions
is solved by using lexicographic programming approach. Finally, an example is
mentioned to illustrate the methodology.

1. Introduction

Nowadays, in real world problems, many decision making problems have multiple
and conflicting objectives. The mathematical programming problem involving more
than one objective functions that are conflicting in nature is known as multiple-
objective programming problem. If the objective functions are ratio of affine functions,
the problem is called multiple-objective linear fractional mathematical programming
problem.
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In a multiple-objective linear fractional programming problem, the optimal solution
for one single objective need not be an optimal solution for the other single objective
function. As a result, another solution which is called compromise solution must be
needed to optimize all objective functions. A solution is said to be efficient solution, in
the event that it cannot improve one objective function without degrading their per-
formance in one of the other objective functions. There exist several methodologies to
find efficient solution of multiple-objective fractional programming problem. Some of
the methods seen in the literature are: J. S. Kornbluth and R. E. Steuer [11] proposed
simplex based method to get weakly efficient solutions for multi-objective fractional
programming problem. Luhandjula, [13] solved multi-objective fractional program-
ming problem using a fuzzy programming approach. Dutta et al. [8] solved a special
type of programming problem having identical denominators using variable transfor-
mation method. By applying techniques used in [6] for suitable transformation, M.
Chakraborty and S. Gupta [3] solved multi-objective fractional programming problem
based on set theoretic approach. Jain [9] proposed Gauss elimination method to solve
multi-objective linear fractional programming problem. Porchelvi et al. [14] presented
a method to find efficient solution of multi objective fractional programming problem
with the help of complementary method proposed by Dheyab [7] by transforming
fractional programming problem into equivalent programming problem. Tantawy
[16] presented a feasible direction method for multi-objective fractional programming
problem, where the denominators are identical functions.

In real world problems, the data of mathematical programming problem may not
be known with certainty. If the uncertainty occurs due to randomness, then the
programming problem is called stochastic programming problem. In this case, some
or all of the data of the programming problem can be characterized with random
variables following known distributions. There are two techniques that are used to
solve stochastic mathematical programming problems. Namely, chance constraint and
two stage mathematical programming. Our objective in this manuscript is to study
the chance constraint mathematical programming problem. Chance constraint math-
ematical programming is one of the method used to solve mathematical programming
problem at which the restrictions have fixed probability of violation. In this case the
randomness can be shown either within the coefficient of objective functions, with in
the constraint coefficients, within the right hand side parameters or in combination
of constraint coefficients, objective function, and right hand side parameters.

In this manuscript, the randomness occurs only in the left side of the constraints.
The difficulty of chance constraint programming problem is handling the chance
constraints.

To handle these constraints some researchers obtained the deterministic equivalent
of the problem with the concept of probability distribution function. Charnes and
Cooper [5] presented the deterministic equivalence of chance constraint programming
problem that includes independent normal random variables. Lingaraj and Wolfe [12]
obtained the deterministic equivalence of chance constraint programming problem
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where the random variable follow gamma distribution. Knott [10] presented chance
constraint mathematical programming by considering the parameters within the right
side of limitations as uniform random variables. Biswal et al. [2] solved single ob-
jective probabilistic linear programming problem by considering few parameters as
exponential random variables. Sahoo and Biswal [15] presented chance constraint
programming problem where the random variables within the joint constraint have
both normal and log normal distribution. Charles et al. [4] proposed chance constraint
programming by considering the parameters within the right side of limitations having
generalized continuous distribution. In spite of the fact that a few approaches are
presented to obtain the deterministic equivalence of chance constraint programming
problem including independent random variables, any method is not mentioned to find
the deterministic equivalence of chance constraint programming problem including
dependent random variables. i.e two random variables are called dependent random
variable, if the probability of events associated with one random variable influence
the distribution of probabilities of the other variable.

Chance constraint programming problem can be applied to the programming prob-
lem where the fractional objective functions are multiple, non commensurable and
conflicting each other. In this case, there is no single solution that optimizes all frac-
tional objective functions. The solutions of multiple-objective fractional programming
problem are known as compromise solution or efficient solution. In multiple-objective
fractional programming problem, decision makers need the satisfaction of criteria
instead of optimizing the objective function. However, such type of problems are
more complex when the parameters are uncertain. Recently Acharya et al. [1] solved
multi-objective chance constraint fractional programming problems involving two
parameters independent Cauchy random variables.

In this manuscript, an attempt has been made to get the lexicographic optimal so-
lution of chance constraint multiple-objective linear fractional mathematical program-
ming problem involving dependent normal random variable where the randomness
occurs only in the constraint coefficient.

Multiple-objective chance constraint linear fractional programming is a special class
of multiple-objective stochastic linear fractional programming problem.

This manuscript has been organized within six sections including the references.
The first section states about the brief introduction of programming problem. The
second section states the mathematical model of multiple-objective fractional program-
ming problem. Section 3 presents the transformation strategy of multiple-objective
chance constraint linear fractional programming problem into its deterministic equiv-
alent. Section 4 states the solution procedure of multiple-objective chance constraint
linear fractional programming problem. In Section 5 numerical example is given to
demonstrate the proposed method. The final section presents the conclusion of the
paper followed by references.
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2. Mathematical Model

The general multiple-objective fractional programming problem can be stated as:

(2.1) max / min : Zk = Nk(X)
Dk(X)

subject to
n∑

j=1
aijxj(≤, ≥, =)bi, i = 1, 2, . . . , m,(2.2)

xj ≥ 0, j = 1, 2, . . . , n,(2.3)

where the functions Nk(X) and Dk(X) are continuous real valued functions defined
from Rn → R, the constraint functions can be linear or non linear functions, and the
variable X is n-dimensional vector.

If Zk are the objective functions which are defined on a compact set, then the
point x0 is compromise solution for the given problem, if and only if x0 optimizes
each objective function Zk. The compromise solutions exist if the feasible space is
non-empty and compact as well as the functions Nk(X) and Dk(X) are continuous
functions and the denominator is different from zero.

If Nk(X) and Dk(X) are affine functions, the programming problem given by
(2.1)–(2.3) is called multiple-objective linear fractional programming problem. If the
parameters of multiple-objective linear fractional programming problem are uncertain
due to randomness, then the given programming problem is called multiple-objective
chance constraint linear fractional programming problem.

A multiple-objective chance constraint linear fractional programming problem is
expressed as:

(2.4) max : Zk = Nk(X)
Dk(X) =

n∑
j=1

ckjxj + c0k

n∑
j=1

dkjxj + d0k

, k = 1, 2, . . . , K,

subject to

P

 n∑
j=1

aijxj ≤ bi

 ≥ αi, i = 1, 2, . . . , m,(2.5)

0 ≤ αi ≤ 1, i = 1, 2, . . . , m,(2.6)
xj ≥ 0, j = 1, 2, . . . , n,(2.7)

where
n∑

j=1
ckjxj + c0k and

n∑
j=1

dkjxj + d0k,

are linear functions of xj, ckj, dkj ∈ Rn, aij ∈ Rm×n, c0k and d0k are scalars, P indicates
probability, αi represents aspiration level for i-th constraint.
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3. Transformation Technique

In order to understand the transformation of multiple-objective chance constraints
linear fractional programming problem into its deterministic equivalent, we focus on
the following two cases.

Case 1. Let’s consider the following multiple-objective chance constraint linear
fractional programming problem with two decision variables x1 and x2.

(3.1) min / max : Zk = Nk(X)
Dk(X) = ck1x1 + ck2x2 + ck0

dk1x1 + dk2x2 + dk0
, k = 1, 2, . . . , K,

subject to

P (ai1x1 + ai2x2 ≤ bi) ≥ αi, i = 1, 2, . . . , m,(3.2)
0 ≤ αi ≤ 1, i = 1, 2, . . . , m,(3.3)
x1, x2 ≥ 0, j = 1, 2, . . . , n,(3.4)

where ck1x1 + ck2x2 + ck0 and dk1x1 + dk2x2 + dk0 are linear functions of x1 and x2,
ck1, . . . , ck2, . . . , ck0, dk1, . . . , dk2, . . . , dk0 ∈ R.

The mathematical programming problem (3.1)–(3.4) is equivalent to the mathe-
matical programming problem given by:

(3.5) min / max : Zk = Nk(X)
Dk(X) = ck1x1 + ck2x2 + ck0

dk1x1 + dk2x2 + dk0
, k = 1, 2, . . . , K,

subject to

E(ai1x1 + ai2x2) ≤ bi − kβi

√
Var(ai1x1 + ai2x2), i = 1, 2, . . . , m,(3.6)

0 ≤ αi ≤ 1, i = 1, 2, . . . , m,(3.7)
x1, x2 ≥ 0, j = 1, 2, . . . , n.(3.8)

The equivalence of the two mathematical programming problems is proven by the
existence of one to one function. In this case, the normal probability density function
is used as a one to one function.

Let x be a normal random variable, then probability density function is expressed
by:

f(x) = 1
σ

√
2π

e− (x−µ)2

2σ2 , σ > 0, −∞ < µ < ∞.

In (3.6) assume that the coefficients ai1 and ai2 are dependent random variables having
normal distribution with variance σ2 and mean µ. Let’s assume the i-th constraint in
the chance constraint given in (3.2)

(3.9) P (ai1x1 + ai2x2 ≤ bi) ≥ αi.

Let q be the random variable defined as q = ai1x1 + ai2x2, then (3.9) is expressed by

(3.10) P (q ≤ bi) ≥ αi.
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Since q is a linear combination of normally distributed random variables, then it is
a normal distributed random variable. Consequently the chance constraint given in
(3.10) can be expressed as

(3.11) P

q − E(q)√
Var(q)

≤ bi − E(q)√
Var(q)

 ≥ αi,

where E(q) and Var(q) are mean and variance of the random variable q and q−E(q)√
Var(q)

is a standard normal random variable.
The equation (3.11) can be written using cumulative distribution function

1√
2π

∫ bi−E(q)√
Var(q)

−∞
e− z2

2 dz ≥ αi, where z = q − E(q)√
Var(q)

,

and

(3.12) φ

bi − E(q)√
Var(q)

 ≥ αi,

where φ(·) stands to standard normal random variable having µ = 0 and σ = 1.
Assume that kβi

indicates the value of random variable with µ = 0 and σ = 1 fulfilling
φ(kβi

) = αi, at that point the constraint (3.12) is expressed as

(3.13) φ

bi − E(q)√
Var(q)

 ≥ φ(kβi
),

since φ continuous, the inequality (3.13) is satisfied only if

bi − E(q)√
Var(q)

≥ kβi

or

(3.14) E(q) ≤ bi − kβi

√
Var(q) ≤ 0.

Substituting q = ai1x1 + ai2x2 in (3.14), we have

(3.15) E(ai1x1 + ai2x2) ≤ bi − kβi

√
Var(ai1x1 + ai2x2).

Substituting (3.15) in (3.2), the deterministic equivalent of the mathematical pro-
gramming problem (3.1)–(3.4) is expressed as

(3.16) max : Zk = Nk(X)
Dk(X) = ck1x1 + ck2x2 + ck0

dk1x1 + dk2x2 + dk0
, k = 1, 2, . . . , K,
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subject to

E(ai1x1 + ai2x2) ≤ bi − kβi

√
Var(ai1x1 + ai2x2), i = 1, 2, . . . , m,(3.17)

0 ≤ αi ≤ 1, i = 1, 2, . . . , m,(3.18)
x1, x2 ≥ 0, j = 1, 2, . . . , n(3.19)

because ai1 and ai2 are dependent random variables, then Var(ai1x1 + ai2x2) is calcu-
lated as

(3.20) Var(ai1x1 + ai2x2) = XH tX,

where X = (x1, x2) and H is 2 × 2 covariance matrix which is defined as:

H =
(

Var(ai1) Cov(ai1, ai2)
Cov(ai2, ai1) Var(ai2)

)
.

Case 2. In this case, the multiple-objective chance constraint linear fractional pro-
gramming with n decision variables is expressed as:

(3.21) min / max : Zk = Nk(X)
Dk(X) =

n∑
j=1

ckjxj + c0k

n∑
j=1

dkjxj + d0k

, k = 1, 2, . . . , K,

subject to

P

 n∑
j=1

aijxj ≤ bi

 ≥ αi, i = 1, 2, . . . , m,(3.22)

0 ≤ αi ≤ 1, i = 1, 2, . . . , m,(3.23)
xj ≥ 0, j = 1, 2, . . . , n.(3.24)

Assume that aij are dependent normal random variables having n decision variables,
then the chance constraint (3.22) is given by

(3.25) P

(
n∑

i=1
aijxj ≤ bi

)
≥ αi.

Let q is a random variable defined as q = ∑n
i=1 aijxj −bi. Following the same procedure

as case 1 above, the deterministic equivalent of the chance constraint programming
problem is given by

(3.26) E
 n∑

j=1
aijxj

 ≤ bi − kβi

√√√√√Var
 n∑

j=1
aijxj

,
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substituting (3.26) in (3.22), the deterministic equivalent of the mathematical pro-
gramming problem (3.21)–(3.24) is expressed by:

(3.27) min / max : Zk =

n∑
j=1

ckjxj + c0k

n∑
j=1

dkjxj + d0k

, k = 1, 2, . . . , K,

subject to

E
 n∑

j=1
aijxj

 ≤ bi − kβi

√√√√√Var
 n∑

j=1
aijxj

, i = 1, 2, . . . , m,(3.28)

xj ≥ 0, j = 1, 2, . . . , n.(3.29)
Since aij are dependent random variables then Var(q) is calculated as follows
(3.30) Var(q) = Var(ai1x1 + ai2x2 + ai3x3 + · · · + ainxn), i = 1, 2, . . . , m,

using the property of variance for the sum of dependent random variables we have
Var(ai1x1 + ai2x2 + ai3x3 + · · · + ainxn) = XHT X, where H is n × n covariance matrix
which is expressed by

H =


Var(ai1) Cov(ai1, ai2) · · · Cov(ai1, ain)

Cov(ai2, ai1) Var(ai2) · · · Cov(ai2, ain)
... ... . . . ...

Cov(ain, ai1) Cov(ain, ai2) · · · Var(ain)

 .

4. Solution Procedure

Since the mathematical programming problem given in (2.4)–(2.7) involves uncer-
tain parameters and several linear fractional objectives, it is difficult to discover the
lexicographic optimal solution directly. To find the lexicographic optimal solution
of the given multiple-objective chance constraint fractional programming problem,
first convert the multiple-objective chance constraint linear fractional mathematical
programming to deterministic equivalent multiple-objective linear fractional mathe-
matical programming. Then lexicography approach is applied to get the lexicographic
solution of the deterministic multiple-objective linear fractional programming problem.

We use the lexicographic ordering approach instead of general partial ordering
since it is a special case of general partial ordering approach. In this case, when
the lexicographic order has been imposed upon a set of objective functions, then all
elements of the objective function will be comparable to one under the ordering where
as partial orders are generated by a cone. In lexicography preferences are imposed by
ordering the objective functions according to their importance rather than assigning
weights. In this case, to solve single objective fractional programming problem, we
used complementary method which is proposed by A. N. Dheyab [7]. The method
is applied to change fractional mathematical model into equivalent mathematical
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model which is free from fractional functions. The idea is, to maximize fractional
objective function, the numerator must be maximized and the denominator must
be minimized. To do this, the fractional objective functions must be realized by
subtracting the denominator function from the numerator function. The resulting
objective function is maximized subject to given constraint. This shows that the
single objective fractional mathematical programming is changed to single objective
mathematical programming. Finally, the single objective programming problem is
solved by a suitable strategy or existing software.

The basic steps of the methods of multiple-objective chance constraint linear frac-
tional programming problem are given below.

Step 1. Transform the multiple-objective chance constraint linear fractional pro-
gramming problem into deterministic equivalent multiple-objective linear fractional
programming problem as mentioned in Section 3.

Step 2. From the objective function (minimization problem) take k = 1. The first
objective function is expressed as Z1(x) = N1(x)

D1(x) , then the value of Z1 is taken as the
minimum value of N1(x) and the maximum value of D1(x).

Step 3. Formulate a mathematical programming problem as min z1(x) together
with the original constraints, where z1(x) = N1(x) − D1(x). This is because to
make the linear fractional programming problem minimum, the numerator must be as
minimum as possible, while the denominator must be as greater as possible, i.e., let
the numerator is denoted by min N1(x) and the denominator is denoted by max D1(x).
Then the denominator max D1(x) is converted to min D1(x) by multiplying both sides
by negative sign. Therefore, the new linear programming problem becomes min Z =
min N1(x)−min D1(x) as stated in [7]. This can be written as min Z = N1(x)−D1(x).
This is done by putting the variable of numerator linear on the opposite signal with
code e1, it is added to the simplex method table in the line (m + 1) where as setting
the variable of denominator linear to its opposite signal with code e2, it is add to the
simplex method table in the line m + 2, where the the bounds of the mathematical
model for m is from numbers and the target linear problem is based on the following
code,i.e., Z = N1e1 − D1e2, where N1 is the value of the numerator after compensated
the result of the value of x and D1 is the value of the denominator after compensated
the result of the value of x. Taking e1 = e2, we got Z = N1 − D1. Then the resulting
problem is solved by methods of single objective programming or existing software.

Step 4. Apply the same procedure for the second objective function Z2(x) = N2(x)
D2(x) .

In this case, the minimization of earlier objective function min z2(x) is considered as
an other constraint in addition to the original constraints.

Step 5. Once more the same strategy is applied for the third objective function and
the resulting single objective programming problem is optimized subject to the previ-
ous objective function min z3(x) as constraint together with the original constraint.

Step 6. The method is continued until all the objective functions could be optimized.
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The algorithm terminates once a unique optimum is determined. This means that
if we have n objective functions, then we do have n! sequence of objective functions.
This shows that n! possible lexicographic optimal solutions can be obtained from
the given problem. Hence the algorithm terminates if all possible sequential ordered
functions are optimized.

The values of the objective functions is obtained by substituting the lexicographic
solution to the original objective functions.

5. Numerical Example

Consider the following multiple-objective chance constrained linear fractional math-
ematical programming where the constraint coefficient of the left hand restrictions
follow dependent normal random variables.

max Z1 = 8x1 + 14x2

2x1 + 4x2
,(5.1)

max Z2 = −16x1 + 9x2

−6x1 + 5x2 + 3 ,(5.2)

subject to

P (a11x1 + a12x2 ≤ 30) ≥ 0.85,(5.3)
P (a21x1 + a22x2 ≤ 40) ≥ 0.95,(5.4)

xj ≥ 0, j = 1, 2,(5.5)

where a11, a12, a21, a22 are random variables that follow dependent normal distribution
with known parameters E(a11) = 2, E(a12) = 4, E(a21) = 1, E(a22) = 2, Var(a11) =
16, Var(a12) = 25, Var(a21) = 49, Var(a22) = 36, Cov(a11, a12) = 10, Cov(a21, a22) =
14.

Now, using equation the problem given in (3.27)–(3.29) the deterministic equivalent
of the problem given in (5.1)–(5.5) is expressed as:

max Z1 = 8x1 + 14x2

2x1 + 4x2
,(5.6)

max Z2 = −16x1 + 9x2

−6x1 + 5x2 + 3 ,(5.7)

subject to

E(a11x1 + a12x2) ≤ b1 − kβ1y1,(5.8)
Var(a11x1 + a12x2) − y2

1 = 0,(5.9)
E(a21x1 + a22x2) ≤ 40 − kβ2y2 ≤ 0,(5.10)

Var(a21x1 + a22x2) − y2
2 = 0,(5.11)

x1, x2, y1, y2 ≥ 0.(5.12)
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Using the property of mean and variance of dependent random variables we have:

(5.13) E(a11x1 + a12x2) = E(a11)x1 + E(a12)x2

and

Var(a11x1 + a12x2) =
[

x1 x2
] [ Var(a11) Cov(a11, a12)

Cov(a12, a11) Var(a12)

] [
x1
x2

]
,

similarly, the variance of the second constraint is given by

Var(a21x1 + a22x2) =
[

x1 x2
] [ Var(a21) Cov(a21, a22)

Cov(a22, a21) Var(a22)

] [
x1
x2

]
.

Substituting all the values of the given data in the problem (5.6)–(5.12), we have the
following deterministic multiple-objective linear fractional programming problems.

max Z1 = 8x1 + 14x2

2x1 + 4x2 + 2 ,(5.14)

max Z2 = −16x1 + 9x2

−6x1 + 5x2 − 3 ,(5.15)

subject to

2x1 + 4x2 ≤ 30 − 1.034y1,(5.16)
(16x2

1 + 20x1x2 + 25x2
2) − y2

1 = 0,(5.17)
1x1 + 2x2 ≤ 40 − 1.645y2,(5.18)

(49x2
1 + 28x1x2 + 36x2

2) − y2
2 = 0,(5.19)

x1, x2, y1, y2 ≥ 0.(5.20)

The deterministic programming problem given in (5.14)–(5.20) is multiple-objective
nonlinear fractional programming problem. Using the above method, we can get the
lexicographic solution of the given mathematical problem.

Now, consider the first objective function max Z1 = −4x1+3x2
2x1+4x2

and separate this
function into two functions namely, numerator and denominator. Using the procedure
in step 2, we have to formulate single objective programming problem together with
the given constraints which is stated by (5.21)–(5.26) as follows

max Z̄1 = (8x1 + 14x2) − (2x1 + 4x2 + 2) = 6x1 + 10x2 − 2,(5.21)

subject to

2x1 + 4x2 ≤ 30 − 1.034y1,(5.22)
(16x2

1 + 20x1x2 + 25x2
2) − y2

1 = 0,(5.23)
1x1 + 2x2 ≤ 40 − 1.645y2,(5.24)

(49x2
1 + 28x1x2 + 36x2

2) − y2
2 = 0,(5.25)

x1, x2, y1, y2 ≥ 0.(5.26)
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Solving this nonlinear programming problem using LINGO software, we obtain the
following optimal solutions: x1 = 1.113499, x2 = 2.725417, y1 = 16.31657, y2 =
20.32563, with maximum value Z̄1 = 31.93516.

Next, we consider the second objective function Z2 = −16x1+9x2
−6x1+4x2−3 . According to the

above procedure given in step 4, we formulate the non linear programming problem
as:

max Z̄2 = −16x1 + 9x2

−6x1 + 5x2 − 3 = −10x1 + 4x2 + 3,(5.27)

subject to

2x1 + 4x2 ≤ 30 − 1.034y1,(5.28)
(16x2

1 + 20x1x2 + 25x2
2) − y2

1 = 0,(5.29)
1x1 + 2x2 ≤ 40 − 1.645y2,(5.30)

(49x2
1 + 28x1x2 + 36x2

2) − y2
2 = 0,(5.31)

6x1 + 10x2 = 33.93516,(5.32)
x1, x2, y1, y2 ≥ 0.(5.33)

Here 6x1 + 10x2 ≥ 33.93516 is included in the constraint. Solving the nonlinear
programming problem given in (5.27)–(5.33), we obtain the following lexicographic
optimal solution: x1 = 1.113499, x2 = 2.725417, y1 = 16.31657, y2 = 20.32563, with
maximum value Z̄1 = 2.766681.

Therefore, a lexicographic solution by above multiple-objective chance constraint
fractional programming problem is x1 = 1.113499, x2 = 2.725417, with max Z1 =
47.06383
17.854083 , max Z2 = 6.712769

3.946091 .
In any multiple-objective programming problem, there exist a number of good lexi-

cographic solutions. These lexicographic solutions are equally acceptable. Choosing
the lexicographic solution depends on the situation that decision makers prefer. The
preference of decision maker depends on different conditions like budget, row material,
resource, time limit etc. Therefore, having more lexicographic solution to multiple-
objective programming problem is necessary for decision makers to select the best
solution among the given alternatives which satisfies their need and capacity. Hence,
we need to search more lexicographic solution for the above programming problem.
So, applying the above procedure given in section 4, first choose the second objective
function and optimizing subject to the given constraints, we have an optimal solution
x1 = 0.0000, x2 = 3.271538, y1 = 16.35769, y2 = 19.62923, with maximum value
Z̄2 = 16.08615.

Next, optimizing the first objective function Z1 subject to the original constraint
including Z̄2 = −10x1 − 4x2 ≥ 14.19455, obtain lexicographic optimal solution x1 =
0.2538795, x2 = 3.156236, y1 = 16.31267, y2 = 19.60155, with maximum value
Z̄1 = 31.08564. Substituting these values to the original objective function gives to
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the lexicographic solution which is given by x1 = 0.2538795, x2 = 3.156236, with
max Z1 = 46.2183

18.288939 , max Z2 = 24.2183
11.257903 .

Finally, the two lexicographic solutions are given in Table 1.

Table 1. Lexicographic solutions

x1 x2 Z1 Z2(X)
1.113499 2.725417 47.06383

17.854083
6.712769
3.946091

0.2538795 3.156236 46.2183
18.288939

24.2183
11.257903

6. Conclusion

Multiple-objective chance constraint linear fractional programming are solved by
considering the coefficient of constraints as random variables following dependent
normal distribution. We consider that other data of the model are deterministic.
The formulated programming problem is converted to its deterministic equivalent
programming problem using the concept of cumulative probability distribution for
dependent random variables using the concepts of covariance. The resulting multiple-
objective fractional programming is solved by using lexicography method which is
prior method. Alternative lexicographic solutions are obtained using the proposed
method. The problem can be extended to the same programming problems involving
other dependent random variables.
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